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Abstract 
 

Recently, WHO reported that 240 million people are infected with the schistosomiasis 

in the world with over 700 million people living in endemic areas. Reports also show 

that Nigeria has the highest cases of schistosomiasis in the world with over 30 million 

infected persons expected to be treated every year. Several deterministic population 

models have been formulated to study the dynamics of schistosomiasis in human, 

snails and the parasites population. In this study, we present a nonlinear 

mathematical model to provide mathematical and epidemiological insight to the effect 

of case detection on the transmission dynamics of schistosomiasis. The qualitative 

properties of the the model as well as the local and global asymptotic stability of 

equilibria are established. The existence of backward bifurcation is investigated. 

Furthermore, the disease-free equilibrium of the model was shown to be globally 

asymptotically stable (GAS) whenever the related effective reproduction number, 𝕽𝟎, 
is less than unity; this implies that schistosomiasis cannot prevail in the population. 

Moreover, we established the global asymptotic stability of the endemic equilibrium 

when the associated reproduction number 𝕽𝟎 is greater than one. This suggests that 

schistosomiasis will prevail in the population. Numerical simulations of the model 

showed the effect of varying some parameters of the model on the population 

dynamics of schistosomiasis. 

 

Keywords: Disease free equilibrium, endemic equilibrium point, local asymptotic stability, global 
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1. Introduction 

Schistosomiasis is a rapid, sensitive and chronic parasitic disease produced as a result of the blood flukes (trematode 

worms) of the genus Schistosoma [1-4]. Schistosomiasis being the incidence and susceptibility condition to death for 

developing nations in Africa, Caribbean, Middle East, South America, and Asia. The death toll from schistosomiasis is 

considered to be second only to malaria as the most devastating parasitic disease and one of the neglected tropical diseases 

(NTDs) [5]. WHO reported that about 240 million people are suffering from schistosomiasis in the world with 700 million 

people and above living in tropical and sub-tropical regions, in rural areas and areas with poor sanitation [1-4]. Africa has 

the highest cases of schistosomiasis with an estimated 85% of the world’s schistosomiasis cases where more than 50% 

people live in endemic areas [6-8]. Nigeria is the leading country suffering from schistosomiasis in the sub-Saharan region 

of Africa and even in the entire world [8-11] with about 30 million Nigerians estimated to need treatment every year [9]. 

There are two major forms of schistosomiasis, intestinal and urogenital, and it is caused by 5 main species of blood fluke, 

namely: Schistosoma mansoni, Schistosoma japonicum, Schistosoma mekongi, Schistosoma guineensis and Schistosoma 

haematobium [2-4]. These parasites possess in common some of their life-cycle characteristics, for example, eggs through 

excreta (urine or faeces) deposited by people infected with schistosomiasis into water bodies hatch on contact with water 

and then develop into miracidia; the miracidia are attracted to certain intermediate snails host through chemical sensors, 

and they must find and enter a suitable snail specie within 24 hours in order to survive, as the posibility of survival of the 

miracidia decreases quickly in all the schistosoma species after about ten hours [8]. The miracidia multiply inside the snail 

and the parasite progress into sporocysts, the sporocysts develop into cercaria, the free-swimming larval period of 

development of the parasite after the first to the second months within the snail. The cercaria is similar to the miracidia in 

terms of their short life span characteristics of about 2 days to penetrate man or a few distinctive sensitive mammalian  
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explicitly host that come in contact with the infected water [12]. Schistosomiasis (or bilharzia) is unusually considered 

among helminth diseases because much of the origination and development of the disease is due to the eggs and not in 

larvae or adults stage with most of the pathology caused by delayed-type hypersensitivity and granulomatous reactions. The 

period of infection is frequently differentiated into Acute, Migratory and Chronic phase [6, 13]. Patients during migratory 

phase exhibit no symptons, but responsive patients may experience transient dermatitis (swimmers itch), occasionally 

pulmonary lesions and pneumonitis [13], while the acute phase (also known as Katayama syndrome) occurs at the same 

time with the first egg release and is characterized by excessively sensitive responses (serum sickness due to overwhelming 

immune complex formation) leading to lymphadenopathy, aches, gastrointestinal discomfort, pyrexia, eosinophilia and 

fatigue [6, 14] and the chronic phase occurs in response to the cumulative deposition of fluke eggs in tissues and the host 

responses that progress against them, although the eggs laid by female worms are not all successfully penetrating the gut or 

bladder walls, some are caught in organs where strong granulomatous responses was evoked and were taken away in the 

circulation [15, 16]. 

Schistosomiasis is diagnosed through the discovering of parasite eggs in urine or stool specimens, the antigens discovered 

in blood or urine samples are also signs of infection [3-5]. Urogenital schistosomiasis, which is geographically distributed 

in Africa and the Middle East countries is detected through the filtration technique diagnosed using paper, nylon, chemical 

reagents strips and polycarbonate filters [3-6, 16]. Fecal and urine specimens is used to detect the eggs of intestinal 

schistosomiasis through a practical method using methylene blue-stained cellophane immersed in glycerin or glass slides, 

known as the Kato-Katz technique and CCA (Circulating Cathodic Antigen) test [3-6, 17]. However, Polymerase chain 

reaction (PCR) tests and Blood tests are also effective in establishing the diagnosis of schistosomiasis but this test may not 

be positive until the parasites have penetrated into the skin for about two months because it usually takes time for the egg to 

develop and stimulate the system of an infected individual [16]. In some chronic cases of schistosomiasis, eggs are not 

always present in the fecal or in the urine specimens, other tests and procedures like liver biopsy, cytoscope, colonoscopy 

and endoscopy may be adopted to obtain the tissue biopsy materials [16]. In addition, CT scan, chest X-rays, ultrasound, 

echocardiograms, liver function tests , and complete blood count (CBC) may be used to ascertain the extent of the infection 

or if there has been damage caused by the parasites [16]. Praziquantel has been the recommended drug for the treatment of 

all types of schistosomiasis, because it is safe, its treatment is simple and it is not expensive [18]. Naji and Majeed [19] 

studied the transmission dynamics of schistosomiasis with the existence of treatment. They described a mathematical model 

where saturated treatment function 
βy

1+𝛼0y
was used instead of the natural recovered term [19]. Chen et al. [20] proposed and 

analyzed a schistosomiasis mathematical model for human-cattle-snail transmission, emphasizing Hubei province, together 

with Anhui, Hunan, Jiangsu, and Jiangxi in the eastern and central China where schistosomiasis is endemic [20]. Chiyaka 

and Garira [21] developed a deterministic mathematical model to study schistosomiasis transmission behaviors in the 

Human-snail hosts population with the inclusion of the characteristics of the interaction between miracidia and cercariae. 

They concluded that the control strategies that is centered on the transmission of the disease from snail to human will be 

more effective in the control of the disease than preventing the transmission from man to snail [21]. Li et al. [22] 

constructed a periodic transmission rates deterministic model based on the monthly data delivered by the Chinese Center 

for Disease Control and Prevention (China CDC) on the cases of human schistosomiasis in the following provinces, Hubei, 

Hunan and Anhui (Lake and marshland region), they suggested to control human schistosomiasis, hygiene, education, 

treatment of at risk populations groups, snail control and improving sanitation will be an effective measures in these lakes 

and marshland region [22]. Remais [23] presented a mathematical model of the transmission of schistosomiasis involving 

several Environmental phases, he applied human understanding to the environmental determinants of the infectivity, 

viability, longevity and morbidity of these environmental stages to control the disease [23]. Adekiya et al. [24] examined 

the impact of rainfall and temperature on schistosomiasis; he showed that climatic change improves the reproduction 

number of schistosomes and the reproduction rate of snails [24]. Aboudrame et al. [25] considered a nonlinear deterministic 

model based on the transmission of schistosomiasis with two general incidence functions and delays. 

In this paper, a deterministic mathematical model that investigates the impact of case detection on the dynamics of 

schistosomiasis in a given population is developed. 

 

2. The Mathematical Model 

This population model is divided into five human sub-populations, two-snail sub-populations and two parasites states. The 

human sub-populations are susceptible individuals (𝑆ℎ) who are open to contract the disease, exposed (individuals who are 

already infected but not infectious) (𝐸ℎ), undetected infected individuals (infectious but are not yet detected of the disease) 

(𝐼ℎ1), detected infected (individuals who have been infected, infectious and also detected of the disease) (𝐼ℎ2), and treated 

humans (individuals who have been treated of the disease) (𝑇ℎ). The two snail epidemiological state are susceptible snails 

(𝑆𝑠) that is capable of contracting the parasite miracidia and infected snails (𝐼𝑠) that has contracted miracidia and is able to  
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release another parasite called cercaria. There are two parasites states; miracidia (free-swimming ciliated larval) class (𝑀𝑠) 

and cercariae class (𝐽𝑠). The recruitment into the population is through influx of individuals into the human susceptible 

class at the rate of 𝛬ℎ and influx of snails into the susceptible snails compartment at the rate of 𝛬𝑠. The population get 

infected with the disease when the parasites (cercaria) discharged by the snails penetrate a susceptible human skin during 

contact with infected fresh water at the rate 𝜆𝑗, given by 

𝜆𝑗 =
𝛽𝑗𝐽𝑠

𝐽0 + 𝜖𝐽𝑠
                                              (1) 

and the snail population also get infected when the free-swimming ciliated larval (miracidia) penetrate the snail at the rate 

𝜆𝑚 given by, 

𝜆𝑚 =
𝛽𝑚𝑀𝑠

𝑀0 + 𝜖𝑀𝑠

,                                      (2) 

where 𝛽𝑗  is the cercaria penetration rate, 𝛽𝑚 is the miracidia infection rate, 𝐽0 is the carrying capacity for cercaria, 𝑀0 is the carrying 

capacity for miracidia and 𝜖 is the limiting growth factor for cercaria and miracidia. The population is infected with schistosomiasis when 

the parasites (cercaria) discharged by the snails penetrate a susceptible human skin during contact with infected fresh water, the newly 

infected susceptible human and a portion 𝜔 of treated human re-infected with schistosomiasis are assumed to progressively move to the 

Exposed class 𝐸ℎ, individuals in this class of the population is believed to progressively move out from the latent periods to the active 

infected periods at the rate 𝑣. A fraction of the detected cases of the active infected persons with schistosomiais (𝑝𝑣𝐸ℎ) moved to the 

detected infected class 𝐼ℎ2 with schistosomiasis per unit time. The remaining fraction of the active infected persons with 

schistosomiaisis (1 − 𝑝)𝑣𝐸ℎ progressed to the undetected infected class 𝐼ℎ1 of the population and the population reducing as a result of 

the disease-induced deaths (𝑑0,  𝑑1) and the proportion (𝜂0) of the detected schistosomiasis patient commencing treatment. The 

population of individuals treated of schistosomiaisis (𝑇ℎ) increases due to treatment of detected (𝜂0𝐼ℎ2) persons, the treated individuals 

may be re-infected at the rate (𝜔𝜆𝑗) and the miracidia (free-swimming ciliated larval) population increases as a portion 𝑛𝑒 of the parasites 

egg secreted by both the undetected and detected infected individuals, contaminate the fresh water with their feaces or urine which hatch 

into miracidia, the free-swimming ciliated larval at the rate 𝜁 and all the human population dies naturally at the rate 𝜇ℎ. The miracidia 

finds and penetrate its suitable species of a fresh water snail and change it into a sporocyst, if in anyway the miracidia failed to find a 

suitable snail, it dies naturally at the rate 𝜇𝑚. The snail population is infected at the rate 𝜆𝑚 as the free-swimming larval known as 

miracidia penetrate into the susceptible snails and also die naturally at the rate 𝜇𝑠. The infected snails will then release another form of 

free swimming larva called cercaria at a rate 𝜃 which will infect humans and may also die naturally at the rate 𝜇𝑗 . 

The assumptions above are combined to form the model for the dynamics of the schistosomes parasite transmission as 

          

𝑆ℎ
′ = 𝛬ℎ −

𝛽𝑗𝑆ℎ𝐽𝑠

𝐽0 + 𝜖𝐽𝑠
− 𝜇ℎ𝑆ℎ ,

𝐸ℎ
′ =

𝛽𝑗𝐽𝑠

𝐽0 + 𝜖𝐽𝑠
(𝑆ℎ + 𝜔𝑇ℎ) − (𝑣 + 𝜇ℎ)𝐸ℎ ,

𝐼ℎ1
′ = (1 − 𝑝)𝑣𝐸ℎ − (𝑑0 + 𝜇ℎ)𝐼ℎ1,

𝐼ℎ2
′ = 𝑝𝑣𝐸ℎ − (𝜂0 + 𝑑1 + 𝜇ℎ)𝐼ℎ2,

𝑇ℎ
′ = 𝜂0𝐼ℎ2 −

𝜔𝛽𝑗𝐽𝑠𝑇ℎ

𝐽0 + 𝜖𝐽𝑠
− 𝜇ℎ𝑇ℎ,

𝑀𝑠
′ = 𝑛𝑒𝜁(𝐼ℎ1 + 𝐼ℎ2) − 𝜇𝑚𝑀𝑠,

𝑆𝑠
′ = 𝛬𝑠 −

𝛽𝑚𝑀𝑠𝑆𝑠

𝑀0 + 𝜖𝑀𝑠

− 𝜇𝑠𝑆𝑠,

𝐼𝑠
′ =

𝛽𝑚𝑀𝑠𝑆𝑠

𝑀0 + 𝜖𝑀𝑠

− 𝜇𝑠𝐼𝑠

𝐽𝑠
′ = 𝜃𝐼𝑠 − 𝜇𝑗𝐽𝑠.

                                (3) 

The total human population is represented by 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ1 + 𝐼ℎ2 + 𝑇ℎ  while the total snail population in the 

environment is accounted for by 𝑁𝑠 = 𝑆𝑠 + 𝐼𝑠 . 
A schematic representations of the system is given in figure 

 
Figure 1: Schematic diagram of our schistosomiasis model (3). 
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2.1 Positivity and Boundedness of Solutions 

Theorem 1: Let the initial data for the tuberculosis-schistosomiasis co-infection model be given as 𝑆ℎ(0) > 0, 𝐸ℎ(0) >
0, 𝐼ℎ1(0) > 0, 𝐼ℎ2(0) > 0, 𝑇ℎ(0) > 0,𝑀𝑠(0) > 0, 𝑆𝑠(0) > 0, 𝐼𝑠(0) > 0 and 𝐽𝑠(0) > 0. Then the orbits 

(𝑆𝐻(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ1(𝑡), 𝐼ℎ2(𝑡), 𝑇ℎ(𝑡),𝑀𝑠(𝑡), 𝑆𝑠(𝑡), 𝐼𝑠(𝑡), 𝐽𝑠(𝑡)) of the model with positive initial conditions, will continue to 

be positive for all time 𝑡 > 0. 

Proof: Let 𝑡1 = sup{𝑡 > 0: 𝑆ℎ(0) > 0, 𝐸ℎ(0) > 0, 𝐼ℎ1(0) > 0, 𝐼ℎ2(0) > 0, 𝑇ℎ(0) > 0,𝑀𝑠(0) > 0, 𝑆𝑠(0) > 0,  𝐼𝑠(0) >
0, 𝐽𝑠(0) > 0}. Consider the first equation of model  (3), given below as 
𝑑𝑆ℎ(𝑡)

𝑑𝑡
= 𝛬ℎ − (𝜆𝑗 + 𝜇ℎ)𝑆ℎ(𝑡),                                                                      (4)  

which can be re-expressed as 

𝑑

𝑑𝑡
[𝑆ℎ(𝑡)exp{𝜇ℎ𝑡 + ∫ 𝜆𝑗

𝑡

0

(𝜏) 𝑑𝜏}]

≥ 𝛬𝑗exp {𝜇𝑗𝑡 + ∫ 𝜆𝑗

𝑡

0

(𝜏)𝑑𝜏}.              (5) 

 

𝑆ℎ(𝑡1)exp{𝜇𝑡1 + ∫ 𝜆𝑗

𝑡1

0

(𝜏) 𝑑𝜏} − 𝑆ℎ(0)

≥ ∫ 𝛬ℎ

𝑡1

0

[exp {𝜇ℎ𝑦 + ∫ 𝜆𝑗

𝑦

0

(𝜏)𝑑𝜏}] 𝑑𝑦, (6) 

 

So that, 

𝑆ℎ(𝑡1) ≥ 𝑆ℎ(0)exp [−𝜇ℎ𝑡1 − ∫ 𝜆𝑗

𝑡1

0

(𝜏)𝑑𝜏]

+[exp{−𝜇ℎ𝑡1 − ∫ 𝜆𝑗

𝑡1

0

(𝜏)𝑑𝜏}]

× ∫ 𝛬ℎ

𝑡1

0

[exp {𝜇ℎ𝑦 + ∫ 𝜆𝑗

𝑦

0

(𝜏)𝑑𝜏}] 𝑑𝑦 > 0.       (7) 

 

Hence, 𝑆ℎ(𝑡) > 0,  ∀ 𝑡 > 0. 
Similarly, it can be shown that  𝐸ℎ(𝑡) > 0,  𝐼ℎ1(𝑡) > 0,  𝐼ℎ2(𝑡) > 0,  𝑇ℎ(𝑡) > 0 , 𝑀𝑠(𝑡) > 0,  𝑆𝑠(𝑡) > 0,  𝐼𝑠(𝑡) > 0,  𝐽𝑠(𝑡) >
0, ∀ 𝑡 > 0. 
 

Theorem 2: Let (𝑆ℎ(𝑡), 𝐸ℎ(𝑡), 𝐼ℎ1(𝑡), 𝐼ℎ2(𝑡), 𝑇ℎ(𝑡),𝑀𝑠(𝑡), 𝑆𝑠(𝑡), 𝐼𝑠(𝑡), 𝐽𝑠(𝑡)) be trajectories of the system with initial 

conditions and the biological feasible region given by the set 𝒟1 = 𝒟ℎ × 𝒟𝑚 × 𝒟𝑠 × 𝒟𝑗 ⊂ ℝ+
5 × ℝ+

1 × ℝ+
2 × ℝ+

1 ⊂ ℝ+
9 , 

where: 

𝒟ℎ = {(𝑆ℎ, 𝐸ℎ , 𝐼ℎ1, 𝐼ℎ2 , 𝑇ℎ) ∈ ℝ+
5 : 𝑁ℎ ≤

𝛬ℎ

𝜇ℎ

}

𝒟𝑚 = {𝑀𝑠 ∈ ℝ+
1 : 𝐿 ≤

𝑛𝑒𝜁𝛬ℎ

𝜇𝑚𝜇ℎ

}

𝒟𝑠 = {(𝑆𝑠, 𝐼𝑠) ∈ ℝ+
2 : 𝑁𝑠 ≤

𝛬𝑠

𝜇𝑠

}

𝒟𝑗 = {𝐽𝑠 ∈ ℝ+
1 : 𝐽𝑠 ≤

𝜃𝛬𝑠

𝜇𝑗𝜇𝑠

}

 

is positively-invariant and attracts the entire positive trajectories of the model . 

Proof: Adding up the right flank of the vector field for the human population in (3), yields 
𝑑𝑁ℎ

𝑑𝑡
= 𝛬ℎ − 𝜇ℎ𝑁ℎ − 𝑑0𝐼ℎ1 − 𝑑1𝐼ℎ2.                              (8) 

From  (8), it follows that 
𝑑𝑁ℎ

𝑑𝑡
≤ 𝛬ℎ − 𝜇ℎ𝑁ℎ. Hence, 

𝑑𝑁ℎ

𝑑𝑡
≤ 0 if 𝑁ℎ(𝑡) ≥

𝛬ℎ

𝜇ℎ
. Employing a standard comparison theorem 

[26], we prove that 𝑁ℎ(𝑡) ≤ 𝑁ℎ(0)𝑒−𝜇ℎ𝑡 +
𝛬ℎ

𝜇ℎ
(1 − 𝑒−𝜇ℎ𝑡). In particular, if 𝑁ℎ(0) ≤

𝛬ℎ

𝜇ℎ
, thus 𝑁ℎ(𝑡) ≤

𝛬ℎ

𝜇ℎ
 for every 𝑡 > 0. 

Hence, the set 𝒟ℎ is positively invariant. Moreover, if 𝑁ℎ(0) >
𝛬ℎ

𝜇ℎ
, then either the orbits enters the domain 𝒟ℎ in finite time 

or 𝑁ℎ(𝑡) asymptotically tends towards 
𝛬ℎ

𝜇ℎ
 as 𝑡 → ∞. Thus, the domain 𝒟ℎ attracts every orbit in ℝ+

5 . 
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𝑑𝑀𝑠

𝑑𝑡
= 𝑛𝑒𝜁(𝐼ℎ1 + 𝐼ℎ2) − 𝜇𝑠𝑀𝑠.                                      (9) 

From (9), which follows that 
𝑑𝑀𝑠

𝑑𝑡
≤

𝑛𝑒𝜁𝛬ℎ

𝜇ℎ
− 𝜇𝑚𝑀𝑠 since 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ1 + 𝐼ℎ2 + 𝑇ℎ ≤

𝛬ℎ

𝜇ℎ
⇒ 𝐼ℎ1 + 𝐼ℎ2 ≤

𝛬ℎ

𝜇ℎ
. Hence, 

𝑑𝑀𝑠

𝑑𝑡
≤ 0 if 𝑀𝑠(𝑡) ≥

𝑛𝑒𝜁𝛬ℎ

𝜇𝑠𝜇ℎ
. Employing a standard comparison theorem [26], we prove that 𝑀𝑠(𝑡) ≤ 𝑀𝑠(0)𝑒−𝜇𝑚𝑡 +

𝑛𝑒𝜁𝛬ℎ

𝜇𝑠𝜇ℎ
(1 − 𝑒−𝜇𝑚𝑡). In particular, if 𝑀𝑠(0) ≤

𝑛𝑒𝜁𝛬ℎ

𝜇𝑠𝜇ℎ
, then 𝑀𝑠(𝑡) ≤

𝑛𝑒𝜁𝛬ℎ

𝜇𝑠𝜇ℎ
 for all 𝑡 > 0. Hence, the set 𝒟𝑚 is positively 

invariant. Moreover, if 𝑀𝑠(0) >
𝑛𝑒𝜁𝛬ℎ

𝜇𝑠𝜇ℎ
, then either the orbits enters the domain 𝒟𝑚 in finite time or 𝑀𝑠(𝑡) asymptotically 

approaches 
𝑛𝑒𝜁𝛬ℎ

𝜇𝑠𝜇ℎ
 as 𝑡 → ∞. Thus, the domain 𝒟𝑚 attracts every trajectory in ℝ+

1 . 

For the snail population, we add up the right flank of the vector field of the snail population in (3), which gives 
𝑑𝑁𝑠

𝑑𝑡
= 𝛬𝑠 − 𝜇𝑠𝑁𝑠.                                                           (10) 

From (10), it follows that 
𝑑𝑁𝑠

𝑑𝑡
≤ 0 if 𝑁𝑠(𝑡) ≥

𝛬𝑠

𝜇𝑠
. Consequently, 𝑁𝑠(𝑡) = 𝑁𝑠(0)𝑒−𝜇𝑠𝑡 +

𝛬𝑠

𝜇𝑠
(1 − 𝑒−𝜇𝑠𝑡). Then the 

limsup𝑡→∞𝑁𝑠(𝑡) =
𝛬𝑠

𝜇𝑠
. In particular, if 𝑁𝑠(0) ≤

𝛬𝑠

𝜇𝑠
, then 𝑁𝑠(𝑡) ≤

𝛬𝑠

𝜇𝑠
 for every 𝑡 > 0. Hence, the set 𝒟𝑠 is positively 

invariant. Moreover, if 𝑁𝑠(0) >
𝛬𝑠

𝜇𝑠
, then either the orbits enters the domain 𝒟𝑠 in finite time or 𝑁𝑠(𝑡) asymptotically 

approaches 
𝛬𝑠

𝜇𝑠
 as 𝑡 → ∞. Thus, the domain 𝒟𝑠 attracts every trajectory in ℝ+

2 . 

For the concentration of the cercariae, we consider the right flank of the vector field 𝐽 in (3), yields 
𝑑𝐽𝑠
𝑑𝑡

= 𝜃𝐼𝑠 − 𝜇𝑗𝐽𝑠.                                                          (11) 

From (11), 
𝑑𝐽𝑠

𝑑𝑡
= 𝜃𝐼𝑠 − 𝜇𝑗𝐽𝑠 which follows that 

𝑑𝐽𝑠

𝑑𝑡
≤

𝜃𝛬𝑠

𝜇𝑠
− 𝜇𝑗𝐽𝑠 since 𝑁𝑠 = 𝑆𝑠 + 𝐼𝑠 ≤

𝛬𝑠

𝜇𝑠
⇒ 𝐼𝑠 ≤

𝛬𝑠

𝜇𝑠
. Hence, 

𝑑𝐽𝑠

𝑑𝑡
≤ 0 if 

𝐽(𝑡) ≥
𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
. Employing a standard comparison theorem [26], we prove that 𝐽𝑠(𝑡) ≤ 𝐽𝑠(0)𝑒−𝜇𝑗𝑡 +

𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
(1 − 𝑒−𝜇𝑗𝑡). In 

particular, if 𝐽𝑠(0) ≤
𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
, then 𝐽𝑠(𝑡) ≤

𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
 for all 𝑡 > 0. Hence, the set 𝒟𝑗 is positively invariant. Moreover, if 𝐽𝑠(0) >

𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
, then either the orbits enters the domain 𝒟𝑗 in finite time or 𝐽𝑠(𝑡) asymptotically approaches 

𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
 as 𝑡 → ∞. 

Thus, the domain 𝒟𝑗 attracts every trajectory in ℝ+
1 . 

Therefore, it is sufficient to study the dynamics of the flows engendered by the model system in 𝒟. We conclude, therefore, 

that the model is together mathematically and epidemiologically well-posed. 
 

3 Mathematical Analysis of the Model 

We establish the Local and global stability of the disease-free equilibrium (DFE) and endemic equilibrium (EEP) in this 

section. 

3.1 Local Asymptotic Stability (LAS) of the Disease-free Equilibrium (DFE) 

At the disease-free state, the cercaria and miracidia states do not exist, then the host and the intermediate host do not have 

any infection. Thus, the disease-free equilibrium for (3) is 

𝑈0 = (𝑆ℎ
0, 𝐸ℎ

0,  𝐼ℎ1
0 ,  𝐼ℎ2

0 ,  𝑇ℎ
0,  𝑀𝑠

0,  𝑆𝑠
0,  𝐼𝑠

0,  𝐽𝑠
0) = (

𝛬ℎ

𝜇ℎ

,  0,  0,  0,  0,  0, 
𝛬𝑠

𝜇𝑠

,  0,  0)                     (12) 

The effective reproduction number ℜ0, is defined as the expected number of secondary cases produced in a totally sensitive 

population by a typical infective individual during infectious period at a disease free equilibrium. The effective 

reproduction number is used to ascertain the transmission ability of a disease. The reproduction number is affected by the 

rate of contacts in the host population, the probability of infection transmission during contact and the contagious duration, 

hence, it follows that matrices 𝑓 and 𝑘, representing transfer rate of individuals into new compartments and out of the 

compartments at DFE can be expressed as, 

𝐹0 =

(

 
 
 
 
 

0 0 0 0 0
𝛽𝑗𝛬ℎ

𝐽0𝜇ℎ

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
𝛽𝑚𝛬𝑠

𝑀0𝜇𝑠
0

0 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 

                                                                                                                      (13) 
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and 

𝐾 =

(

 
 
 

(𝑣 + 𝜇ℎ) 0 0 0 0 0

(−1 + 𝑝)𝑣 (𝑑0 + 𝜇ℎ) 0 0 0 0

−𝑝𝑣 0 (𝑑0 + 𝜂0 + 𝜇ℎ) 0 0 0
0 0 0 𝜇𝑠 0 0
0 −𝜁𝑛𝑒 −𝜁𝑛𝑒 0 𝜇𝑚 0
0 0 0 −𝜃 0 𝜇𝑗)

 
 
 

                                             (14) 

respectively. Thus, it follows that the effective reproduction number of the model (3) denoted by ℜ0, is obtained as, 

ℜ0 = 𝜌(𝐹0𝐾
−1) = √

𝜁𝜃𝑣𝑛𝑒𝛽𝑗𝛽𝑚𝛬ℎ𝛬𝑠((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))

𝐽0𝑀0𝜇ℎ(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝑑1 + 𝜂0 + 𝜇ℎ)𝜇𝑗𝜇𝑚𝜇𝑠
2

                        (15) 

where, 𝜌(𝐹0𝐾
−1) is the matrix (𝐹0𝐾

−1) spectral radius [27]. Thus, it is observed in this case that, 

ℜ0 = √ℜ0,ℎℜ0,𝑠                                                                                                                                         (16) 

where, 

ℜ0,ℎ =
𝜁𝑣𝑛𝑒𝛽𝑗𝛬ℎ((1−𝑝)(𝜂0+𝑑1+𝜇ℎ)+𝑝(𝑑0+𝜇ℎ))

𝐽0𝜇ℎ(𝑣+𝜇ℎ)(𝑑0+𝜇ℎ)(𝑑1+𝜂0+𝜇ℎ)𝜇𝑚
   and  ℜ0,𝑠 =

𝛽𝑚𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
2𝑀0

                                                     (17) 

From the above generated effective reproduction number ℜ0, it is observed that the ℜ0 is obtained as a geometric mean of 

two quantities because an infected individual introduced into an entirely susceptible population generates ℜ0 infections 

during his/her infectious period [27]. Schistosomiasis passes through a snail before another human can get infected, 

therefore the number of new infections is obtain by the geometric mean of ℜ0,ℎ and ℜ0,𝑠. If we consider an infectious 

individual, present in a population at the disease free equilibrium, then the likely number of snails infected by this person, 

that is, the man-snail transmission coefficient is approximately 

ℜ0,𝑠 =
𝛽𝑚𝜃𝛬𝑠

𝜇𝑗𝜇𝑠
2𝑀0

                                                                                                                                        (18) 

 

Similarly, if we consider an infectious snail entering and present in a population at the disease free equilibrium, then the 

likely number of humans infected by this snail that is, the snail-man transmission coefficient, is approximately 

𝕽𝟎,𝒉 =
𝜻𝒗𝒏𝒆𝜷𝒋𝜦𝒉((𝟏 − 𝒑)(𝜼𝟎 + 𝒅𝟏 + 𝝁𝒉) + 𝒑(𝒅𝟎 + 𝝁𝒉))

𝑱𝟎𝝁𝒉(𝒗 + 𝝁𝒉)(𝒅𝟎 + 𝝁𝒉)(𝒅𝟏 + 𝜼𝟎 + 𝝁𝒉)𝝁𝒎

                                                         (𝟏𝟗) 

Lemma 3: The disease-free equilibrium point of the system (3), 𝑈0, is LAS whenever ℜ0 < 1 and unstable otherwise. Thus 

we can deduce that there is possibility of eliminating the disease from the population when the effective reproduction 

number ℜ0 < 1. 

3.1.1 Examination of 𝕽𝟎 

The impact of some parameters is evaluated by examining the effective reproduction number with respect to the sensitivity 

of the progression rate from latently to actively infected with schistosomiasis 𝑣, the case detection 𝑝, and the 

schistosomiasis treatment rate 𝜂0. If we consider the change of ℜ0
2 with respect to 𝑣, we have 

𝜕ℜ0
2

𝜕𝑣
=

𝜁𝜃𝑛𝑒𝛽𝑗𝛽𝑚𝛬ℎ𝛬𝑠(𝑝(𝑑0 + 𝜇ℎ) + (1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ))

𝐽0𝑀0(𝑣 + 𝜇ℎ)
2(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)𝜇𝑗𝜇𝑚𝜇𝑠

2
> 0                                    (20) 

Clearly, from (12), 
𝜕ℜ0

2

𝜕𝑣
> 0, this implies that schistosomiasis infection progression rate from latently to actively infected 

cases on the dynamics of schistosomiasis will have negative impact.  

Also, if we consider how ℜ0
2 changes relative to 𝑝, we have 

𝜕ℜ0
2

𝜕𝑝
=

𝑣𝜁𝜃𝑛𝑒𝛽𝑗𝛽𝑚(𝑑0 − 𝑑1 − 𝜂0)𝛬ℎ𝛬𝑠

𝐽0𝑀0𝜇ℎ(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)𝜇𝑗𝜇𝑚𝜇𝑠
2
                                                  (21) 

Thus, 

1. If 𝑑0 < (𝑑1 + 𝜂0) (i.e. 𝑑0 − 𝑑1 < 𝜂0), then 
𝜕ℜ0

2

𝜕𝑝
< 0; since ℜ0 is a decreasing function of 𝑝, then detection (as well as 

quick commencement of treatment) of a proportion of persons infected with schistosomiasis will have a positive 

impact (reduced the burden of the disease) in a population. 

2. If 𝑑0 − 𝑑1 > 𝜂0, then 
𝜕ℜ0

2

𝜕𝑝
> 0; since ℜ0 is an increasing function of 𝑝, then case detection of schistosomiasis will 

have a negative impact (will not reduce the burden of the disease) in the population. 

3. If 𝑑0 = 𝑑1, this implies that 
𝜕ℜ0

2

𝜕𝑝
< 0; since ℜ0 is a decreasing function of 𝑝. Hence, case detection of schistosomiasis 

will have a positive impact on the dynamics of the disease. 
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Also if we consider how ℜ0
2 changes in respect to 𝜂0, that is, 

𝜕ℜ0
2

𝜕𝜂0

=
−𝑝𝑣𝜁𝜃𝑛𝑒𝛽𝑗𝛽𝑚𝛬ℎ𝛬𝑠

𝐽0𝑀0𝜇ℎ(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)
2𝜇𝑗𝜇𝑚𝜇𝑠

2
< 0.                                      (22) 

Clearly, 
𝜕ℜ0

2

𝜕𝜂0
< 0, this implies that if the proportion of detected persons with schistosomiasis, promptly treated is large, it 

will result into reduction in schistosomiasis burden in a population. 

3.2 Existence of the Endemic Equilibrium Point (EEP) 

Let the endemic equilibrium point (EEP) corresponding to the system (3) be defined as 

𝑈∗∗ = (𝑆ℎ
∗∗,  𝐸ℎ

∗∗,  𝐼ℎ1
∗∗ ,  𝐼ℎ2

∗∗ ,  𝑇ℎ
∗∗,  𝑀𝑠

∗∗,  𝑆𝑠
∗∗,  𝐼𝑠

∗∗,  𝐽𝑠
∗∗).                                          (23) 

and the non-trivial endemic equilibrium as, 

𝑆ℎ
∗∗ =

𝛬ℎ

𝜆𝑗
∗∗ + 𝜇ℎ

,  𝐸ℎ
∗∗ =

𝜆𝑗
∗∗(𝑆ℎ

∗∗ + 𝜔𝑇ℎ
∗∗)

(𝑣 + 𝜇ℎ)
,  𝐼ℎ1

∗∗ =
(1 − 𝑝)𝑣𝐸ℎ

∗∗

(𝑑0 + 𝜇ℎ)

𝐼ℎ2
∗∗ =

𝑝𝑣𝐸ℎ
∗∗

(𝜂0 + 𝑑1 + 𝜇ℎ)
,  𝑇ℎ

∗∗ =
𝜂0𝐼ℎ2

∗∗

𝜔𝜆𝑗
∗∗ + 𝜇ℎ

,  𝑀𝑠
∗∗ =

𝑛𝑒𝜁(𝐼ℎ1
∗∗ + 𝐼ℎ2

∗∗)

𝜇𝑚

 (24)

𝑆𝑠
∗∗ =

𝛬𝑠

(𝜆𝑚
∗∗ + 𝜇𝑠)

,  𝐼𝑠
∗∗ =

𝜆𝑚
∗∗𝑆𝑠

∗∗

𝜇𝑠

,  𝐽𝑠
∗∗ =

𝜃𝐼𝑠
∗∗

𝜇𝑗

 

The endemic cercaria force of infection polynomial 𝜆𝑗
∗∗ is computed by considering 

𝜆𝑗
∗∗ =

𝛽𝑗𝐽𝑠
∗∗

𝐽0 + 𝜖𝐽𝑠
∗∗

                                                                                                            (25) 

and 

𝜆𝑚
∗∗ =

𝛽𝑚𝑀𝑠
∗∗

𝑀0 + 𝜖𝑀𝑠
∗∗

                                                                                                       (26) 

then the EEP associated with the system (3) satisfy the following polynomial written as a function of 𝜆𝑗
∗∗ as, 

𝐶1
0𝜆𝑗

∗∗2 + 𝐶2
0𝜆𝑗

∗∗ + 𝐶3
0 = 0                                                                                       (27) 

where, 

         

𝐶1
0 = 𝐽0𝑀0𝛽𝑗((1 − 𝑝)𝑣𝜔𝜂0 + 𝑣𝜔(𝑑1 + 𝜇ℎ) + 𝜔𝜇ℎ(𝜂0 + 𝑑1 + 𝜇ℎ))𝜇𝑗𝜇𝑠

2

+ 𝐽0𝑀0𝛽𝑗((1 − 𝑝)𝑣𝜔𝜂0 + 𝑣𝜔(𝑑1 + 𝜇ℎ) + 𝜔𝜇ℎ(𝜂0 + 𝑑1 + 𝜇ℎ))

+𝜔𝐽0𝛽𝑚𝜇ℎ(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)(𝜖𝜃𝛬𝑠 + 𝐽0𝜇𝑗𝜇𝑠)ℜ0,ℎ           (29)

 

 

            𝐶2
0 = 𝐽0𝑀0𝛽𝑗(𝜇ℎ(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ))𝜇𝑗𝜇𝑠

2

+𝜇ℎ𝐽0𝑀0𝛽𝑗((1 − 𝑝)𝑣𝜔𝜂0 + 𝑣𝜔𝜂0 + 𝑣𝜔(𝑑1 + 𝜇ℎ) + 𝜔𝜇ℎ(𝜂0 + 𝑑1 + 𝜇ℎ))𝜇𝑗𝜇𝑠
2

−𝜃𝜔𝐽0𝛽𝑗𝛽𝑚𝛬𝑠𝜇ℎ(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)ℜ0,ℎ

+𝜖𝐽0
2𝜇ℎ

2(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)𝜇𝑗𝜇𝑠
2ℜ0,ℎ

+𝐽0𝛽𝑚𝜇ℎ
2(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)(𝜖𝜃𝛬𝑠 + 𝐽0𝜇𝑗𝜇𝑠)ℜ0,ℎ              (30)

  

𝐶3
0 = 𝐽0𝑀0𝛽𝑚𝜇ℎ

2(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)𝜇𝑗𝜇𝑠
2(1 − ℜ0

2).                                    (31) 

We solved the polynomial in (26) to obtain the components of the EEP. Clearly, the coefficient 𝐶1
0 is always positive (since 

0 ≤ 𝑝 ≤ 1) , it also follows from (26) that the coefficient 𝐶3
0 is always positive if the reproduction number ℜ0

2 is less than 

one and always negative if the reproduction number ℜ0
2 is greater than one, therefore we establish the following theorem. 

 

Theorem 4: Together with the above statement, the system (3) has: 

1. a unique endemic equilibrium whenever ℜ0
2 > 1 and 𝐶2

0 < 0 

2. no endemic equilibrium whenever ℜ0
2 < 1 and 𝐶2

0 > 0 

 

3.2.1 Backward Bifurcation Analysis 

Set the variables such that 

𝑆ℎ = 𝑥1,  𝐸ℎ = 𝑥2,  𝐼ℎ1 = 𝑥3,  𝐼ℎ2 = 𝑥4,  𝑇ℎ = 𝑥5,  𝑀𝑠 = 𝑥6,  𝑆𝑠 = 𝑥7,  𝐼𝑠 = 𝑥8,  𝐽𝑠 = 𝑥9, 
and rewrite equation (3) as 
𝑑𝑋

𝑑𝑡
= 𝐺 = (𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8, 𝑔9)

𝑇 , 

such that, 
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𝑥1
′(𝑡) = 𝑔1 = 𝛬ℎ −

𝛽𝑗𝑥1𝑥9

𝐽0 + 𝜖𝑥9

− 𝜇ℎ𝑥1,

𝑥2
′ (𝑡) = 𝑔2 =

𝛽𝑗𝑥9(𝑥1 + 𝜔𝑥5)

𝐽0 + 𝜖𝑥9

− (𝑣 + 𝜇ℎ)𝑥2,

𝑥3
′ (𝑡) = 𝑔3 = (1 − 𝑝)𝑣𝑥2 − (𝑑0 + 𝜇ℎ)𝑥3,

𝑥4
′ (𝑡) = 𝑔4 = 𝑝𝑣𝑥2 − (𝜂0 + 𝑑1 + 𝜇ℎ)𝑥4,                                                         (31)

𝑥5
′ (𝑡) = 𝑔5 = 𝜂0𝑥4 −

𝜔𝛽𝑗𝑥5𝑥9

𝐽0 + 𝜖𝑥9

− 𝜇ℎ𝑥5,

𝑥6
′ (𝑡) = 𝑔6 = 𝑛𝑒𝜁(𝑥3 + 𝑥4) − 𝜇𝑚𝑥6,

𝑥7
′ (𝑡) = 𝑔7 = 𝛬𝑠 −

𝛽𝑚𝑥6𝑥7

𝑀0 + 𝜖𝑥6

− 𝜇𝑠𝑥7,

𝑥8
′ (𝑡) = 𝑔8 =

𝛽𝑚𝑥6𝑥7

𝑀0 + 𝜖𝑥6

− 𝜇𝑠𝑥8,

𝑥9
′(𝑡) = 𝑔9 = 𝜃𝑥8 − 𝜇𝑗𝑥9.

 

Suppose 𝛽𝑗 = 𝛽𝑗
∗ is chosen to be the bifurcation parameter for the system (31) then when ℜ0 = 1,we obtain 

𝛽𝑗 = 𝛽𝑗
∗ =

𝐽0𝑀0𝜇ℎ𝜇𝑗𝜇𝑚𝜇𝑠
2(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

𝛽𝑚𝛬ℎ𝛬𝑠𝑛𝑒𝜁𝑣𝜃((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))
               (32) 

The Jacobian matrix associated to the model (31) at the DFE, is obtained as 

𝐽(𝑈0)|𝛽𝑗=βj
∗ = 

[
 
 
 
 
 
 
 
 
 
 
 
 −𝜇ℎ 0 0 0 0 0 0 0 −

βj
∗𝛬ℎ

𝜇ℎ𝐽0

0 −(𝜐 + 𝜇ℎ) 0 0 0 0 0 0   
βj

∗𝛬ℎ

𝜇ℎ𝐽0

0 (1 − 𝑝)𝜐 −(𝑑0 + 𝜇ℎ) 0 0 0 0 0 0

0 𝑝𝜐 0 −(𝜂0 +  𝑑1 + 𝜇ℎ) 0 0 0 0 0
0 0 0 𝜂0 −𝜇ℎ 0 0 0 0
0 0 𝑛𝑒𝜁 𝑛𝑒𝜁 0 −𝜇ℎ 0 0 0

0 0 0 0 0 −
βm𝛬𝑠

𝜇𝑠𝑀0
−𝜇𝑠 0 0

0 0 0 0 0
βm𝛬𝑠

𝜇𝑠𝑀0
0 −𝜇𝑠 0

0 0 0 0 0 0 0 𝜃 −𝜇𝑗

  

]
 
 
 
 
 
 
 
 
 
 
 
 

(33) 

By the Centre Manifold Theorem in [28, 29], we investigate the possibility of backward bifurcation at ℜ0 = 1. We can 

show that the Jacobian (𝐽𝛽𝑗
∗) at 𝛽𝑗 = 𝛽𝑗

∗ of the system (31) possesses a right eigenvector given as 𝑤 =

(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 𝑤8, 𝑤9)
𝑇 by multiplying the Jacobian matrix (25) with, we further express each of the vectors in 

terms of 𝑤9 

𝑤1 =
−𝛽𝑗𝛬ℎ𝑤9

𝜇ℎ
2𝐽0

  𝑤2 =
𝛽𝑗𝛬ℎ𝑤9

𝜇ℎ(𝑣 + 𝜇ℎ)𝐽0
,  𝑤3 =

(1 − 𝑝)𝑣𝛽𝑗𝛬ℎ𝑤9

𝜇ℎ(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)𝐽0

𝑤4 =
𝑝𝑣𝛽𝑗𝛬ℎ𝑤9

𝜇ℎ(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)𝐽0
,  𝑤5 =

𝜂0𝑝𝑣𝛽𝑗𝛬ℎ𝑤9

𝜇ℎ
2(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)𝐽0

      (34)

𝑤6 =
𝜇𝑠

2𝑀0𝜇𝑗𝑤9

𝜃𝛽𝑚𝛬𝑠

,  𝑤7 =
−𝜇𝑗𝑤9

𝜃
,  𝑤8 =

𝜇𝑗𝑤9

𝜃

 

Similarly, we can obtain that the Jacobian (𝐽𝛽𝑗
∗) at 𝛽𝑗 = 𝛽𝑗

∗ of the system (31) possesses a left eigenvector given as 𝑢 =

[𝑢1,  𝑢2,  𝑢3,  𝑢4,  𝑢5,  𝑢6,  𝑢7,  𝑢8,  𝑢9] by multiplying the Jacobian matrix (33) with 𝑢 and express each of the vectors in 

terms of 𝑢9 as 

𝑢1 = 𝑢7 = 0, 𝑢2 =
𝜇𝑗𝜇ℎ𝐽0𝑢9

𝛽𝑗𝛬ℎ

,  𝑢3 =
𝜃𝑛𝑒𝜁𝛽𝑚𝛬𝑠𝑢9

𝜇𝑚𝜇𝑠
2(𝑑0 + 𝜇ℎ)𝑀0

𝑢4 =
𝜃𝑛𝑒𝜁𝛽𝑚𝛬𝑠𝑢9

𝜇𝑚𝜇𝑠
2(𝜂0 + 𝑑1 + 𝜇ℎ)𝑀0

,  𝑢5 = 0, 𝑢6 =
𝜃𝛽𝑚𝛬𝑠𝑢9

𝜇𝑚𝜇𝑠
2𝑀0

,  𝑢8 =
𝜃𝑢9

𝜇𝑠

              (35) 

Using the expression derived by [29] for computation of 𝑎 and 𝑏 for the system (31), the corresponding non-zero partial 

derivatives is given as, 
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𝑎 = ∑ 𝑢𝑘

𝑛

𝑘,𝑖,𝑗=1

𝑤𝑖𝑤𝑗

𝜕2𝑔𝑘(0,0)

𝜕𝑥𝑖𝜕𝑥𝑗

                                                                                  (36)
 

and  

b    =   ∑ 𝑢𝑘

𝑛

𝑘,𝑖=1

𝑤1

𝜕2𝑔𝑘(0,0)

𝜕𝑥𝑖𝜕𝛽𝑗
∗                                                                                            (37) 

thus 

𝑎 = 2𝑢2𝑤9𝑤1

𝛽𝑗
∗

𝐽0
+ 2𝑢2𝑤5𝑤9𝜔

𝛽𝑗
∗

𝐽0
−

2𝜖𝛽𝑗
∗𝑥1

∗𝑢2𝑤9
2

𝐽0
2 −

2𝜖𝛽𝑚𝑥7
∗𝑢8𝑤6

2

𝑀0
2 + 2𝑢8𝑤6𝑤7

𝛽𝑗
∗

𝑀0

,                                     

        =
2𝜔𝛽𝑗

∗𝜇𝑗𝜂0𝑝𝑣𝑢9𝑤9
2

𝜇ℎ(𝑣 + 𝜇ℎ)(𝑑1 + 𝜂0 + 𝜇ℎ)𝐽0
 

  − (
2𝜇𝑗𝛽𝑗

∗𝑢9𝑤9
2

𝜇ℎ𝐽0
+

2𝜇𝑗𝜇ℎ𝜖𝑥1
∗𝑢9𝑤9

2

𝛬ℎ𝐽0
+

2𝜖𝜃𝜇𝑠
3𝜇𝑗

2𝑥7
∗𝑢9𝑤9

2

𝜃2𝛽𝑚𝛬𝑠
2

+
2𝜇𝑠𝜇𝑗

2𝑢9𝑤9
2

𝜃𝛬𝑠

)           (38)     

Thus, 𝑎 > 0 if and only if 

𝜔 >
𝐻6

𝐻5

(𝐻1 + 𝐻2 + 𝐻3 + 𝐻4)                                                                                      (39) 

where, 

𝐻1 =
2𝜇𝑗𝛽𝑗

∗𝑢9𝑤9
2

𝜇ℎ𝐽0
,  𝐻2 =

2𝜇𝑗𝜇ℎ𝜖𝑥1
∗𝑢9𝑤9

2

𝛬ℎ𝐽0
,  𝐻3 =

2𝜖𝜃𝜇𝑠
3𝜇𝑗

2𝑥7
∗𝑢9𝑤9

2

𝜃2𝛽𝑚𝛬𝑠
2

𝐻4 =
2𝜇𝑠𝜇𝑗

2𝑢9𝑤9
2

𝜃𝛬𝑠

,  𝐻5 = 2𝛽𝜇𝑗𝜂0𝑝𝑣𝑢9𝑤9
2,  𝐻6 = 𝜇ℎ(𝑣 + 𝜇ℎ)(𝑑1 + 𝜂0 + 𝜇ℎ)𝐽0

 (40) 

and 

𝑏 =
𝑢2𝑤9𝑥1

∗

𝐽0
=

𝜇𝑗𝜇ℎ𝑥1
∗𝑢9𝑤9

𝛽𝑗𝛬ℎ

> 0.                                                                                      (41) 

Hence, we establish these results with the following theorem:. 

Theorem 5: If ℜ0 = 1, and 

𝜔 >
𝐻6

𝐻5

(𝐻1 + 𝐻2 + 𝐻3 + 𝐻4)                                                                                            (42) 

where 𝑤1 , 𝑤2, ⋯ , 𝑤9 and 𝑢1, 𝑢2, ⋯ 𝑢9 are given in equation (34) and (35) respectively, then the system (31) undergoes a 

backward bifurcation, otherwise it undergoes a transcritical bifurcation. 

 

3.3 Global Asymptotic Stability (GAS) of DFE 

Consider the system (3) without re-infection (i.e. 𝜔 = 0), we have the following sub-model 

𝑆ℎ
′ = 𝛬ℎ − 𝜆𝑗𝑆ℎ − 𝜇ℎ𝑆ℎ ,

𝐸ℎ
′ = 𝜆𝑗𝑆ℎ − (𝑣 + 𝜇ℎ)𝐸ℎ ,

𝐼ℎ1
′ = (1 − 𝑝)𝑣𝐸ℎ − (𝑑0 + 𝜇ℎ)𝐼ℎ1,

𝐼ℎ2
′ = 𝑝𝑣𝐸ℎ − (𝜂0 + 𝑑1 + 𝜇ℎ)𝐼ℎ2 ,

𝑇ℎ
′ = 𝜂0𝐼ℎ2 − 𝜇ℎ𝑇ℎ ,

𝑀𝑠
′ = 𝑛𝑒𝜁(𝐼ℎ1 + 𝐼ℎ2) − 𝜇ℎ𝑀𝑠,

𝑆𝑠
′ = 𝛬𝑠 − 𝜆𝑚𝑆𝑠 − 𝜇𝑠𝑆𝑠,

𝐼𝑠
′ = 𝜆𝑚𝑆𝑠 − 𝜇𝑠𝐼𝑠 ,

𝐽𝑠
′ = 𝜃𝐼𝑠 − 𝜇𝑗𝐽𝑠.

                                                                        (43) 

where, 

𝜆𝑗 =
𝛽𝑗𝐽𝑠

𝐽0 + 𝜖𝐽𝑠
                                                                                                                     (44)

𝜆𝑚 =
𝛽𝑚𝑀𝑠

𝑀0 + 𝜖𝑀𝑠

                                                                                                                (45)

 

Theorem 6: The disease-free state of the system (43), without re-infection (i.e., 𝜔 = 0) is globally asymptotically stable 

(GAS) in ℛ whenever ℜ0 ≤ 1 and unstable when ℜ0 > 1. 
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Consider the following Lyapunov function associated with system (34) 

𝐿1 = 𝐺1𝐸ℎ + 𝐺2𝐼ℎ1 + 𝐺3𝐼ℎ2 + 𝐺4𝐼𝑠 + 𝐺5𝑀𝑠 + 𝐺6𝐽𝑠                                                     (46) 

where 𝑋𝑇 = (𝐸ℎ , 𝐼ℎ1, 𝐼ℎ2, 𝐼𝑠 , 𝑀𝑠, 𝐽𝑠) and 

𝐺1 =
𝛽𝑚𝛬𝑠𝜃𝜁𝑣𝑛𝑒((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))

𝑀0𝜇𝑗𝜇𝑚𝜇𝑠
2(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

,

𝐺2 =
𝛽𝑚𝛬𝑠𝜃𝜁𝑛𝑒

𝑀0𝜇𝑗𝜇𝑚𝜇𝑠
2(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)

,

𝐺3 =
𝛽𝑚𝛬𝑠𝜃𝜁𝑛𝑒

𝑀0𝜇𝑗𝜇𝑚𝜇𝑠
2(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

,                   

𝐺4 =
𝜃ℜ0

𝜇𝑗𝜇𝑠

,

𝐺5 =
𝛽𝑚𝛬𝑠𝜃

𝑀0𝜇𝑗𝜇𝑚𝜇𝑠
2
,

𝐺6 =
ℜ0

𝜇𝑗

           (47) 

The time derivative of the Lyapunov function at DFE is given as 

𝐿1
′ = 𝐺1𝐸ℎ

′ + 𝐺2𝐼ℎ1
′ + 𝐺3𝐼ℎ2

′ + 𝐺4𝐼𝑠
′ + 𝐺5𝑀𝑠

′ + 𝐺6𝐽𝑠
′                                                 (48) 

Substituting the right-hand side of (43) and (47) into (48) gives, 

𝐿1
′ =

𝛽𝑚𝑣𝜁𝜃𝑛𝑒𝛬𝑠𝑆ℎ𝜆𝑗((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))

𝑀0𝜇𝑗𝜇𝑚𝜇𝑠
2(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

−
𝜃𝛽𝑚𝑀𝑠𝛬𝑠

𝑀0𝜇𝑗𝜇𝑠
2

+
𝜃𝜆𝑚𝑆𝑠𝑅0

𝜇𝑗𝜇𝑠

− 𝐽𝑠ℜ0

=
𝛽𝑚𝑣𝜁𝜃𝑛𝑒𝛬𝑠𝜆𝑗((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))

𝑀0𝜇𝑗𝜇𝑚𝜇𝑠
2(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

(
𝛽𝑗𝐽𝑠

𝐽0 + 𝜖𝐽𝑠
) 𝑆ℎ

−𝐽𝑠ℜ0 +
𝜃ℜ0

𝜇𝑗𝜇𝑠

(
𝛽𝑚𝑀𝑠

𝑀0 + 𝜖𝑀𝑠

) 𝑆𝑠 −
𝛽𝑚𝜃𝛬𝑠

𝑀0𝜇𝑗𝜇𝑠

𝑀𝑠                                                       (49)

 

At DFE, 

𝐿1
′ ≤

𝛽𝑗𝛽𝑚𝑣𝜁𝜃𝑛𝑒𝛬ℎ𝛬𝑠((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))

𝐽0𝑀0𝜇𝑗𝜇𝑚𝜇ℎ𝜇𝑠
2(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

𝐽𝑠

+(
𝛽𝑚𝜃𝛬𝑠ℜ0

𝑀0𝜇𝑗𝜇𝑠
2

)𝑀𝑠 − (
𝛽𝑚𝜃𝛬𝑠

𝑀0𝜇𝑗𝜇𝑠
2
)𝑀𝑠 − 𝐽𝑠ℜ0

≤ (
𝛽𝑚𝛬𝑠𝜃

𝑀0𝜇𝑗𝜇𝑠
2
𝑀𝑠 + 𝐽𝑠ℜ0) (ℜ0 − 1)

≤ (ℜ0,𝑠𝑀𝑠 + 𝐽𝑠ℜ0)(ℜ0 − 1)                                                                                (50)

 

Hence, 𝐿1
′ ≤ 0 whenever ℜ0 ≤ 1 with 𝐿1

′ = 0 if and only if 𝑀𝑠 = 𝐽𝑠 = 0. Therefore, it follows that 𝐿1 is a Lyapunov 

function in the domain 𝒟. Hence, from LaSalle’s Invariance Principle [30], we have that 

(𝐸ℎ(𝑡), 𝐼ℎ1(𝑡), 𝐼ℎ2(𝑡), 𝐼𝑆(𝑡),𝑀𝑠(𝑡), 𝐽𝑠(𝑡)) → (0,0,0,0,0,0) as 𝑡 → ∞.           (51) 

This result shows that in a population where there is effective case-detection and treatment for active schistosomiasis cases, 

on the condition that there is negligible re-infection, that is, 𝜔 = 0, the DFE will be GAS whenever ℜ0 ≤ 1. Hence, 

schistosomiasis can be eradicated from the population whenever  ℜ0 ≤ 1, irrespective of the initial sizes of the sub-

populations. 

 

3.4 Global Asymptotic Stability of Endemic Equilibrium Point (EEP) 

Assume that the stable manifold of the DFE of the model system (34) is 
𝒟0 = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ1, 𝐼ℎ2, 𝑇ℎ, 𝑀𝑠, 𝑆𝑠, 𝐼𝑠 , 𝐽𝑠) ∈ 𝒟∗: 𝐸ℎ =  𝐼ℎ1 = 𝐼ℎ2 = 𝑀𝑠 = 𝐼𝑠 = 𝐽𝑠 = 0}.     (52) 
We claim the following result. 

Theorem 7: The unique EEP, 𝑈∗∗, of model (34) with 𝜔 = 0 is globally asymptotically stable in 𝒟∗ ∖ 𝒟0 at any time ℜ0 > 1 
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Proof: Consider the system (43) together with the force of infection and the Reproduction number ℜ0. Hence whenever 

ℜ0 > 1, the unique EEP (𝑈∗∗) exist. We represent the Lyapunov function 𝐿2 for the EEP as 

 

𝐿2 =   𝑆ℎ − 𝑆ℎ
∗∗𝑙𝑛

𝑆ℎ

𝑆ℎ
∗∗ + 𝐸ℎ − 𝐸ℎ

∗∗𝑙𝑛
𝐸ℎ

𝐸ℎ
∗∗ + 𝐺1 (𝐼ℎ1 − 𝐼ℎ1

∗∗ 𝑙𝑛
𝐼ℎ1

𝐼ℎ1
∗∗)

       +𝐺2 (𝐼ℎ2 − 𝐼ℎ2
∗∗ 𝑙𝑛

𝐼ℎ2

𝐼ℎ2
∗∗) + 𝐺3 (𝑇ℎ − 𝑇ℎ

∗∗𝑙𝑛
𝑇ℎ

𝑇ℎ
∗∗)

       +𝐺4 (𝑀𝑠 − 𝑀𝑠
∗∗𝑙𝑛

𝑀𝑠

𝑀𝑠
∗∗

) + 𝑆𝑠 − 𝑆𝑠
∗∗𝑙𝑛

𝑆𝑠

𝑆𝑠
∗∗

+ 𝐼𝑠 − 𝐼𝑠
∗∗𝑙𝑛

𝐼𝑠
𝐼𝑠
∗∗

       +𝐺5 (𝐽𝑠 − 𝐽𝑠
∗∗𝑙𝑛

𝐽𝑠
𝐽𝑠
∗∗

)                                                                                          (53)

 

where 

𝐺1 =   
(𝑣 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

𝑣((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))
,

𝐺2 =    
(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)

𝑣((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))
,

𝐺3 =   0                                       (54)

𝐺4 =    
(𝑣 + 𝜇ℎ)(𝑑0 + 𝜇ℎ)(𝜂0 + 𝑑1 + 𝜇ℎ)

𝑣𝜁𝑛𝑒((1 − 𝑝)(𝜂0 + 𝑑1 + 𝜇ℎ) + 𝑝(𝑑0 + 𝜇ℎ))
,

𝐺5 =    
𝜇𝑠

𝜃
.

 

Taking the time derivatives of 𝐿2 in (53), we have 

𝐿2
′ =   𝑆ℎ

′ − (
𝑆ℎ

∗∗

𝑆ℎ

) 𝑆ℎ
′ + 𝐸ℎ

′ − (
𝐸ℎ

∗∗

𝐸ℎ

) 𝐸ℎ
′ + 𝐺1 (𝐼ℎ1

′ − (
𝐼ℎ1
∗∗

𝐼ℎ1

) 𝐼ℎ1
′ )

      +𝐺2 (𝐼ℎ2
′ − (

𝐼ℎ2
∗∗

𝐼ℎ2

) 𝐼ℎ2
′ ) + 𝐺3 (𝑇ℎ

′ − (
𝑇ℎ

∗∗

𝑇ℎ

) 𝑇ℎ
′)

       +𝐺4 (𝑀𝑠
′ − (

𝑀𝑠
∗∗

𝑀𝑠

)𝑀𝑠
′) + 𝑆𝑠

′ − (
𝑆𝑠

∗∗

𝑆𝑠

) 𝑆𝑠
′ + 𝐼𝑠

′ − (
𝐼𝑠
∗∗

𝐼𝑠
) 𝐼𝑠

′

      +𝐺5 (𝐽𝑠
′ − (

𝐽𝑠
∗∗

𝐽𝑠
) 𝐽𝑠

′)                                                                                         (55)

 

substituting the right hand side of (3) into (55) and manipulating the result, we have 

𝐿2
′ =    𝜇ℎ𝑆ℎ

∗∗ (2 −
𝑆ℎ

𝑆ℎ
∗∗ −

𝑆ℎ
∗∗

𝑆ℎ

) + 𝜆𝑗
∗∗𝑆ℎ

∗∗ ×

        [4 −
𝑆ℎ

∗∗

𝑆ℎ

− (
𝐼ℎ1
∗∗2

𝐼ℎ1(𝐼ℎ1
∗∗ + 𝐼ℎ2

∗∗)
+

𝐼ℎ2
∗∗

𝐼ℎ2(𝐼ℎ1
∗∗ + 𝐼ℎ2

∗∗)
)

𝐸ℎ

𝐸ℎ
∗∗ − (

𝐼ℎ1 + 𝐼ℎ2

𝐼ℎ1
∗∗ + 𝐼ℎ2

∗∗)
𝑀𝑠

∗∗

𝑀𝑠

]

  +𝜇𝑠𝑆𝑠
∗∗ (2 −

𝑆𝑠
∗∗

𝑆𝑠

−
𝑆𝑠

𝑆𝑠
∗∗

) + 𝜇𝑠𝐼𝑠
∗∗ (2 −

𝐼𝑠𝐽𝑠
∗∗

𝐼𝑠
∗∗𝐽𝑠

−
𝑆ℎ𝐸ℎ

∗∗𝐽𝑠
𝑆ℎ

∗∗𝐸ℎ𝐽𝑠
∗∗

) + 𝜆𝑚
∗∗𝑆𝑠

∗∗ (1 −
𝑆𝑠

∗∗

𝑆𝑠

) (56)

 

Since arithmetic mean is greater than or equal to geometric mean, we conclude that the following inequalities hold 

(2 −
𝑆ℎ

𝑆ℎ
∗∗ −

𝑆ℎ
∗∗

𝑆ℎ

) ≤ 0,  4 −
𝑆ℎ

∗∗

𝑆ℎ

− (
𝐼ℎ1
∗∗2

𝐼ℎ1(𝐼ℎ1
∗∗ + 𝐼ℎ2

∗∗)
+

𝐼ℎ2
∗∗

𝐼ℎ2(𝐼ℎ1
∗∗ + 𝐼ℎ2

∗∗)
) ≤ 0

(
𝐼ℎ1 + 𝐼ℎ2

𝐼ℎ1
∗∗ + 𝐼ℎ2

∗∗) ≤ 0, (2 −
𝑆𝑠

∗∗

𝑆𝑠

−
𝑆𝑠

𝑆𝑠
∗∗

) ≤ 0, (2 −
𝐼𝑠𝐽𝑠

∗∗

𝐼𝑠
∗∗𝐽𝑠

−
𝑆ℎ𝐸ℎ

∗∗𝐽𝑠
𝑆ℎ

∗∗𝐸ℎ𝐽𝑠
∗∗

) ≤ 0,               (57)

(1 −
𝑆𝑠

∗∗

𝑆𝑠

) ≤ 0.

 

Therefore, whenever ℜ0 > 1, 𝐿2
′ ≤ 0. 

Since the relevant variables in the equation of 𝐼ℎ1 and 𝐼ℎ2 are at the endemic equilibrium, they can be substituted into the 

equations representing 𝐼ℎ1 and 𝐼ℎ2  in the model (43) so that 

𝐼ℎ1(𝑡) → 𝐼h1
∗∗ , 𝐼ℎ2(𝑡) → 𝐼h2

∗∗ as 𝑡 → ∞. 
Therefore, 𝐿2 represents a Lyapunov function in 𝒟∗\𝒟0. 
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This outcome shows that in a population with endemic schistosomiasis, if  𝜔 = 0, the EEP will be GAS whenever ℜ0 > 1. 

Thus, schistosomiasis will persist in the population regardless of the initial sizes of the sub-populations whenever ℜ0 > 1. 
 

4 Numerical simulations 

The model (3) is simulated in this section with the parameter values set as given in Table 1. Some of the epidemiological 

parameters are set related to Nigeria. 
 

Table 1: Parameter values used in model (3) 

Parameters  Values       Reference  

𝜇ℎ                    0.02041   [31] 

𝜖            0.2 [21] 

𝜔                  0.1   Assumed 

𝛬ℎ                 4,147,316   Estimated  

𝑛𝑒   500 [32] 

𝑣                   6.5              Assumed  

𝛬𝑠                73000 [21] 

𝜇𝑠  0.72          [10] 

𝑝 0.1 Assumed 

𝛽𝑗 4.19  Assumed 

𝜇𝑗  0.504  [10] 

𝜂0 0.23  Assumed 

𝛽𝑚 1.475  Assumed 

𝜇𝑚  0.75 [33] 

𝑑0 0.02  Assumed 

𝑀0  100,000,000 [21] 

𝜁  0.835   [13] 

𝑑1  0.0201  Assumed 

𝐽0  90,000,000 [21] 

𝜃  0.9 [13] 
 

Nigeria population is estimated to be 203,200,191 as at August 2019 [34]. The mean natural mortality rate for human was estimated to be 

𝜇ℎ = 0.02041 [31, 35] and the mean annual rate of recruitment into both human and snails population is 𝛬ℎ = 4,147,316 and 𝛬𝑠 =
73,000 respectively. For the initial conditions, we obtain the following values from: 𝑆ℎ(0) = 22,000,600, 𝐸ℎ(0) = 101,400,000, 
𝐼ℎ1(0) = 30,000,000, 𝐼ℎ2 = 29,000,000,𝑇ℎ(0) = 20,089,0000, 𝑀𝑠(0) = 70,000,000, 𝑆𝑠(0) = 50,000,000, 𝐼𝑠(0) = 30,000,000, 
𝐽𝑠(0) = 10,000,000. 

     
Figure 2: Graph of undetected infected human              Figure 3: Graph of detected infected human  

                population with varying case detection (𝑝)     population with varying case detection (𝑝)  

    
Figure 4: Graph of undetected infected human population   Figure 5: Graph of detected infected human population with  

with high and low case detection (𝑝) and varying re-infection (𝜔) high and low case detection (𝑝) and varying re-infection (𝜔) 
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Figure 6: Graph of treated human population with high and low case detection (𝑝) and varying re-infection (𝜔) 

Figure 2 shows the result of varying the case detection parameter 𝑝. The undetected infected human population reaches its 

maximum value after about 3 years and then gradually declines until it attains a value where it remains asymptotically 

stable for all time. This implies that it will take a much longer time for the disease to be eradicated from the population. 

Meanwhile, Figure 3 shows that the detected infected human population reaches an maximum after 2 years, and then 

decreases rapidly as a result of the treatment given to the detected infected population. Figure 4 represents the impact of 

varied re-infection rate at high and low rate of case detection. It shows that the presence of the re-infection parameter has 

very little effect on the number of the undetected infected human population. The undetected infected human population 

increases at varying rates of re-infection within the first 5 years and decreases slowly thereafter. Figure 5 shows the 

propagation of the detected infected human population at high and low case detection with varying re-infection rates. The 

detected cases of the infected human population at low rate of re-infection, unlike the propagation of the population at high 

detection rate, shows no significant difference as re-infection rate increases. The propagation of the treated human 

population is shown in Figure 6. The treated human population increases at high detection rate as the re-infection rate is 

varied and the detected cases of schistosomiasis increases up until the 15th year after which it begins to decline and then 

becomes asymptotically stable.  

 

5. Conclusion 

Schistosomiasis transmission and infection remains a threat to developing countries in the world. Detection of this disease 

performs a very significant role in treating and controlling the disease. In this work we have developed a mathematical 

model to examine the effect of case detection on the transmission dynamics of schistosomiasis, a very severe neglected 

tropical disease (NTD). This study presented a novel schistosomiasis population model by considering two infected classes: 

undetected class of infected human population and the detected class of infected human population. Another class is also 

introduced for the treatment of detected infected human population. The effective reproduction number ℜ0 = √ℜ0ℎℜ0𝑠 is 

obtained and the DFE of the formulated system was shown to be locally asymptotically stable (LAS) whenever the 

associated reproduction number is less than unity. Furthermore, the DFE of the system was shown to be globally 

asymptotically stable (GAS) with negligible re-infection rates when the corresponding reproduction number ℜ0 is less than 

unity. We established the case to have backward bifurcation and the GAS of the EEP.  

Numerical simulation results from the system (3) showed that a significant decrease in the schistosomiasis cases could be 

achieved in the population if there is an increase in the proportion of the detected human cases of schistosomiasis which are 

set for treatment immediately. It is obvious from the result of this work that schistosomiasis can be controlled in a 

population if the public health control programmes provide and implement strategies for detection as well as the timely 

treatment of a very large number of persons infected with schistosomiasis.It is also important to mention that continuous 

contact of the treated population with the infected water with cercaria is one of problem in eradicating the burden of 

schistosomiasis. Therefore an increase in the proportion of detected cases of schistosomiasis infection, treated as soon as 

possible, would reduce the cases of schistosomiasis and possibly eradicate the disease from the population. 
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