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Abstract 
 

Computational analysis of entropy generation and heat transfer on oscillatory 

magnetohydrodynamic (MHD) blood flow in the presence of thermal radiation was 

investigated. The modified governing equations are transformed to dimensionless 

equations using suitable variables. The dimensionless governing equations are solved 

analytically with the aid of MATLAB. The effects of various parameters on the flow, 

entropy generation and heat transfer are presented in tabular form and discussed 

quantitatively. It was observed that the pertinent parameters have significant 

influences on the flow, entropy generation and rate of heat transfer. 
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1. INTRODUCTION: 

In recent years, attention has been given to the study of fluid in various fields like engineering, environmental sciences and 

blood flow in arteries. Blood circulate throughout our body system with four basic components which are plasma, red blood 

cells, white blood cells and platelets. Bio-magnetic fluids are fluids whose flow is influenced by the presence of magnetic 

field and they contain ions that can interact with an applied magnetic field. 

The study of heart rate involves a series of interesting features which arise from pressure oscillation. When person performs 

hard physical activity, blood flow increases and the circulation cannot remain normal. When the surrounding temperature is 

more than 20 degrees centigrade, heat transfer takes place from the surface of skin by sweating through the process of 

evaporation but below 20 degrees centigrade, body loses heat by radiation and conduction. Entropy generation which 

determines the level of available irreversibility in a process, plays significant role to accurately characterize the system [1]. 

Several studies have shown that human life processes are actually thermodynamic in nature. Therefore, thermodynamic 

laws can be used to model human physiology [2-4]. Entropy, in thermodynamics, is a measure of the quantity of energy per 

unit temperature that is unavailable to do work. Since work is obtained from ordered molecular motion, the amount of 

entropy can also be viewed as a measure of the molecular disorder (or randomness) of a system. The knowledge of entropy 

provides useful information on the direction of spontaneous change for everyday processes. In many fields of science and 

technology, efforts are centred on ways of reducing waste of useful energy which reduces efficiency of thermodynamics 

system. Transfer of heat in the mammalian body occurs by radiation, conduction, convection and evaporation. Also, in the 

circulatory system, adjacent tissues lose heat in the form of blood perfusion. 

Non-isolated systems like organisms may lose entropy provided their environment's entropy increases by at least that 

amount so that the total entropy increases. In an ideal reversible process, the entropy does not change; while total entropy is 

always increase for irreversible processes, which are common in living systems. Entropy is a fundamental quantity as well 

as energy, but the analysis of the entropy content in radiation is yet to be fully exploited. Although it has been applied in 

many areas of engineering and sciences, its presence is still generally not well-known especially in the health sector.  

Blood flow, which involves fluid transport through the progressive wave of contraction or expansion along the length of a 

tube or channel containing different types of fluid, has myriad applications [1, 5-8]. Blood motion in physiological sciences 

has opened a dimension for researchers to manipulate their equipment for minimising the entropy production and hence, for 

attaining higher output. Blood flow is one of the most important fields in these area. It was pointed out that the rate at which 

kidney cells regulate the volume of water or salts in the body is affected by using drugs, and the rate at which blood flows 

through arteries may also be affected or slowed down by the drugs[9]. The analysis of entropy generation was originally 

formulated by [10, 11] and found various applications, such as two-phase flows, MHD pumps, and electric generators.  
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Entropy generation rate in an adiabatic peristaltic pump was investigated by [12]. It was shown that peristaltic pumps 

generate more entropy than steady walled tubes. This was attributed to flow rate, that is not constant along the tube but 

increases downstream, and to heat diffusion. Entropy generation impact on peristaltic casson fluid in a rotating frame with 

consideration of viscous dissipation and slip conditions of velocity with temperature using lubricating approach was studied 

by [13] and found that entropy is controlled through slip effects. 

The effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffery materials with Darcy resistance 

was examined by [14].  They incorporated velocity, pressure gradient and thermal conditions, and computed the exact 

solution of the generated system of differential equations with corresponding boundary conditions. They discovered that 

entropy generation are more pronounced in the vicinity of the channel walls than at the channel centre. 

It was pointed out that although the energy function has been vastly studied (taking into the consideration of well-known 

mode of the energy distribution via Wien’s law– and Planck’s law), the radiation entropy distribution has not been analysed 

at the same speed [15]. He further characterised entropy of radiation distribution from a statistical perspective, obtained a 

Wien’s like law for the Mode and integrated the entropy for the Median and the Mean in polylogarithms, and calculated the 

Variance, Skewness and Kurtosis of the function. He provided the coefficients for a variety of dispersion rules, including 

wavelength and frequency.  

The analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls using Homotopy 

perturbation techniques was studied by [16]. We modified their work by incorporating oscillatory term, MHD term and 

thermal radiation in the absence of nanoparticles to study computational analysis of entropy generation and heat transfer on 

oscillatory MHD blood flow in the presence of thermal radiation. This study examined the impacts of entropy generation 

and heat transfer in oscillatory blood flow in the presence of thermal radiation on the physiological behaviours and their 

consequences. It formulated suitable mathematical models for blood flow in human arteries with corresponding entropy 

generation and heat transfer. This was with a view that the result of the study would help in biomedical sciences. 

 

2. MATHEMATICAL FORMULATION: 

We consider oscillatory peristaltic blood like flow of a laminar, incompressible and electrically conducting fluid in the 

presence of thermal radiation. The work studied by [16] was modified to have the following governing equations: 
𝜕𝑢′

𝜕𝑡′ = −
𝜕𝑝′

𝜕𝑥′ +
𝜕2𝑢′

𝜕𝑥′2 − 𝜎𝛽𝜊
2𝑢′ + 𝑔ℓ𝑓𝜊𝜉(𝑇 − 𝑇∞)                                                                     (1) 

(ℓ𝑐)𝑓

𝜕2𝑇

𝜕𝑦′2
+ (ℓ𝑐)𝑓𝐷𝐵

𝜕𝑇

𝜕𝑦′
−

𝜕𝑞𝑟

𝜕𝑦′
                                                                                                (2) 

𝑢′ = 0, 𝑇′ = 𝑇∞ + (𝑇1 − 𝑇∞)𝑒𝑖𝑤𝑡  𝑎𝑡 𝑦′𝑎  ,
𝜕𝑢′

𝜕𝑦′
= 0, 𝛵 = 𝑇∞, 𝑎𝑡 𝑦′ =                                 (3)      

According to Roseland approximation, the radioactive heat flux is model as  

𝑞𝑟 =
4𝜎∗

3𝜅∗

𝜕𝑇

𝜕𝑦′                                                                                                                                     (4)     

Where 𝜎 is the Steltan-Boltzman constant,  𝜅∗ is the mean absorption Coefficient  

The difference in temperature with the flow is assume to be 𝑇4 such that it can be expressed as a linear combination of the temperature. 

 𝑇4 is expand in Tayllor’s series about 𝑇∞ as follows:  

Τ ≈ 𝑇∞
4 + 4𝑇∞

3 (𝑇 − 𝑇∞) + 6𝑇∞
2 (𝑇 − 𝑇∞)2 + ⋯                                                                      (5)  

Neglecting higher order terms beyond the first degree in (𝑇 − 𝑇∞), we have 

𝑇 ≈ −3𝑇∞
4 + 4𝑇∞

4𝑇                                                                                                                         (6)    
Differentiating equation (4) with respect to 𝑦′ and using equation (6) gives 

𝜕𝑞𝑟

𝜕𝑦′
=

−16𝑇∞
3 𝜎∗

3𝑘∗

𝜕2𝑇

𝜕𝑦′
                                                                                                                 (7)   

Then equation(2), can now be written as 

(ℓ𝑐)𝑓

𝜕𝑇

𝜕𝑡′ =
𝜕2𝑇

𝜕𝑦′2 + (ℓ𝑐)𝑓𝐷𝐵

𝜕𝑇

𝜕𝑦′ +
16𝑇𝑤𝜎∗

3𝑘∗

𝜕2𝑇

𝜕𝑦′2                                                                (8)  

Introduce the following suitable for transformation; 

𝑦 =
𝑦′

𝑎
, 𝑡 =

𝑐𝑡′

𝜆
, 𝑢 =

𝑢′

𝑎
, 𝑝 =

𝑝′

𝑎
, 𝑤 =

𝜆𝑤′

𝑐
, 𝑄 =

𝑇 − 𝑇∞

𝑇1 − 𝑇∞
                                                 (9)    

Using equation (9)   to transform (1), (3)   and (8) , we have the following dimensionless equations. 
𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+ 𝐼

𝜕2𝑢

𝜕𝑦2 − 𝑀2𝑢 + 𝐺𝑟𝑄                                                                                        (10)    

𝜕𝑄

𝜕𝑡
= (

1

𝑝𝑟
+ 𝑅)

𝜕2𝑄

𝜕𝑦2
+ 𝑁𝑏

𝜕𝑄

𝜕𝑦
                                                                                                 (11)   

𝜕𝑢

𝜕𝑦
= 0, 𝑄 = 0 𝑎𝑡 𝑦 = 0, 𝑢 = 0, 𝑄 = 𝑒𝑖𝑤𝑡  𝑎𝑡 𝑦 = 1                                                            (12)  
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Where  

𝐼 =
𝜆

𝑐𝑎2 ,   Μ2 =
𝜕Β0𝜆

𝑐
, 𝐺𝑟 =

ℊℓ𝑓0𝜉𝜆(𝑇1−𝑇∞)

𝑐𝑎
  

𝑝𝑟 =
𝑎2(ℓ𝑐)𝑓

𝜆
,   𝑅 =

16𝑇∞
3 𝜎∗𝜆

𝑎2(ℓ𝑐)𝑓(𝑇1−𝑇∞)
, 𝑁𝑏 =

𝐷𝐵𝜆(𝑇1−𝑇∞)

𝑇∞𝑎2(𝑃𝑐)𝑓
  

 

3. ENTROPY GENERATION ANALYSIS 

Entropy generation is derived from the energy and entropy balance. They are as follows according to Mohammad (2016); 

𝑆𝑔𝑒𝑛 =
1

𝑇∞
2

[(∇𝑇)2 +
16𝜎∗𝑇

3κ∗
(∇𝑇)2] +

1

𝑇∞

𝜕𝑢′

𝜕𝑦′
+

1

𝑇∞

𝐵0
2𝑢′2 +

1

�̅�𝑇∞

𝑢′2                         (13) 

And characteristic entropy generation is given by 

𝑆𝑔 =
(𝑇1 − 𝑇∞)2

𝑇∞
2𝑎2

                                                                                                                       (14) 

Using (9), (13) and (14) we have  

𝑁𝑠 = (1 + 𝑅) (
𝜕𝑄

𝜕𝑦
) +

𝐵𝑟

D

𝜕𝑢

𝜕𝑦
+ 𝐵𝑟

1

D
𝑢2 + 𝑀2𝐵𝑟

1

D
𝑢2                                                     (15) 

Where 𝐵𝑟  is the Brinkman number, 𝐷 is the dimensionless temperature difference 

 

4. SOLUTION OF THE PROBLEM  

We assume a solution of the form; 

𝑢(𝑦, 𝑡) = 𝑢(𝑦)𝑒𝑖𝑤𝑡 ,    𝑄(𝑦, 𝑡) = 𝑄(𝑦)𝑒𝑖𝑤𝑡                                                                          (16)  

Let take the pressure gradient −
𝜕𝑝

𝜕𝑥
= 𝑃𝑒𝑖𝑤𝑡  where 𝑃 is constant (according to [17] ) 

Using (16), we have the following set of equations 

𝑢′′ − 𝑆𝑢 + 𝐾 + 𝑟𝑄 = 0  

𝑉𝑄′′ + 𝑁𝑏𝑄′ − 𝒵𝑄 = 0  

𝑢′ = 0, 𝑄 = 0 𝑎𝑡 𝑦 = 0  

𝑢 = 1, 𝑄 = 1 𝑎𝑡 𝑦 = 1   

Where 𝑠 =
(𝑖𝑤−𝑀)

𝐼
, 𝐾 =

𝑃

𝐼
, 𝑟 =

𝐺𝑟

𝐼
 , 𝑉 =

1

𝑝𝑟
+ 𝑅, 𝑛 = 𝑁𝑏 𝑎𝑛𝑑 𝑧 = 𝑖𝑤  

The solution obtained with the aid of MATLAB are as follows: 

u=(1/2*exp(s^(1/2)*y)*(2*(n^2+4*z*v)^(1/2)*s^(1/2)*z*r+2*s^2*exp(-1/2/v*(n^2+4*z*v)^(1/2))*v^2*exp(s^(1/2))*exp(-

1/2*n/v)*r+2*s^2*exp(-1/2/v*(n^2+4*z*v)^(1/2))*v^2*exp(s^(1/2))*exp(-1/2*n/v)*k+4*s*exp(s^(1/2))*exp(-

1/2*n/v)*k*exp(1/2/v*(n^2+4*z*v)^(1/2))*z*v+2*s*exp(s^(1/2))*exp(-

1/2*n/v)*r*exp(1/2/v*(n^2+4*z*v)^(1/2))*z*v+2*exp(-1/2/v*(n^2+4*z*v)^(1/2))*z^2*exp(s^(1/2))*exp(-1/2*n/v)*k-

2*s^2*v^2*exp(s^(1/2))*exp(-1/2*n/v)*r*exp(1/2/v*(n^2+4*z*v)^(1/2))-2*z^2*exp(s^(1/2))*exp(-

1/2*n/v)*exp(1/2/v*(n^2+4*z*v)^(1/2))*k-2*s*exp(-(1/2/v*(n^2+4*z*v)^(1/2))*exp(s^(1/2))*exp(-1/2*n/v)*r*z*v-

4*s*exp(-1/2/v*(n^2+4*z*v)^(1/2))*v*z*exp(s^(1/2))*exp(-1/2*n/v)*k-2*s^2*v^2*exp(s^(1/2))*exp(-

1/2*n/v)*k*exp(1/2/v*(n^2+4*z*v)^(1/2))-2*(n^2+4*z*v)^(1/2)*s^(3/2)*v*r+n*s*(n^2+4*z*v)^(1/2)*exp(-

1/2/v*(n^2+4*z*v)^(1/2))*exp(s^(1/2))*exp(-

1/2*n/v)*r+n*s*(n^2+4*z*v)^(1/2)*exp(1/2/v*(n^2+4*z*v)^(1/2))*exp(s^(1/2))*exp(-

1/2*n/v)*r+2*n^2*s*exp(s^(1/2))*exp(-1/2*n/v)*k*exp(1/2/v*(n^2+4*z*v)^(1/2))+n^2*s*exp(s^(1/2))*exp(-

1/2*n/v)*r*exp(1/2/v*(n^2+4*z*v)^(1/2))-n^2*s*exp(-1/2/v*(n^2+4*z*v)^(1/2))*exp(s^(1/2))*exp(-1/2*n/v)*r-

2*n^2*s*exp(-1/2/v*(n^2+4*z*v)^(1/2))*exp(s^(1/2))*exp(-

1/2*n/v)*k)/s/(s^2*v^2*exp(s^(1/2))^2+s^2*v^2+z^2*exp(s^(1/2))^2+z^2-2*s*v*z-2*s*exp(s^(1/2))^2*z*v-

n^2*s*exp(s^(1/2))^2-s*n^2)/(-exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-1/2/v*(n^2+4*z*v)^(1/2)))/exp(-1/2*n/v)-1/2*exp(-

s^(1/2)*y)/s^(3/2)/(n^2+4*z*v)^(1/2)/(s^2*v^2+z^2-s*n^2-2*s*v*z)*exp(s^(1/2))*(2*s^(5/2)*(n^2+4*z*v)^(1/2)*exp(-

1/2/v*(n^2+4*z*v)^(1/2))*v^2*exp(-1/2*n/v)*r-4*s^(3/2)*(n^2+4*z*v)^(1/2)*exp(-1/2/v*(n^2+4*z*v)^(1/2))*v*z*exp(-

1/2*n/v)*k+2*s^(5/2)*(n^2+4*z*v)^(1/2)*exp(-1/2/v*(n^2+4*z*v)^(1/2))*v^2*exp(-1/2*n/v)*k-

2*s^(3/2)*(n^2+4*z*v)^(1/2)*n^2*exp(-1/2/v*(n^2+4*z*v)^(1/2))*exp(-1/2*n/v)*k+2*s^(1/2)*(n^2+4*z*v)^(1/2)*exp(-

1/2/v*(n^2+4*z*v)^(1/2))*z^2*exp(-1/2*n/v)*k-s^(3/2)*(n^2+4*z*v)^(1/2)*n^2*exp(-1/2/v*(n^2+4*z*v)^(1/2))*exp(-

1/2*n/v)*r+s^(3/2)*n^3*exp(-1/2/v*(n^2+4*z*v)^(1/2))*exp(-1/2*n/v)*r+4*s^(3/2)*n*exp(-

1/2/v*(n^2+4*z*v)^(1/2))*exp(-1/2*n/v)*r*z*v-2*s^(3/2)*(n^2+4*z*v)^(1/2)*exp(-1/2/v*(n^2+4*z*v)^(1/2))*exp(-

1/2*n/v)*r*z*v+2*s^(3/2)*(n^2+4*z*v)^(1/2)*exp(-

1/2*n/v)*r*exp(1/2/v*(n^2+4*z*v)^(1/2))*z*v+2*s^(3/2)*(n^2+4*z*v)^(1/2)*n^2*exp(-

1/2*n/v)*k*exp(1/2/v*(n^2+4*z*v)^(1/2))-2*s^(5/2)*(n^2+4*z*v)^(1/2)*v^2*exp(- 
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1/2*n/v)*k*exp(1/2/v*(n^2+4*z*v)^(1/2))+2*s^2*exp(s^(1/2))*v*r*n^2+8*s^2*exp(s^(1/2))*v^2*r*z-

2*s^(1/2)*(n^2+4*z*v)^(1/2)*z^2*exp(-1/2*n/v)*exp(1/2/v*(n^2+4*z*v)^(1/2))*k+4*s^(3/2)*(n^2+4*z*v)^(1/2)*exp(-

1/2*n/v)*k*exp(1/2/v*(n^2+4*z*v)^(1/2))*z*v-2*s^(5/2)*(n^2+4*z*v)^(1/2)*v^2*exp(-

1/2*n/v)*r*exp(1/2/v*(n^2+4*z*v)^(1/2))+s^(3/2)*(n^2+4*z*v)^(1/2)*n^2*exp(-

1/2*n/v)*r*exp(1/2/v*(n^2+4*z*v)^(1/2))-2*s*exp(s^(1/2))*z*r*n^2-

8*s*exp(s^(1/2))*z^2*r*v+s^(3/2)*n^3*exp(1/2/v*(n^2+4*z*v)^(1/2))*exp(-

1/2*n/v)*r+4*s^(3/2)*n*exp(1/2/v*(n^2+4*z*v)^(1/2))*exp(-1/2*n/v)*r*z*v)/exp(-1/2*n/v)/(exp(s^(1/2))^2+1)/(-

exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-1/2/v*(n^2+4*z*v)^(1/2)))+1/2*(-(-k/s^(1/2)/exp(s^(1/2)*y)-r/exp(-1/2*n/v)/(-

exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-1/2/v*(n^2+4*z*v)^(1/2)))/(-s^(1/2)-1/2*n/v+1/2/v*(n^2+4*z*v)^(1/2))*exp(-

s^(1/2)*y-1/2*n/v*y+1/2/v*y*(n^2+4*z*v)^(1/2))+r/exp(-1/2*n/v)/(-exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-

1/2/v*(n^2+4*z*v)^(1/2)))/(-s^(1/2)-1/2*n/v-1/2/v*(n^2+4*z*v)^(1/2))*exp(-s^(1/2)*y-1/2*n/v*y-

1/2/v*y*(n^2+4*z*v)^(1/2)))*exp(2*s^(1/2)*y)+k/s^(1/2)*exp(s^(1/2)*y)-r/exp(-1/2*n/v)/(-

exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-1/2/v*(n^2+4*z*v)^(1/2)))/(s^(1/2)-

1/2*n/v+1/2/v*(n^2+4*z*v)^(1/2))*exp(s^(1/2)*y-1/2*n/v*y+1/2/v*y*(n^2+4*z*v)^(1/2))+r/exp(-1/2*n/v)/(-

exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-1/2/v*(n^2+4*z*v)^(1/2)))/(s^(1/2)-1/2*n/v-1/2/v*(n^2+4*z*v)^(1/2))*exp(s^(1/2)*y-

1/2*n/v*y-1/2/v*y*(n^2+4*z*v)^(1/2)))*exp(-s^(1/2)*y)/s^(1/2))*exp(i*w*t)  
 

Q=(-1/exp(-1/2*n/v)/(-exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-1/2/v*(n^2+4*z*v)^(1/2)))*exp(-1/2*(n-

(n^2+4*z*v)^(1/2))/v*y)+1/exp(-1/2*n/v)/(-exp(1/2/v*(n^2+4*z*v)^(1/2))+exp(-1/2/v*(n^2+4*z*v)^(1/2)))*exp(-

1/2*(n+(n^2+4*z*v)^(1/2))/v*y))*exp(i*w*t) 
 

RESULTS: 

Table 1: Velocity distribution for various values of parameters. 
M Pr R Gr Nb P u 

0.2 0.2 0.1 0.1 0.7 0.5 6.9112 

0.4      1.8346 

0.6      0.8214 

0.8      0.4630 

0.2 0.6 0.1 0.1 0.7 0.5 7.5796 

 0.8     7.5171 

 1.0     7.3764 

 1.2     7.2191 

0.2 0.2 0.2 0.1 0.7 0.5 -6.8961 

  0.4    -6.8672 

  0.6    -6.8398 

  0.8    -6.8136 

0.2 0.2 0.1 0.2 0.7 0.5 9.8622 

   0.4   15.7643 

   0.6   21.6663 

   0.8   27.5683 

0.2 0.2  0.1 0.8  -7.0135 

    1.0  -7.1880 

    1.2  -7.3229 

    1.4  -7.4206 

0.2 0.2 0.1 0.1 0.7 0.8 -0.8047 

     1.0 1.1114 

     1.2 1.4181 

     1.4 1.5715 

 

Table 2: Temperature distribution for various values of parameters 

Pr Ri Nb Q 

0.2 0.2 0.7 -1.8536 

0.4   -1.7508 

0.6   -1.6661 

0.8   -1.5956 

0.2 0.4 0.7 1.8580 

 0.6  1.8621 

 0.8  1.8659 

 1.0  1.8695 

0.2 0.2 0.8 -1.8372 

  1.0 -1.8052 

  1.2 -1.7744 

  1.4 -1.7447 
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Table 3: Entropy generation for various values of parameters 

D Br R M G Pr Nb Ns 

0.6 0.5 0.5 0.3 0.5 0.2 0.7 1.3271 

0.8       1.3609 

1.0       1.3811 

1.2       1.3912 

0.6 0.5 0.5 0.3 0.5 0.2 0.7 -1.3271 

 0.8      -1.2462 

 1.0      -1.1923 

 1.2      -1.1883 

0.6 0.5 0.7 0.3 0.5 0.2 0.7 2.1310 

  0.9     2.0203 

  1.1     1.9270 

  1.3     1.8336 

0.6 0.5 0.5 0.5 0.5 0.2 0.7 17.6434 

   0.6    9.3044 

   0.7    5.7589 

   0.8    3.8864 

0.6 0.5 0.5 0.3 0.6   1.8329 

    0.7   1.7409 

    0.8   1.2809 

    0.9   1.1675 

0.6 0.5 0.5 0.3 0.5 0.3  2.8061 

     0.4  3.4683 

     0.5  3.9133 

     0.6  4.2136 

0.6 0.5 0.5 0.3 0.5 0.2 0.8 2.2544 

      0.9 2.6475 

      1.0 3.0077 

      1.1 3.3325 
 

Table 4: Nusselt number variation for various values of parameters 

Nb R Pr Nu = -Q’(0) 

0.7 0.5 0.2 1.0049 

0.8   1.0744 

0.9   1.0840 

1.0   1.0936 

0.7 0.7 0.2 1.0626 

 0.9  1.0604 

 1.1  1.0584 

 1.3  1.0467 

0.7 0.5 0.3 1.0940 

  0.4 1.1211 

  0.5 1.1465 

  0.6 1.1702 
 

5. DISCUSSION OF RESULT 

Computational analysis of entropy generation and heat transfer on oscillatory blood flow through arteries in the presence of 

thermal radiation was studied. In order to understand the situation of the problem and hence, manifestation of the various 

parameters entering the problem, numerical evaluation was performed and the results are presented in Tabular forms. This 

was done to analyse the influence of various parameters involved. In this study, we chose t = 1 and w = 0.01 while other 

parameters are varied over range. The effect of magnetic parameter (M), Prandtl number (Pr), Radiation parameter (R), 

Thermal Grashof number (Gr), Brownian motion (Nb) and Pressure (P) on velocity profiles are depicted in table1. It is 

obvious from the table that velocity profile of blood decreases as the magnetic parameter (M) increases which is not 

surprising because magnetic field gives rise to a resistive type of force called the Lorentz force and the force has the 

tendency to slow the motion of flow. It is observed from the table that as Prandtl number increases, the velocity profile 

decreases. The table indicates that the velocity profile of blood increases as the radiation parameter (R) increases. This is 

expected because when the intensity of hear generated through thermal radiation increases, the bond holding the  
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components of the fluid particle is easily broken and the fluid velocity will increase. Table 1 further shows that the effect of 

increasing Thermal Grashof number is to increase the velocity profile of the blood while the effect of increasind Brownian 

motion parameters is to decrease the velocity profile of the blood. It was also shown in the table that pressure rise increases 

the velocity profile of blood. 

Table 2 analysed the effects of Prandtl number (Pr), Radiation parameter (R) and Brownian motion parameter (Nb) on 

Temperature profiles. From the Table 2, it was observed that Temperature profile increases when Prandtl number (P r), 

Brownian motion parameter (Nb) and radiation parameter increase. 

Table 3 demonstrates the entropy generation for dimensionless temperature difference (D), Brinkman number (Br), 

Radiation parameter (R), magnetic parameter (M), Thermal Grashof number (Gr), Prandtl number (Pr) and Brownian 

motion parameter (Nb). The table shows that the entropy generation increases with increase in Brinkman number (Br) while 

it decreases with increase in dimensionless temperature difference (D). This is because the Brinkman parameter is directly 

proportional to the square of the velocity profile of the flow while dimensionless temperature difference is inversely 

proportional to the velocity distribution (Mohammed et al., 2016). It was observed from the table that Radiation parameter 

(R), magnetic parameter (M), Thermal Grashof number (Gr) decreases entropy generation as there are increase in them 

while Prandtl number (Pr) and Brownian motion parameter (Nb) increase entropy generation as they increase.  

Table 4 displays the effect of Brownian motion parameter (Nb), Radiation parameter (R) Prandtl number (Pr). The table 

shows that Brownian motion parameter (Nb) and Prandtl number (Pr) increase the rate of heat transfer as they increase while 

radiation decreases the rate of heat transfer as it increases.  

6. CONCLUSION 

The problem of entropy generation and heat transfer on oscillatory MHD blood flow in the presence of thermal radiation 

has been investigated. The result shows that: 

Thermal radiation and pressure rise increases the velocity of blood flow while Brownian motion decreases the velocity 

Entropy generation increases with increase in Brinkman number while it decreases with increase in dimensionless 

temperature difference 

Thermal radiation decreases entropy generation and the rate of heat transfer. 
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