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 Abstract  

The estimation of ANOVA model parameters in the presence of outliers is one of the 

most pervasive problems in data analysis, statistical applications and inferences. The 

regularity of heavy tailed error distributions due to the presence of outliers in both 

experimental and observational data is of keen interest to researchers due its negative 

impact on most useful classical techniques in the field of statistical inferences. 

Authors at various times have examined empirically the problems of outliers in data 

analysis and inference from different considerations and various estimators 

including the classes of M estimators with fixed cut off point have been suggested in 

literature to address the limitations of the classical methods. Consequently, this paper 

examines the efficiency of the proposed alternative estimator: Adaptive Robust M 

Estimator (ARME) with data dependent (flexible) cut off point. The efficiency 

(robustness) of the proposed method and the other existing methods: Huber M Fixed 

Cut off (HMFC), Bisquare M Fixed Cut off (BMFC) and Least Square Estimator 

(LSE) was compared using Monte Carlos simulated data for One-Way ANOVA with 

varying percentages of outliers on the response variable crossed with different sample 

size.  The performance of the estimators was assess using Root Mean Square Error 

(RMSE). The results of the study revealed that the performance of the proposed 

estimator (ARME) is substantially better when compare with the existing methods 

using RMSE as measure of efficiency and goodness of fit at different degree of 

outliers. 
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1. Introduction 

Analysis of Variance (ANOVA) is one major established classical parametric statistical method that is frequently engaged in diverse field 

of studies particularly in design and analysis of experiment. Montgomery (2010) asserted that ANOVA is probably the most useful 

technique in the field of statistical inference. The classical ANOVA is a standard procedure used to generate confident statistical 

inferences about systematic differences between group means of normally distributed outcome measures in randomized experiment 

Kevin (2004). A statistical procedure focuses on the theory of statistical data produced by an experiment of various dimension. ANOVA 

methodology is aptly and sufficiently described as one of the most flexible and feasible techniques for comparing several population 

means. ANOVA tool provides the methodology for partitioning the total variation computed from the dataset into components, each of 

which represents the amount of the total variances that can be attributed to a specific source of variation Wayne (2013). The 

attractiveness and usefulness of this statistical tool is hinged on its strength and capacity to separate the total variability found within the 

data set into several components. 

However, the methodology of ANOVA framework is most powerful and resilient when the classical assumptions of homogeneity of 

variance, independent and normality of error distribution are sufficiently fulfilled. Thus, empirical evidences involving real life data 

extracted from review of several scientific journal indicates that these assumptions are not usually met Blanca et al. (2017). Dinesh and 

Padmini (2015) averred that existing statistical literature and empirical studies revealed that many of the past experiment conducted in 

different parts of the globe suffers from the problem non-normality and heterogeneous error distribution variances due to the presence of 

outliers. 
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1.1 Outliers 

 One common feature of many real life data particularly in designed experiments is that they contain observations, which are inconsistent 

and significantly far away from the remaining dataset Bruno and Roberta (2007). These observations are technically called outliers. 

Outliers are observations that do not follow the pattern of other observations in a given data set. Barnett and Lewis (1993), Staudte and 

Sheather (1990) submitted that in the context of designed experiment, outliers are observations, which may responsible for the disruption 

of the usual pattern of the data. According to Dinesh and Padmini (2015) in designed experiment outliers in the dataset control the 

significance of the treatment effects, thus conclusion drawn from such experiment will be wrong and misleading. Therefore, the presence 

of outliers in designed experiment significantly influences the parameter estimates of the ANOVA model resulting in wrong statistical 

inferences. The presence of outliers is an indication of weakness in the model, the data or both. Unfortunately, in real life situation off 

center (skewed) data, heavy-tailed distributions and outliers are common problems encounter in data collection and analysis considering 

their regularity in many scientific and methodical studies. Avi (2006) reported that most real life data analysis these assumptions are not 

met due to distributional problems occasion by the presence of outliers.   

Markus (2016) reported in his simulated study that parameter estimates in ANOVA model are sensitive to outliers using the classical 

procedures. Dinesh and Padmini (2015) examine the efficacy of robust ANOVA methods in the analysis of horticultural field 

experimental data in the presence of outliers. The results obtained fortify the use of robust ANOVA methods, as there was substantial 

reduction in error mean square when compared with the classical approach.  

Consequently, robust regression methodology including the class of M estimators was introduced to reduce the effect of outliers and 

enhance accuracy of model parameter estimates using the tuning constant (fixed cutoff point). The methodology advocated mitigates the 

effect of outliers by minimizing the residual function through appropriate weighting method. However, the fixed cutoff applicable in the 

existing estimators is major drawback.    
 

2   Methodology 

Several robust estimation methods have been developed from diverse viewpoint, each of which has various justifications. In this research, 

our aim is to develop an alternative robust estimator called Adaptive Robust M Estimator (ARME) with data dependent cutoff point. 

However, in the presence of outliers in the dataset the LSE is easily affected because all the observations including outlying observations 

are assigned the weight of one. In response to the limitations of the LSE, Huber (1964) introduced the class of M estimation method. The 

method minimizes the sum of the objective function of the residuals to obtain the parameter estimates through appropriate weights 

function. 
 

2.1     Huber M FIXED CUTOFF (HMFC) 

Huber weighted function is defines as:  
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Where CB is the tuning constant  
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2.3   Derivation of M Estimator for the Proposed Procedure 

𝑦𝑖 = 𝑋𝑖
𝑡𝛽 + 𝑒𝑖          (3.21) 

𝑒𝑖 = 𝑦𝑖 − 𝑋𝑖
𝑡𝛽 

The standardized residual is defines as: 
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Hence by matrix notation: 
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2.4 Data Dependent Cut-Off Point Using Robust Confidence Intervals 

In order to achieve high efficiency in relation to the M estimator, we propose the use of robust confidence interval to determine the cut-

off point that is data dependent. Carling (2000) recommended the use of median rule (box plot) given as: 
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 1322 qqkqC L   

 1322 qqkqCU                                                                                                       (2.7) 

to determine the robust confidence interval. Where CL   is the lower cut-off point while CU, q2, is the sample median, q1, is the lower 

quartile and q3, is the upper quartile. The default value of k2, is 2.3. 

2.5   Algorithm for obtaining proposed alternative estimator  

Given a vector of responses Y and vectors of treatment codes for the appropriate treatment contrasts, to find a robust ANOVA using M-

estimator with Huber weight: 

1. Obtain the initial estimate of the parameters of the model using the Least Squares Estimator (LSE). 

2. Determine the residuals of the LSE model and denote it by 𝑟. 

3. Calculate the robust estimate (�̂�) of the standard deviation of the residuals 𝑟 using the median of the absolute deviation. 

4. Determine the standardized residuals   𝑢 =
𝑟

�̂�
. 

5. Find the robust Lower Confidence Limit (LCL) and Upper Confidence Limit (UCL) of the standardized residuals using (2.7). 

6. Set  𝑘 = 0 and perform the following iterations: 

(i) Use Huber weight function given in (2.1) with data dependent cut-off point UCL to determine the appropriate weight 

(W) for each standardized residual. 

(ii) Use Weighted Least Squares Estimator (WLSE) with the weight W to obtain a new estimate of the parameters of the 

model. 

(iii) Determine the residuals 𝑟, the robust estimate (�̂�) of the standard deviation of the residuals and the standardized 

residuals 𝑢 =
𝑟

�̂�
 of the new model. 

(iv) Calculate the robust LCL and UCL for each of the new standardized residual of the WLSE. 

(v) Determine the maximum absolute difference (𝐷) between the pairs of newly estimated parameters and the estimated 

parameters of the immediate preceding model. 

(vi) If either 𝑘 = 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 (maximum number of iterations) or 𝐷 < 𝜀, where 𝜀 is the tolerance limit, then set the new 

estimate as the final estimate of the model and used the model to obtain robust ANOVA estimates. 

(vii) Else, set 𝑘 = 𝑘 + 1        

 

3.0        DATA ANALYSIS 

3.1   Dataset Simulation Design 

Monte Carlo simulation was used to examine the robustness and efficiency of the proposed estimator. We performed experiment 

involving one-way ANOVA model. In the one-way experiment, four treatment levels were crossed with 4-sample size (20, 60,100 and 

200). To examine the effect of outliers, five levels of data contaminations (10%, 20%, 30% and 40%) were applied. The assumed models 

for one-way ANOVA is 𝑦𝑖𝑗=𝜇+𝜏𝑖 + 𝑒𝑖𝑗, i= 1,2,3,4 and j=1,2,...,n, where n is the sample size, 𝜏𝑗  is the treatment effect e is the error term. 

The error terms for non-outlying observations were generated from Standard Normal distributions, while the error terms for outlying 

observation were generated from Cauchy distribution with location and scale parameter 0 and 5 respectively. All simulation programs 

were developed using R statistical programming language (R core Team, 2018). The function lm in the base package was used to obtain 

the estimates of regression parameters for the OLS estimator of the classical ANOVA method while the algorithm development for 

robust ANOVA M-estimator was used for proposed estimation method. Each simulation case was replicated M=1000 times. The 

estimates of each estimator were calculated in each iteration and the goodness of fit of each estimator was determined using Root Mean 

Square Error (RMSE) defined as:   

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂� )

2𝑀
𝑖=1

𝑀
 

Where 𝑦𝑖 is the actual observation and �̂� is the fitted (estimated) value by the estimator 

 The mean and standard deviation of the 1000 replicated RMSEs were used as the point estimate and the measure of deviation 

respectively. 

The estimator with the lowest mean RMSE is the most efficient, the smaller the RMSE the more efficient is the estimator. Also, the 

smaller the standard deviation of the RMSEs the more consistence is the estimator. 

 

3.2     Simulation Setup 

3.2.1   One-way ANOVA 

The model for the analysis of One-way ANOVA can be specified as: 

𝑌𝑖𝑗= 𝜇+ 𝜏𝑖 + 𝜀𝑖𝑗
                                                                                                                (3.1)   

  𝜇 is a parameter common to all treatments called the overall mean 

𝜏𝑖  is the parameter unique to treatment called the ith treatment effect, 

𝜀𝑖𝑗 is the random error component that is incorporates all other source of variability. 
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Thus, the parameter of interest and to be estimated is the common mean (𝜇) and the treatment effect (𝜏𝑖).  The reasonable concern in this 

study is the effect of outliers on the parameter estimates, on which the inferences is based. 

   3.2.2 without Outliers 

The observations were randomly generated from the standard normal distribution 𝜀 ~ 𝑁(0, 1). The data generated in the simulation 

without outliers will serve as a reference data (clean) in the study. 

 3.2.3        With Outliers 

To generate a certain percentages of outliers using the contaminated normal mixture with   𝜀𝑖𝑗  ~  𝑁  (0,1)+  𝐶𝑎𝑢𝑐ℎ𝑦 (0,5). The clean or 

reference observation is substituted with 10, 20, 30, and 40 percentages of outliers respectively.  

3.3 Criteria for Evaluating the Estimator Performance 

a. Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂� )

2𝑀
𝑖=1

𝑀
 

Where 𝑦𝑖 is the actual observation and �̂� is the fitted (estimated) value by the estimator 

 

One-Way ANOVA 

Table 4.1: The Mean RMSE and Standard deviation values for different estimation method 

Sample size Outliers  Criteria  Estimators 

   LSE HMFC BMFC HMDD BMDD 

n=20 0% Mean RMSE 0.1534 0.1575 0.1719 0.1534 0.1711 

Std Dev RMSE 0.8862 0.9049 0.9486 0.8868 0.8608 

n=60 0% Mean RMSE 0.0915 0.0921 0.0937 0.0915 0.0964 

Std Dev RSME 0.9637 0.9686 0.9763 0.9638 0.9863 

n=100 0% Mean RMSE 0.0732 0.0736 0.0743 0.0732 0.0753 

Std Dev RMSE 0.9765 0.9792 0.9827 0.9765 0.9881 

n=200 0% Mean RMSE 0.0520 0.0520 0.0522 0.0520 0.0523 

Std Dev RMSE 0.9900 0.9914 0.9928 0.9901 0.9956 
 

The performance of LSE is similar to that of HMFC, BMFC, HMDD and BMDD when the data is free from outliers. The separate results 

obtained for each estimator, the RMSE therefore revealed an infinitesimal difference in their estimates. This implies that all the 

estimators are suitable for the data.   

Table 4.2: The mean RMSE and Standard deviation values for different estimation 

 Method 

Sample size Outliers  Criteria                      Estimators 

   LSE HMFC BMFC HMDD BMDD 

n=20 10% Mean RMSE 2.0239 0.1853 0.2009 0.1111 0.1039 

Std Dev RMSE 2.1712 0.9583 0.9726 0.0471 0.0765 

n=60 10% Mean RMSE 2.0930 0.1032 0.1003 0.1512 0.1013 

Std Dev RSME 2.0025 0.9852 0.9798 0.0086 0.8847 

n=100 10% Mean RMSE 2.0741 6.0764 0.0756 0.0861 0.0762 

Std Dev RMSE 2.6495 0.9901 0.9878 0.0043 0.0908 

n=200 10% Mean RMSE 2.5266 0.0516 0.0516 0.0543 0.0517 

Std Dev RMSE 2.8157 0.9929 0.9915 0.9095 0.2931 
 

The performamce of LSE at 10% injection of outliers represent a breakdown of the estimator with a significant increase in the value of RMSE. However, 
the RMSE estimates of HMFC, BMFC, HMDD and BMDD show that BMDD outperformed the other estimators with the least value of RMSE. 
 

Table 4.3: The mean RMSE and Standard deviation values for different estimation Method 

Sample size Outliers  Criteria  Estimators 

   LSE HMFC BMFC HMDD BMDD 

n=20 20% Mean RMSE 2.7539 0.8458 0.8617 0.4074 0.3946 

Std Dev RMSE 2.7339 0.5160 0.5181 0.6527 0.5195 

n=60 20% Mean RMSE 2.8363 0.1686 0.1879 0.2346 0.1325 

Std Dev RSME 3.8614 1.0405 1.0168 1.1302 1.0121 

n=100 20% Mean RMSE 2.9620 0.0959 0.0879 0.1403 0.0821 

Std Dev RMSE 2.8213 1.0159 1.0023 1.0667 1.0014 

n=200 20% Mean RMSE 2.7560 0.0559 0.0537 0.0747 0.0537 

Std Dev RMSE 3.3151 1.0081 0.9987 1.0326 0.9989 
 

At 20% contamination of the data, the RMSE value of LSE increased an indication that the estimator is easily affected by outlying observations. Similarly, 
the RMSE values of HMFC, BMFC, HMDD and BMDD suggest that the estimators are applicable to the data with reasonably low values of RMSE. 

However, BMDD display superior efficiency with the smallest value of RMSE.   
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Table 4.4: The mean RMSE and Standard deviation values for different estimation Method 

Sample size Outliers  Criteria                     Estimators  

   LSE HMFC BMFC HMDD BMDD 

n=20 30% Mean RMSE 2.9017 1.1594 1.2100 1.0272 0.1122 

Std Dev RMSE 3.2428 1.5080 1.4832 2.2267 0.4323 

n=60 30% Mean RMSE 2.9217 0.1634 0.1641 0.3665 0.1072 

Std Dev RSME 3.0523 1.0685 1.0320 1.2917 1.0021 

n=100 30% Mean RMSE 2.9576 0.1080 0.0.845 0.2431 0.0843 

Std Dev RMSE 2.6942 1.0433 1.0146 1.1836 1.0161 

n=200 30% Mean RMSE 2.9597 0.0595 0.0546 0.1068 0.0547 

Std Dev RMSE 3.2630 1.0191 1.0071 1.0135 1.0078 
 

At 30% injection of outliers, LSE experienced a steady increase in the value of RMSE, an evidence and strong proof of the impact of 

outliers on the estimator. The results revealed dwindling performance of LSE with an increase in the percentage of outliers. In addition, 

the RMSE values of HMFC, BMFC, HMDD and BMDD indicates that BMDD performed better than other estimators with the least 

value of RMSE. This is because BMDD offered more protection against the effect of outliers, hence higher accuracy in parameter 

estimation was achieved       
 

Table 4.5: The mean RMSE and Standard deviation values for different estimation Method 
Sample size Outliers  Criteria  Estimators 

   LSE HMFC BMFC HMDD BMDD 

n=20 40% Mean RMSE 3.1600 1.1600 1.1278 1.0812 1.0153 

Std Dev RMSE 3.9883 0.6280 0.6091 0.0598 0.6263 

n=60 40% Mean RMSE 3.3329 0.2141 0.2511 0.1944 0.1247 

Std Dev RSME 3.8586 1.1212 1.0758 0.5569 0.1111 

n=100 40% Mean RMSE 3.5607 0.1214 0.0925 0.0277 0.1078 

Std Dev RMSE 3.9035 1.0675 1.0289 1.0021 1.0049 

n=200 40% Mean RMSE 3.9290 0.0659 0.0579 0.0175 0.0602 

Std Dev RMSE 3.1463 1.0326 1.0137 0.1894 0.0254 
 

At 40% injection of outliers on the response variable, the performance of LSE was very poor with a continuous increase in the value of 

RMSE. This suggests that LSE is sensitive to outliers. Further, RMSE values of HMFC, BMFC, HMDD and BMDD suggest that BMDD 

yields smaller value of RMSE than other estimators’ do.Thus, it is evident that BMDD yields superior efficiency. 
 

4   Comparison of Methods for One-Way ANOVA 

The simulation results presented in Tables 4.1, 4.2, 4.3, 4.4 and 4.5 revealed the mean RMSE and standard deviation values for different 

estimation methods respectively with sample size n=20, 60, 100, and 200 crossed with different percentage of  outliers 10, 20, 30 and40. 

The mean RMSE is the point estimate of the 1000 replicated RMSE and Standard deviation measures the deviation of the 1000 replicated 

estimates. 

From Table 4.1, it was evident that LSE retained its optimal property of minimum variance in a clean data (outlier free) with smallest 

value of RMSE and standard deviation. Table 4.1 also indicated that, in general small values of RMSE and standard deviation for the 

existing robust methods and proposed robust method (ARME) are consistent with existing statistical literature on the adequacy of robust 

estimator in both outliers-filled data and when the data is free from outliers. Thus, LSE, existing robust methods and the proposed 

method were computationally satisfactory and equivalent in a clean data. 

Also, Tables 4.2, 4.3, 4.4 and 4.5 give separate results for each selected estimation methods using different percentage of outliers for all 

sample size. The result revealed that in the presence of outliers, LSE becomes increasingly inefficient and unfit as the percentage outliers 

increases in the simulation. This suggests that LSE is sensitive and easily affected by outliers and not of good fit for data that are 

contaminated with outliers. Thus, it failed to retain its optimal property of minimum variance when face with dataset that are 

contaminated with outliers. 

Furthermore, considering Table 4.1, 4.2, 4.3, 4.4 and 4.5 for the one-way ANOVA, comparing the performance of HMFC, BMFC, 

HMDD and BMDD, the proposed method BMDD has the least RMSE acrossed all the sample size used hence offered superior 

efficiency. However, HMFC, BMFC and HMDD have similar low RMSE but they are not as efficient as BMDD. The results presented 

indicate that increasing the sample size consistently improves the performance of HMDD and BMDD estimators in terms of substantial 

reduction in the value of RMSE.  The results indicate (HMDD) and (BMDD) offer substantial improvement in efficiency and goodness 

of fit when compared with the existing method judging from the estimated values of RMSE and standard deviation. 

It was also observed from the results that when the proportion of outliers is increased to 10, 20, 30 and 40 percentage the proposed 

method performed better than the existing methods considered, as it offer smallest values of RMSE and standard deviation. In general, 

for y direction outliers in the estimation of ANOVA parameters the proposed BMDD surpassed the performance of the existing methods 

(HMFC, BMFC), using efficiency as a measure of robustness.  
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5. Conclusion 

Comparing the five estimators in this study from different sample size and percentages of outliers using RMSE as a measure of 

efficiency, the alternative estimator (ARME) is more insensitive to both the percentages and magnitude of outliers and the sample size. 

Generally, the proposed alternative method performed better than LSE, HMFC, BMFC methods. Thus, BMDD performance is 

considerably better than the HMDD. 
 

Appendix A 

ROBUST ANOVA1  

########################################################### 

# RobustANOVA1 One-way, Case 1.0, n = 20, Outlier = 0%   # 

########################################################### 

source("C:/Odior/Robust ANOVA/Odior/Outbox function.R") 

sink("RobustANOVA1Case1.0.txt") 

library(broom) 

library(robustbase) 

set.seed(13) 

M <- 1000 # Monte Carlo Sample. Should be 1000 

ng <- 5 # Sample size per group. Total sample size (N) = ng * Number of groups 

Miu_A <- 10 # Factor A effect 

Miu_B <- 10 # Factor B effect 

Miu_C <- 10 # Factor C effect  

Miu_D <- 10 # Factor D effect 

Sigma_A <- 1 

Sigma_B <- 1 

Sigma_C <- 1 

Sigma_D <- 1 
 

RMSELSE <- numeric(M) 

RMSEHuberMFC <- numeric(M) 

RMSEBisquareMFC <- numeric(M) 

RMSEHuberMDD <- numeric(M) 

RMSEBisquareMDD <- numeric(M) 

PValueLSE <- numeric(M) 

PValueHuberMFC <- numeric(M) 

PValueBisquareMFC <- numeric(M) 

PValueHuberMDD <- numeric(M) 

PValueBisquareMDD <- numeric(M) 
 

for(m in 1:M){      # Start the loop 
   

  sim_data = data.frame( 

    response = c(rnorm(n = ng, mean = Miu_A, sd = Sigma_A), 

                 rnorm(n = ng, mean = Miu_B, sd = Sigma_B), 

                 rnorm(n = ng, mean = Miu_C, sd = Sigma_C), 

                 rnorm(n = ng, mean = Miu_D, sd = Sigma_D)), 

    group = c(rep("A", times = ng), rep("B", times = ng), 

              rep("C", times = ng), rep("D", times = ng)) 

  ) 
   

  Y <- sim_data$response 

  X2 <- c(rep(0,ng),rep(1,ng),rep(0,ng),rep(0,ng)) 

  X3 <- c(rep(0,ng),rep(0,ng),rep(1,ng),rep(0,ng)) 

  X4 <- c(rep(0,ng),rep(0,ng),rep(0,ng),rep(1,ng)) 
   

  # Least Squares Method Using Cell Reference Method 

  ModLSEMod <- lm(Y ~ X2 + X3 + X4) 

  ResLSE <- residuals(ModLSEMod) 

  RMSELSE[m] <- sqrt(mean(ResLSE^2)) 

  PValueLSE[m] <- glance(ModLSEMod)$p.value 

print(ResMat) 
 

LSEPower.10 <- round((length(PValueLSE[PValueLSE > 0.10])/M),4) 

LSEPower.05 <- round((length(PValueLSE[PValueLSE > 0.05])/M),4) 

LSEPower.01 <- round((length(PValueLSE[PValueLSE > 0.01])/M),4) 
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HuberMFCPower.10 <- round((length(PValueHuberMFC[PValueHuberMFC > 0.10])/M),4) 

HuberMFCPower.05 <- round((length(PValueHuberMFC[PValueHuberMFC > 0.05])/M),4) 

HuberMFCPower.01 <- round((length(PValueHuberMFC[PValueHuberMFC > 0.01])/M),4) 

BisquareMFCPower.10 <- round((length(PValueBisquareMFC[PValueBisquareMFC > 0.10])/M),4) 

BisquareMFCPower.05 <- round((length(PValueBisquareMFC[PValueBisquareMFC > 0.05])/M),4) 

BisquareMFCPower.01 <- round((length(PValueBisquareMFC[PValueBisquareMFC > 0.01])/M),4) 

HuberMDDPower.10 <- round((length(PValueHuberMDD[PValueHuberMDD > 0.10])/M),4) 

HuberMDDPower.05 <- round((length(PValueHuberMDD[PValueHuberMDD > 0.05])/M),4) 

HuberMDDPower.01 <- round((length(PValueHuberMDD[PValueHuberMDD > 0.01])/M),4) 

BisquareMDDPower.10 <- round((length(PValueBisquareMDD[PValueBisquareMDD > 0.10])/M),4) 

BisquareMDDPower.05 <- round((length(PValueBisquareMDD[PValueBisquareMDD > 0.05])/M),4) 

BisquareMDDPower.01 <- round((length(PValueBisquareMDD[PValueBisquareMDD > 0.01])/M),4) 
 

MatPower <- cbind(PValueLSE,PValueHuberMFC,PValueBisquareMFC,PValueHuberMDD,PValueBisquareMDD) 

print("") 

print(MatPower) 

VecAlpha10 <- c(LSEPower.10,HuberMFCPower.10,BisquareMFCPower.10,HuberMDDPower.10,BisquareMDDPower.10) 

VecAlpha5 <- c(LSEPower.05,HuberMFCPower.05,BisquareMFCPower.05,HuberMDDPower.05,BisquareMDDPower.05) 

VecAlpha1 <- c(LSEPower.01,HuberMFCPower.01,BisquareMFCPower.01,HuberMDDPower.01,BisquareMDDPower.01) 

Vec2 <- c(VecAlpha10,VecAlpha5,VecAlpha1) 

ResTab2 <- as.table(matrix(Vec2, nrow=3, byrow=TRUE, dimnames=list(Alpha= c("10%","5%","1%"),Estimator = EstVec1))) 

print("") 

print(ResTab2)print(m)sink() 
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