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Abstract 

 

The focus of this paper is on consistent estimates of the standard error of certain 

measures of location. The bootstrap approach was adopted to compute the standard 

error for assessing the relative efficiencies of some measures of location. The R 

statistical package was employed to obtain data from some distributions and real data 

for the analysis. Employing the re-sampling procedure inherent in bootstrapping, it 

was established analytically that bootstrap standard errors are smaller for the median 

estimator than their counterpart. The median was found to be the most robust since it 

produces the least bootstrap standard error and relative efficiency of less than one 

when compared to the other estimators under study. However, the mean was the most 

efficient compared to the other measures of the location under study when the 

distribution is normally distributed. 
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1.  Introduction 

Bootstrapping was made popular by [1]; it is a database simulation method for statistical inference based on data re-

sampling which can be used to study the variability of estimated characteristics of a probability distribution of a set of 

observations. Bootstrapping is a computer-intensive method used to estimate bias and standard errors and the construction 

of confidence intervals for parameters when the distribution is unknown. [2] and [3] investigated the performances of some 

measures of location by comparing them when the underlying distribution has heavier tails than normal. Normal 

distribution may provide a good approximation to most distributions that arise in practice. But unfortunately, empirical 

investigations indicate that departures from normality that have practical importance are common in applied works. In 

particular, distributions can be highly skewed, they can have heavy tails and random samples often have outliers. [4] article 

showed that the classical identically and independently distributed bootstrap is a valid procedure for estimating the 

sampling distribution of certain symmetric measures of location. [5] used the criteria for coverage accuracy and average 

interval length to assess the effectiveness of the sufficient, balanced, and conventional bootstrapping procedures for 

estimating three alternative bootstrap confidence interval methods. Both symmetric and skewed distributions were taken 

into account. [6] establishes empirically the utilization of bootstrapping for the major aim of producing efficient estimates 

of regression parameters. [7] demonstrates that M-regression parameters produce standard errors that are inconsistent and 

unstable, specifically when the sample under investigation is small. The alternative approach on offer in the paper was the 

bootstrap. [8] offers an early theoretical and practical analysis of the asymptotic theory of the bootstrap for robust measures 

of location. Specifically, the author described the method of estimating the bootstrap standard error of any robust measures 

of location; the literature also introduced some outlier detection methods and some graphical methods of summarizing data. 

When researchers are faced with making the best choice in choosing the appropriate measures of location estimators, the 

most robust estimators must be chosen to make valid conclusions. Consequently, the purpose of this paper is an attempt to 

assess the robustness of certain measures of central tendencies using the bootstrap approach by subjecting the estimators to 

real and simulated data.  This paper reports yet another contribution to the kinds of research efforts described above; that is, 

research efforts directed towards the study of the performance of the bootstrap in certain traditional and robust measures of 

locations. Specifically, we demonstrate empirically that the bootstrap is a veritable instrument to enhance the efficiency of 

robust estimates. The rest of the paper is structured as follows: section 2 reviews some measures of location. The general  
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bootstrap procedure and bootstrap standard error are produced in section 3. The description and data analysis results are 

presented in section 4. The conclusions of this article are presented in section 5. 

 

2. Materials and Methods 

Review of Some Measures of Locations 

2.1 The Mean 

The arithmetic average, commonly known as the arithmetic mean or just the mean, is one of the most popular and practical 

measures of location. It is the most commonly used and also of the greatest importance of the three averages. The sum of a 

set of measurements divided by the total number of measurements is the mean of the set. Mathematically the mean can be 

expressed as a set of measurements 𝑚1, 𝑚2, 𝑚3, …….., 𝑚𝑞, and defined as: 

�̅� =  
∑ 𝑥𝑖
𝑞
𝑖

𝑞
          (1) 

where q is the sample size 

If 𝑚1,𝑚2,𝑚3,…., 𝑚𝑞occur with frequencies frequency 𝑓1,𝑓2,𝑓3,…….., 𝑓𝑞 respectively, then mean is defined as follows: 

�̅� =  
∑ 𝑓𝑞𝑥𝑞
𝑞
𝑖

∑ 𝑓𝑞
𝑞
𝑖

          (2) 

2.2 The median 
The median (Med) is a measurement that sits in the middle of a set of data. For example, if data are arranged from smallest 

to largest or vice versa, the median (Med) is simply the value, say, y that falls in the middle. Calculating the median, the 

observation is ordered from lowest to highest value or vice versa. 𝑦1 ≤ 𝑦2 ≤ 𝑦3 ≤ .......≤ 𝑦𝑞 [9]. The median is given by: 

Med = 𝑦(𝑞+1)
2

, 

or 
(𝑞+1)𝑡ℎ

2
 𝑡𝑒𝑟𝑚, if q is an odd number       (3) 

and 

Med =0.5𝑦 (
𝑞

2
)+ 0.5𝑦 (

𝑞

2
+ 1), 

or  
(
𝑞

2
)𝑡ℎ𝑡𝑒𝑟𝑚  

2
 +
(
𝑞

2
+1)𝑡ℎ𝑡𝑒𝑟𝑚  

2
, if n is an even number.      (4) 

Equivalently, the median minimizes the absolute value objective function 

      ∑ |𝑦𝑖 − �̂�|
𝑞
𝑖=1 =0         (5) 

Taking the derivatives of the above equation gives the shape of the influence function 

I𝐹𝑀𝑒𝑑(𝑦)={

1  𝑓𝑜𝑟 𝑦 > 0 
0 𝑓𝑜𝑟 𝑦 = 0    

−1 𝑓𝑜𝑟 𝑦 < 0
         (6) 

as the bounded influence function indicates, the median is highly resistant to outliers, its robustness is also reflected in its breakdown 

point (BDP) =0.5. The disadvantage of the median is that it has relatively low efficiency compared to the mean when the distribution is 

normal [9] in this situation the sampling variance of the mean is: 
𝜎2 

𝑞
           (7) 

whereas the sampling variance of the median is: 

 
𝜋𝜎2 

2𝑞
          [10],      (8) 

 

2.3 Estimation of Standard Error of the Sample Median 

[11] derived a fairly simple method to estimate the standard error of the median. Trimmed means contain the usual sample median, Med when the 

maximum amount of trimming is used. To apply the McKean-Schrader method, compute:  

K=
𝑞+1

2
— 𝑧0.995√

𝑞

4
          (9)   

Where k is rounded to the nearest integer and 𝑧0.995 is the 0.995 quantile of a standard normal distribution. Let the observed 

values be in ascending order, 𝑚1, ≤ 𝑚2, ≤ 𝑚3 …… .≤ 𝑚𝑞. 

Then the estimate of the standard error of the sample median is computed with 

(
𝑀𝑞−𝑘+1−𝑀(𝑘)

2𝑧0.995
)
2

          (10) 

2.4 The Trimmed Mean 

Consider a set of observations [𝑚1,𝑚2,𝑚3 …… . .𝑚𝑞] to be a random number that are ordered from smallest to largest, 

𝑚1, ≤ 𝑚2, ≤ 𝑚3 ≤ ⋯… . . ≤ 𝑚𝑞 , where 𝑚𝑖 is called ith order statistics. The k% trimmed mean, 𝑚𝑡 is the average of the  
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values that remain after removing the bottom k% (i.e., smallest) and the top k% (i.e., largest) observations from the original 

set. The standard error of the sample mean can be relatively large when sampling from a heavy-tailed distribution, and the 

sample mean estimates a non-robust measure of location [8]. Let g = [𝑚𝑞], where [𝑚𝑞] is the value of 𝑚𝑞rounded down to 

the nearest integer. The sample trimmed mean is 

�̅�𝑡 =
𝑀(𝑔+1)+⋯+⋯+ 𝑀(𝑛−𝑔)

𝑞−2𝑔
         (11) 

The definition of sample trimmed mean given above is the one commonly used [8]. The variance of the trimmed mean is: 
𝑠𝑤
2

𝑞.(1−2𝛾)2
           (12)  

        
w is the winsorized variance (see below), q is the sample size (before trimming), and is the proportion of trimming.  

𝑠𝑤
2  =

∑ (𝑊𝑖−�̅�)2
𝑞
𝑖=0

𝑞−1
          (13) 

The standard error of the trimmed mean is: 
𝑠𝑤

√𝑞(1−2𝛾)
           (14) 

The best amount of trimming depends on particular circumstances; [12] recommends 20%. However, smaller sample sizes 

might result in the adoption of less trimming (e.g., 10%). 

 

2.5 Estimation of Standard Error of the Trimmed Mean 

To estimate the standard error of the trimmed mean based on a random sample of n observations, first winsorized the 

observation by transforming the ith observation, 𝑀𝑖 using  

𝑊𝑖= {

𝑀(𝑔+1),                        𝑖𝑓𝑀𝐼≤𝑀(𝑔+1)

𝑀𝑖 , 𝑖𝑓𝑀(𝑔+1) < 𝑀𝑖 < 𝑀(𝑞−𝑔)

𝑀(𝑞−𝑔),                      𝑖𝑓𝑀𝑖≥
𝑀(𝑞−𝑔)

  [8]        (15) 

Where 𝑀(1) ≤ …… .≤ 𝑀(𝑞)are the ordered statistics= (𝛾q), q=sample size and Winsorization indicates that the g smallest 

values are pulled in and set equal to 𝑀(𝑔+1)and the g largest values are pulled in and set equal to 𝑀(𝑞−𝑔).Compute sample 

variance of the 𝑊𝑖 values yield 𝑠𝑤
2 , the Winsorized sample variance. The standard error of the trimmed mean is estimated to 

be: 
𝑠𝑤

√𝑞(1−2𝛾)
           (16) 

 

2.6 The Winsorized Mean 

The Winsorized mean is a robust measure of location. It involves the computation of the mean after replacing given parts of 

the probability distribution at the minimal and maximal end with the most remaining extreme values. It is a very useful 

measure of location because it is less sensitive to the presence of outliers in a dataset [13]. Let F be any distribution, and let 

𝑐𝛾 and 𝑐1−𝛾  be 𝛾 and 1- 𝛾 quantiles respectively. Then a 𝛾-winsorized analogue of F is the distribution: 

𝐹𝑤(c) = 

{
 
 

 
 0,                        𝑖𝑓  𝑐<𝑐𝛾

𝛾, 𝑖𝑓             𝑐 =  𝑐𝛾
𝐹(𝑐),   𝑖𝑓    𝑐𝛾 < 𝑐 < 𝑐1−𝛾
1,                      𝑖𝑓     𝑐≥𝑐1−𝛾

 [14]       (17) 

The left tail is pulled in so that the probability of observing the value 𝑐 = 𝑐𝛾 is at 𝛾, and the probability of observing any 

value less than 𝑐𝛾 after winsorization is 0, similarly the right tail is pulled in so that, after winsorization, the probability of 

observing a value greater than 𝑐1−𝛾 is 0. The Winsorized mean of the distribution is:  

𝜇𝑤 = ∫ 𝐶𝑑𝐹(𝑐) +  𝛾(𝑐𝛾 + 𝑐1−𝛾)
𝑐1−𝛾
𝑐𝛾

        (18) 

The Winsorized mean pays more attention to the central portion of a distribution by transforming the tails. The result is that 

the Winsorized mean is closer to the central portion of a distribution. [14] 

 

2.7 Estimation of Standard Error of the Sample Winsorized Mean 

The standard errors of the Winsorized mean estimate can be computed by: 
𝑞−1

𝑞−2𝑔−1
  (

𝑠𝑤

√𝑞
) (Dixon and Tukey, 1986)[15]      (19) 

where g= (𝛾q) is the number of observations Winsorized in each tail, and q-2g is the number of observations that are not 

Winsorized. 
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3. General Bootstrap Procedure. 

Bootstrapping is a highly computer-intensive method that is used to estimate standard errors and set confidential intervals 

for parameters when the form of the distribution is unknown [1], [2]. This discussion lead to the following general 

procedure to approximate the sampling distribution of a statistic S = S (𝑚1
∗ ,,𝑚2 

∗ ,…,. 𝑚𝐵
∗ .) based on an observed simple 

random sample M= ( 𝑚1, 𝑚2 , ……… . ,𝑚𝑞) of size q: where 𝑚1
∗ ,,𝑚2 

∗ , . 𝑚𝐵
∗  are the statistic of interest from the sampled data. 

(I) Create many samples 𝑚1, 𝑚2 , ……… . ,𝑚𝐵 where B is the bootstrapped sample size with replacement. 

(II)  Calculate the statistic of interest S=  𝑚1
∗ ,,𝑚2 

∗ , . 𝑚𝐵
∗ .for each resample. where 𝑚1

∗ ,,𝑚2 
∗ , . 𝑚𝐵

∗  are the statistic of 

interest from the sampled data. The distribution of the resample statistics is called a bootstrap distribution. 

(III) The bootstrap distribution gives information about the sampling distribution of the original statistic S. In particular, 

the bootstrap distribution gives us some idea about the center, spread, and shape of the sampling distribution of 

sampled data. 

 

3.1 Bootstrap Estimates of Standard Error 

[8] developed a strategy based on the general bootstrap procedure in section 3, for estimating the standard error of any 

estimator, the steps are stated below: 

(I) Sample n from a population and compute �̅� 

(II) Repeat (I) a moderate to a large number B (is the bootstrap, that is, number of times the statistics is sampled 

randomly), of the times to come up with estimates 𝑚1
∗ ,,𝑚2 

∗ ,…,. 𝑚𝐵
∗ . 

(III) Use the standard deviation of the B estimates in (II) to estimate the standard error. 

Hence, the bootstrap standard error of a statistics is the standard deviation of the bootstrap distribution of that statistic. If 

the statistic of interest is the sample mean �̅� , the bootstrap standard error based on B samples is: 

𝑆𝐸𝑏𝑜𝑜𝑡 ,�̅�  =√
1

𝐵−1
∑(�̅�∗- 

1

𝐵
∑ �̅�∗)²        (20) 

 

In practical terms, a bootstrap sample is obtained by re-sampling with replacement n observations from,�̅�1,�̅�2,,…,. , �̅�𝑞. 

This is can be done with the R program command: sample (m, size=length (m), replace=T) the R function bootse stated 

below: 

bootse (m, nboot=1000, est=estimator) can be used to compute a bootstrap standard error of virtually any estimator. Where, 

x is any random variable containing the data. The argument nboot represents B, the number of bootstrap samples and 

defaults to 1000 if not specified. The argument est. indicates, the estimator in which the standard error is to be computed 

[8]. 

 

4. Application 

4.1 Description of Data and Discussion of Results 

The data in table 4.1 below are estimates of populations of 27 Scottish seabird (cormorant) colonies, from [16].  

 

 

Table 4.1: estimates of populations of 27 Scottish seabird (cormorant) colonies.  

S/N Colony Number of breeding pairs S/N Colony Number of breeding pairs 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Hascosay  

Whalsay  

Mulkle  

St.Niniama 

S.W.Unit 

Noss 

Bay of Bousay 

Rousay  

S.E.Yell 

Wats Ness 

Burra 

Muckle Roe 

Noup  

P. Westray 

36 

56 

65 

95 

136 

141 

146 

150 

154 

156 

191 

232 

246 

260 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

Uyea 

Stronsay  

Hoy  

Papa Stour 

Eday & Calif 

Sumburgh  

Deerines  

Rapness  

Fetlar 

S. Ronaldsay 

Fair Isle 

N.W. Unst 

Foula 

275 

285 

310 

348 

354 

371 

436 

468 

500 

521 

1530 

1696 

2000 

Source: [17] 
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Analysis of Real data of Table 4.1 

Table 4.2: The bootstrap standard errors of the estimators under study from the secondary data in Table 4.1.  

 Measures of Locations Bootstrap std error 

Mean 

Median 

Winsorized mean 

Trimmed mean(0.1) 

Trimmed mean(0.2) 

93.15011 

50.92888 

85.88737 

89.94682 

55.33853 
 

Source: Author’s computation 

In this study, mean, median, winsorized mean, 10% and 20% trimmed mean, are compared in terms of their asymptotic 

relative efficiency values and mean squared error of �̂� (MSE(�̂�)). The asymptotic relative efficiency of estimator with �̂�2, 

respect to is �̂�1, defined as: 

EFF (�̂�2,�̂�1,)= 
𝑉𝑎𝑟(�̂�1,)

𝑉𝑎𝑟(�̂�2),
         (21) 

 if this ratio of (21) is less than 1, it can be said that �̂�1 is asymptotically more efficient than �̂�2. Asymptotic relative 

efficiency is a useful concept that enable us to make comparisons of competing estimators. 

 

Definition of Notations 

Let Eff1, Eff2, Eff3 and EFF4, denote the asymptotic relative efficiencies of the median (med), Winsorized mean, trimmed 

mean (0.1), and trimmed mean (0.2) concerning mean. 

Eff5, Eff6 and EFF7 denote the asymptotic relative efficiencies of winsorized mean, trimmed mean (0.1), and trimmed 

mean (0.2), concerning the median. 

Eff8 and EFF9 denote the asymptotic relative efficiency of the trimmed mean (0.1), and trimmed mean (0.2) concerning 

winsorized mean. 

EFF10 denote the asymptotic relative efficiency of the trimmed mean (0.1) concerning the trimmed mean (0.1). These 

values can be found in Table 4.3 for the real data. Table 4.2 showed that the standard error of the median is relatively 

smaller; this is followed by the 20% trimmed mean than the other estimators. However, the mean produced the highest 

standard error as expected, followed by the 10% trimmed mean; mean and 10 % trimmed mean. 

 

 

In Table 4.3, when the efficiency of the measures of location is compared using their respective bootstrap standard errors all 

relative efficiencies concerning the mean are less than one. This means that the sample mean is less efficient than all other 

measures of location. When the relative efficiencies of the measures of location are compared to the median, it can be seen 

that all the relative efficiencies s greater than 1 which indicates that the median is the most efficient measure of location 

when the data are from a contaminated distribution. The trimmed mean (0.1) has relative efficiencies greater than 1 when 
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Table 4.3: The relative efficiencies of each estimator for data in table 4.1 

 Estimates Relative 

efficiency 
 EFF1-median wrt mean 

EFF2-  Winmeanwrt mean 

EFF3-Trimmed mean(0.1) wrt mean 

EFF4-Trimmed mean(0.2) wrt mean 

EFF 5- Winmeanwrt median 

EFF 6- Trimmean(0.1) wrt median 

EFF 7- Trimmean(0.2) wrt median 

EFF 8- Trimmean(0.1) wrtWinmean 

EFF 9- Trimmean(0.2) wrtWinmean 

EFF 10- Trimmean(0.1) wrtTrimmean(0.2) 

0.5467 

0.9220 

0.9656 

0.5940 

1.6864 

1.7661 

1.0865 

1.0473 

0.6443 

1.6254 

Source: Author’s computation 
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compared to winsorized mean and trimmed mean (0.2) respectively, this indicates that it is less efficient. The relative 

efficiency of the trimmed mean (0.2) is less than 1 when compared to winsorized mean, which indicates that it is more 

efficient than winsorized mean when a dataset is from a contaminated distribution. 

 

Table 4.4: Simulated standard normal distribution data, x=rnorm (27, 0, 1)  

Measures of Locations Bootstrap std error 

Mean 

Median 

Winsorized mean 

Trimmed mean(0.1) 

Trimmed mean(0.2) 

0.1644 

0.1795 

0.1853 

0.1769 

0.1696  
Source: Author’s computation 
 

Table 4.5: The relative efficiencies of each estimator for data in table 4.4 

 Estimates Relative efficiency 

 EFF1-median wrt mean 

EFF2-  Winmeanwrt mean 

EFF3-Trimmed mean(0.1) wrt mean 

EFF4-Trimmed mean(0.2) wrt mean 

EFF 5- Winmeanwrt median 

EFF 6- Trimmean(0.1) wrt median 

EFF 7- Trimmean(0.2) wrt median 

EFF 8- Trimmean(0.1) wrtWinmean 

EFF 9- Trimmean(0.2) wrtWinmean 

EFF 10- Trimmean(0.1) wrtTrimmean(0.2) 

1.0918 

1.1271 

1.0760 

1.0316 

1.0323 

0.9855 

0.9448 

0.9546 

0.9152 

1.0430 
Source: Author’s computation  

 

Table 4.6: Simulated exponential distribution data, y=rexp (27, rate=4) 

 
Source: Author’s computation 

 
Table 4.7: The relative efficiencies of each estimator for data in Table 4.6 

 Estimates Relative efficiency 

 EFF1-median wrt mean 

EFF2-  Winmeanwrt mean 

EFF3-Trimmed mean(0.1) wrt mean 

EFF4-Trimmed mean(0.2) wrt mean 

EFF 5- Winmeanwrt median 

EFF 6- Trimmean(0.1) wrt median 

EFF 7- Trimmean(0.2) wrt median 

EFF 8- Trimmean(0.1) wrtWinmean 

EFF 9- Trimmean(0.2) wrtWinmean 

EFF 10- Trimmean(0.1) wrtTrimmean(0.2) 

0.7564 

0.8280 

0.8439 

0.7548 

1.0947 

1.1158 

0.9979 

1.0192 

0.9115 

1.1181 

Source: Author’s computation  
In Table 4.4 when samples are taken from standard normal distribution the mean bootstrap standard error value is the 

smallest, this is followed by the error values of the 20% and 10% trimmed mean. In table 4.5 the mean again has the least 

standard error when samples are drawn from standard normal distribution; it has relative efficiency of less than 1 when 

compared with other estimators. In Table 4.6 and 4.7 when samples are from skew distributions (exponential) the 20% 

trimmed mean and median has the smallest estimated standard error values, it is the same with their respective relative  
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Measures of Locations Bootstrap std error 

Mean 

Median 

Winsorized mean 

Trimmed mean(0.1) 

Trimmed mean(0.2) 

0.0628 

0.0475 

0.0520 

0.0530 

0.0474 
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efficiencies less than 1 when compared with the other measures of location using their respective bootstrap standard errors. 

While the highest standard error is when the distribution is skewed and heavy tails. 

 

5. Conclusion  

In this article, we investigated the bootstrap approach to compute the standard errors and relative efficiencies of some 

measures of location. Based on the results of real data and those generated from different distributions, we concluded that 

the median is the most robust, since it has the least standard error and relative efficiency of less than one when compared to 

trimmed means, winsorized mean and mean estimators which are easily affected with the presence of outliers in a dataset, 

followed by 10% and 20% trimmed means, we recommend that they should be considered for statistical tests that utilize 

robust location estimators as an alternative approach when the underlying distribution has heavier tails than normal.  

 

Appendix 

The R functions used for this research are available in an R package and can be downloaded from www.R-project.org. To 

install the R package, created by Felix Shonbrodt. Wilcox (2012).Use the command 

Install. Packages (‘”WRS,repos=’’http://R-Forge.R-project.org’’). 

Access to the function is gained via the R command 

Library (WRS) 

The Bootstrap Algorithm for Computing Standard error of an Estimator 

Step 1 

Draw a bootstrap sample, 𝑥, 𝑥2
∗, ……… , 𝑥𝑛

∗  from observed values 𝑥1, 𝑥2, …… , 𝑥𝑛 .the values are randomly sample n 

observation with replacement from 𝑥1, 𝑥2…… . , 𝑥𝑛 . 
 

Step 2 

Using the bootstrap sample from step 1 compute the value of �̂�𝑚 and call the result �̂�𝑚
∗ , repeat the process B times yielding 

�̂�𝑚1
∗ , �̂�𝑚2

∗ ,…….,�̂�𝑚𝑏
∗ . 

 

Step 3. Set  

�̅�∗=
 1

𝐵
∑ �̂�𝑚𝑏

∗𝑛
𝑏=1  

 

Step 4:  Set �̂�𝑚𝑏𝑜𝑜𝑡
2 = 

 1

𝐵−1
∑ (�̂�𝑚𝑏

∗ − �̅�∗)
2𝑛

𝑏=1  the bootstrap estimate of the standard error. 
 

> source(file.choose()) 

>x=c(36,56,65,95,136,141,146,150,154,156,191,232,246,260,275,285,310,348,354,371,436,468,500,521,1530,1696,2000) 

> bootse(x,nboot=1000,est=mean) 

> bootse(x,nboot=1000,est=winmean) 

> bootse(x,nboot=1000,est=median) 

> bootse(x,nboot=1000,est=mean,trim=0.1) 

> bootse(x,nboot=1000,est=mean,trim=0.2) 

> source(file.choose()) 

> x=rnorm(27,0,1) 

> bootse(x,nboot=1000,est=mean) 

> y=bootse(x,nboot=1000,est=winmean) 

> bootse(x,nboot=1000,est=winmean) 

> bootse(x,nboot=1000,est=median) 

> bootse(x,nboot=1000,est=mean,trim=0.1) 

> bootse(x,nboot=1000,est=mean,trim=0.2) 

> bootse(x,nboot=1000,est=winmean) 

> y=rexp(27,rate=4) 

> bootse(y,nboot=1000,est=mean) 

> bootse(y,nboot=1000,est=median) 

> bootse(y,nboot=1000,est=winmean) 

> bootse(y,nboot=1000,est=mean,trim=0.1) 

> bootse(y,nboot=1000,est=mean,trim=0.2) 
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