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Abstract 

 

A novel deterministic model for the transmission dynamics of schistosomiasis is 

designed and deployed to both qualitatively assess the role of the impact of re-infection 

on the population dynamics for schistosomiasis disease burden in the presence of 

intermediate stages of development of the pathogen responsible for the disease. The 

model is shown to undergo the backward bifurcation phenomenon due to the presence 

of the reduced re-infection parameter. A unique threshold for the reduced rate of re-

infection was also obtained. A special case of the model showed that the disease-free 

equilibrium was locally asymptotic stable in the absence of the reduced rate of re-

infection. 
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1. Introduction 

Schistosomiasis is an acute and chronic parasitic epidemic precipitated by Schistosoma spp which are blood flukes [1-7]. 

Global estimates reveal that at least 220.8 million persons required preventive treatment in 2017 [6-7]. Preventive medical 

care, which should be repeated over a number of years, will decrease and curtail morbidity [3-7]. About 78 countries have 

reported schistosomiasis outbreak worldwide [29-33]. People are infected during casual agricultural, domestic, 

occupational, and recreational activities, which bring them in direct contact with infested water [1, 3-7]. The absence of 

hygiene, coupled with play lifestyles of children of school age such as fishing or swimming in water infested, make them 

specifically vulnerable to infection [1, 3-7]. Schistosomiasis control focuses on reducing disease through periodic, large-

scale population treatment with praziquantel; a more comprehensive approach including potable water, adequate sanitation, 

and snail control would also reduce transmission [9-10]. However, preventive chemotherapy for schistosomiasis, where 

people and communities are targeted for large-scale treatment, is only required in 52 endemic countries with moderate-to-

high transmission [3-7]. 

Generally, several authors have developed mathematical models for investigating schistosomiasis disease dynamics with 

different questions in mind which have enriched the literature [8-31], and in particular, Qi et al.  [27] investigated the effect 

of re-infection on schistosomiasis dynamics amongst other issues of interest. 

It is evident, from the foregoing, that the several mathematical models have been developed to analyze schistosomiasis 

infection but none has looked at the possibility of the impact of the intermediate stages of development of the Schistosoma 

spp on the burden of the disease in the population in the presence of re-infection of individuals treated for the disease, to the 

best of the authors’ knowledge. 

Hence, we propose a new mathematical model to provide insight into schistosomiasis dynamics with the impact of the 

reduced re-infection of individuals treated for the disease, incorporating the intermediate stages (cercariae and miracidia, 

respectively) of development of the pathogen responsible. The paper is organized as follows: Section 2 contains the model 

formulation. The qualitative mathematical analysis is done in Sections 3 while Section 4 gives the conclusion. 
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Table 1: Model variables and their definitions 

 Variables Description 

𝑆𝐻  Susceptible human population 

𝐸𝐻𝑆  Human population exposed to schistosomiasis 

𝐼𝐻𝑆  Human population infected with schistosomiasis 

𝑇𝐻𝑆  Human population treated for schistosomiasis 

𝐿  Miracidia (parasite larvae just after hatching from the eggs) population   

𝑆𝑆  Susceptible snail population 

𝐼𝑆  Snail population infected with miracidia in the aquatic environment 

𝐽  Cercariae (larvae in the water that penetrates the human skin) population 

 

Table 2: Model parameters and their definitions 

Parameter Description 

𝛬𝐻  Human recruitment rate 

𝜇𝐻  Natural death rate of humans 

𝜓  Reduced rate of infection with schistosomiasis 

𝛼1  Progression rate from latently to actively infected with schistosomiasis 

𝛬𝑆  Recruitment rate for snail population 

𝜇𝑆  Snail mortality rate 

𝜖  Limitation of the growth velocity 

𝐿0  Saturation constant for the miracidia 

𝛽𝐿  Miracidial infection rate 

𝑁𝑒  Number of eggs secreted by humans 

𝛾  Rate at which eggs successfully become miracidia 

𝜇𝐿  Miracidial death rate 

𝜙  Cercarial production rate 

𝐽0  Saturation constant for the cercariae 

𝛽𝐽  Cercarial infection rate 

𝜇𝐽  Cercarial death rate 

 

The purpose of this current study is to mathematically (i.e., theoretically) investigate the impact of re-infection on the 

population dynamics for schistosomiasis disease burden in the presence of intermediate stages of development of the 

pathogen responsible for the disease. 

In this study, in Section 2, a novel mathematical model is formulated to investigate the effect of re-infection on the 

dynamics of schistosomiasis at population level; important thresholds governing the disease dynamics are obtained and the 

local and global asymptotic stabilities of equilibria are established. Section 3 concludes the paper. 

 

2.0 Model Formulation 

The total human population at time t, denoted by 𝑁𝐻(𝑡), is split into the mutually exclusive compartments of susceptible to 

infections (𝑆𝐻(𝑡)), exposed to schistosomiasis (𝐸𝐻𝑆(𝑡)), infected with schistosomiasis (𝐼𝐻𝑆(𝑡)), treated for schistosomiasis 

(𝑇𝐻𝑆(𝑡)), individuals so that 

𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻𝑆(𝑡) + 𝐼𝐻𝑆(𝑡) + 𝑇𝐻𝑆(𝑡). 
Similarly, the entire snail population in the freshwater environment at time t, given by 𝑁𝑆(𝑡), is broken down into the 

mutually exclusive compartments of susceptible snails (𝑆𝑆(𝑡)) and snails penetrated with miracidia (𝐼𝑆(𝑡)), where 

𝑁𝑆(𝑡) = 𝑆𝑆(𝑡) + 𝐼𝑆(𝑡). 
The miracidia and cercariae population at the different stages in the life-cycle of the Schistosoma spp are depicted by 𝐿(𝑡) 

and 𝐽(𝑡) compartments respectively. 

 

The model is the following deterministic system of eight non-linear ordinary differential equations (the parameters of the 

model are tabulated in Table 2): 
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𝑆𝐻

′ = 𝛬𝐻 − 𝜆𝐽𝑆𝐻 − 𝜇𝐻𝑆𝐻 ,

𝐸𝐻𝑆
′ = 𝜆𝐽(𝑆𝐻 + 𝜓𝑇𝐻𝑆) − (𝛼1 + 𝜇𝐻)𝐸𝐻𝑆,

𝐼𝐻𝑆
′ = 𝛼1𝐸𝐻𝑆 − (𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝐼𝐻𝑆 ,

𝑇𝐻𝑆
′ = 𝜁𝑆𝐼𝐻𝑆 − 𝜓𝜆𝐽𝑇𝐻𝑆 − 𝜇𝐻𝑇𝐻𝑆,

𝐿′ = 𝑁𝑒𝛾𝐼𝐻𝑆 − 𝜇𝐿𝐿,

𝑆𝑆
′ = 𝛬𝑆 − 𝜆𝐿𝑆𝑆 − 𝜇𝑆𝑆𝑆,

𝐼𝑆
′ = 𝜆𝐿𝑆𝑆 − 𝜇𝑆𝐼𝑆,

𝐽′ = 𝜙𝐼𝑆 − 𝜇𝐽𝐽.

                                                          (2.1) 

where the force of infection associated with schistosomiasis (following penetration by cercariae) and snail penetration by 

miracidia respectively are given below: 

𝜆𝐽 =
𝛽𝐽𝐽(𝑡)

𝐽0 + 𝜖𝐽(𝑡)
,                                                                                              (2.2)  

                         

 

 

   𝜆𝐿 =
𝛽𝐿𝐿(𝑡)

𝐿0 + 𝜖𝐿(𝑡)
.                                                                                      (2.3)       

 

 

2.1 Positivity and Boundedness of Solutions 

Theorem 2.1: Let the basic data for the tuberculosis-schistosomiasis co-infection model be given as 𝑆𝐻(0) > 0, 𝐸𝐻𝑆(0) >
0, 𝐼𝐻𝑆(0) > 0, 𝑇𝐻𝑆(0) > 0, 𝐿(0) > 0, 𝑆𝑆(0) > 0, 𝐼𝑆(0) > 0 and 𝐽(0) > 0. Then the orbits 

(𝑆𝐻(𝑡), 𝐸𝐻𝑆(𝑡), 𝐼𝐻𝑆(𝑡), 𝑇𝐻𝑆(𝑡), 𝐿(𝑡), 𝑆𝑆(𝑡), 𝐼𝑆(𝑡), 𝐽(𝑡)) of the model with positive basic conditions, will continue to be 

positive for all time 𝑡 > 0. 

Proof: Let 𝑡1 = sup{𝑡 > 0: 𝑆𝐻(0) > 0,  𝐸𝐻𝑆(0) > 0,  𝐼𝐻𝑆(0) > 0,  𝑇𝐻𝑆(0) > 0,  𝐿(0) > 0,  𝑆𝑆(0) > 0,  𝐼𝑆(0) > 0,  𝐽(0) >
0}. Consider the first equation of model  (2.1), given below as 
𝑑𝑆𝐻(𝑡)

𝑑𝑡
= 𝛬𝐻 − (𝜆𝐽 + 𝜇𝐻)𝑆𝐻(𝑡),                                                                    (2.4)  

which can be re-expressed as 

𝑑

𝑑𝑡
[𝑆𝐻(𝑡)exp{𝜇𝐻𝑡 + ∫ 𝜆𝐽

𝑡

0

(𝜏) 𝑑𝜏}]

≥ 𝛬𝐻exp {𝜇𝐻𝑡 + ∫ 𝜆𝐽

𝑡

0

(𝜏)𝑑𝜏}.            (2.5) 

 

𝑆𝐻(𝑡1)exp{𝜇𝑡1 + ∫ 𝜆𝐽

𝑡1

0

(𝜏) 𝑑𝜏} − 𝑆𝐻(0)

≥ ∫ 𝛬𝐻

𝑡1

0

[exp {𝜇𝐻𝑦 + ∫ 𝜆𝐽

𝑦

0

(𝜏)𝑑𝜏}] 𝑑𝑦,   2.6) 

 

So that, 

𝑆𝐻(𝑡1) ≥ 𝑆𝐻(0)exp [−𝜇𝐻𝑡1 − ∫ 𝜆𝐽

𝑡1

0

(𝜏)𝑑𝜏]

+[exp{−𝜇𝐻𝑡1 − ∫ 𝜆𝐽

𝑡1

0

(𝜏)𝑑𝜏}]

× ∫ 𝛬𝐻

𝑡1

0

[exp {𝜇𝐻𝑦 + ∫ 𝜆𝐽

𝑦

0

(𝜏)𝑑𝜏}] 𝑑𝑦 > 0.            (2.7) 

 

Hence, 𝑆𝐻(𝑡) > 0,  ∀ 𝑡 > 0. 
Similarly, considering the second equation of model (2.1), given below as 

    
𝑑𝐸𝐻𝑆(𝑡)

𝑑𝑡
= 𝜆𝐽(𝑆𝐻(𝑡) + 𝜓𝑇𝐻𝑆(𝑡)) − (𝛼1 + 𝜇𝐻)𝐸𝐻𝑆(𝑡),                             (2.8)  

It follows from  (2.8)  above that 

 
𝑑𝐸𝐻𝑆(𝑡)

𝑑𝑡
≥ −(𝛼1 + 𝜇𝐻)𝐸𝐻𝑆(𝑡),                                                                              (2.9)  

which can be re-expressed as 
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𝑑

𝑑𝑡
[𝐸𝐻𝑆(𝑡)exp{(𝛼1 + 𝜇𝐻)𝑡}] ≥ 0.                                                                  (2.10)    

Thus, integrating  (2.10)  with respect to 𝑡 ∈ [0, 𝑡1], we obtain 

𝐸𝐻𝑆(𝑡1)exp{(𝛼1 + 𝜇𝐻)𝑡1} − 𝐸𝐻𝑆(0) ≥ 0,                                                     (2.11)  
So that, 

𝐸𝐻𝑆(𝑡1) ≥ 𝐸𝐻𝑆(0)exp{−(𝛼1 + 𝜇𝐻)𝑡1} > 0.                                                 (2.12)  
Hence,   𝐸𝐻𝑆(𝑡) > 0,  ∀ 𝑡 > 0. 
Similarly, considering the third equation of model  (2.1), given below as 
𝑑𝐼𝐻𝑆(𝑡)

𝑑𝑡
= 𝛼1𝐸𝐻𝑆(𝑡) − (𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝐼𝐻𝑆(𝑡),                                          (2.13)  

It follows from  (2.13)  above that 
𝑑𝐼𝐻𝑆(𝑡)

𝑑𝑡
≥ −(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝐼𝐻𝑆(𝑡),                                                                (2.14)  

which can be re-expressed as 
𝑑

𝑑𝑡
[𝐼𝐻𝑆(𝑡)exp{(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝑡}] ≥ 0.                                                         (2.15)  

Thus, integrating  (2.15)  with respect to 𝑡 ∈ [0, 𝑡1], we obtain 

𝐼𝐻𝑆(𝑡1)exp{(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝑡1} − 𝐼𝐻𝑆(0) ≥ 0,                                            (2.16)  
So that, 

𝐼𝐻𝑆(𝑡1) ≥ 𝐼𝐻𝑆(0)exp{−(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝑡1} > 0.                                        (2.17)  
Hence, 𝐼𝐻𝑆(𝑡) > 0,  ∀ 𝑡 > 0. 
Similarly, considering the fourth equation of model (2.1), given below as 
𝑑𝑇𝐻𝑆(𝑡)

𝑑𝑡
= 𝜁𝑆𝐼𝐻𝑆(𝑡) − 𝜓𝜆𝐽𝑇𝐻𝑆(𝑡) − 𝜇𝐻𝑇𝐻𝑆(𝑡),                                    (2.18)  

It follows from above that 
𝑑𝑇𝐻𝑆(𝑡)

𝑑𝑡
≥ −𝜓𝜆𝐽𝑇𝐻𝑆(𝑡) − 𝜇𝐻𝑇𝐻𝑆(𝑡),                                                        (2.19)  

which can be re-expressed as 

𝑑

𝑑𝑡
[𝑇𝐻𝑆(𝑡)exp{𝜇𝐻𝑡 + ∫ 𝜓

𝑡

0

𝜆𝐽(𝜏)𝑑𝜏}] ≥ 0.                                               (2.20)  

Thus, integrating   (2.20)  with respect to 𝑡 ∈ [0, 𝑡1], we obtain 

𝑇𝐻𝑆(𝑡1)exp {𝜇𝐻𝑡1 + ∫ 𝜓
𝑡1

0

𝜆𝐽(𝜏)𝑑𝜏} − 𝑇𝐻𝑆(0) ≥ 0,                              (2.21) 

So that, 

𝑇𝐻𝑆(𝑡1) ≥ 𝑇𝐻𝑆(0)exp {−𝜇𝐻𝑡1 − ∫ 𝜓
𝑡1

0

𝜆𝐽(𝜏)𝑑𝜏} > 0.                         (2.22) 

Hence, 𝑇𝐻𝑆(𝑡) > 0,  ∀ 𝑡 > 0. 
Similarly, considering the fifth equation of model (2.1), given below as 
𝑑𝐿(𝑡)

𝑑𝑡
= 𝑁𝑒𝛾𝐼𝐻𝑆 − 𝜇𝐿𝐿,                                                                        (2.23) 

It follows from above that 
𝑑𝐿(𝑡)

𝑑𝑡
≥ −𝜇𝐿𝐿(𝑡),                                                                                   (2.24) 

which can be re-expressed as 
𝑑

𝑑𝑡
[𝐿(𝑡)exp{𝜇𝐿𝑡}] ≥ 0.                                                                         (2.25) 

Thus, integrating (2.25) with respect to 𝑡 ∈ [0, 𝑡1], we obtain 

𝐿(𝑡1)exp{𝜇𝐿𝑡1} − 𝐿(0) ≥ 0,                                                               (2.26) 

So that, 

𝐿(𝑡1) ≥ 𝐿(0)exp{−𝜇𝐿𝑡1} > 0.                                                           (2.27) 

Hence, 𝐿(𝑡) > 0,  ∀ 𝑡 > 0. 
Similarly, considering the sixth equation of model (2.1), given below as 
𝑑𝑆𝑆(𝑡)

𝑑𝑡
= 𝛬𝑆 − 𝜆𝐿𝑆𝑆 − 𝜇𝑆𝑆𝑆,                                                                        (2.28) 
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which can be re-expressed as 

𝑑

𝑑𝑡
[𝑆𝑆(𝑡)exp{𝜇𝑆𝑡 + ∫ 𝜆𝐿

𝑡

0

(𝜏)𝑑𝜏}]

≥ 𝛬𝑆exp {𝜇𝑆𝑡 + ∫ 𝜆𝐿

𝑡

0

(𝜏)𝑑𝜏}.                     (2.29)

 

Thus, integrating with respect to 𝑡 ∈ [0, 𝑡1], we obtain 

𝑆𝑆(𝑡1)exp{𝜇𝑆𝑡1 + ∫ 𝜆𝐿

𝑡1

0

(𝜏)𝑑𝜏} − 𝑆𝑆(0)

≥ ∫ 𝛬𝑆

𝑡1

0

[exp {𝜇𝑆𝑥 + ∫ 𝜆𝑙

𝑥

0

(𝜏)𝑑𝜏}] 𝑑𝑦,       (2.30)

 

So that, 

𝑆𝑆(𝑡1) ≥ 𝑆𝑆(0)exp [−𝜇𝑆𝑡1 − ∫ 𝜆𝐿

𝑡1

0

(𝜏)𝑑𝜏]

+[exp{−𝜇𝑆𝑡1 − ∫ 𝜆𝐿

𝑡1

0

(𝜏)𝑑𝜏}]

× ∫ 𝛬𝑆

𝑡1

0

[exp {𝜇𝑆𝑥 + ∫ 𝜆𝐿

𝑥

0

(𝜏)𝑑𝜏}] 𝑑𝑥 > 0.          (2.31)

 

Hence, 𝑆𝑆(𝑡) > 0,  ∀ 𝑡 > 0. 
Similarly, considering the seventh equation of model (2.1) , given below as 

 
𝑑𝐼𝑆(𝑡)

𝑑𝑡
= 𝜆𝐿𝑆𝑆(𝑡) − 𝜇𝑆𝐼𝑆(𝑡),                                                                         (2.32) 

It follows from  (2.32)  above that 

 
𝑑𝐼𝑆(𝑡)

𝑑𝑡
≥ −𝜇𝑆𝐼𝑆(𝑡),                                                                                           (2.33) 

which can be re-expressed as 
𝑑

𝑑𝑡
[𝐼𝑆(𝑡)exp{𝜇𝑆𝑡}] ≥ 0.                                                                                   (2.34) 

Thus, integrating (2.34) with respect to 𝑡 ∈ [0, 𝑡1], we obtain 

𝐼𝑆(𝑡1)exp{𝜇𝑆𝑡1} − 𝐼𝑆(0) ≥ 0,                                                                        (2.35) 

So that, 

𝐼𝑆(𝑡1) ≥ 𝐼𝑆(0)exp{−𝜇𝑆𝑡1} > 0.                                                                    (2.36) 

Hence,   𝐼𝑆(𝑡) > 0,  ∀ 𝑡 > 0. 
Finally, considering the eighth equation of model (2.1), given below as 
𝑑𝐽(𝑡)

𝑑𝑡
= 𝜙𝐼𝑆 − 𝜇𝐽𝐽,                                                                                      (2.37)  

It follows from (2.37)  above that 
𝑑𝐽(𝑡)

𝑑𝑡
≥ −𝜇𝐽𝐽(𝑡),                                                                                            (2.38) 

which can be re-expressed as 

 
𝑑

𝑑𝑡
[𝐽(𝑡)exp{𝜇𝐽𝑡}] ≥ 0.                                                                                 (2.39) 

Thus, integrating (2.39)  with respect to 𝑡 ∈ [0, 𝑡1], we obtain 

 𝐽(𝑡1)exp{𝜇𝐽𝑡1} − 𝐽(0) ≥ 0,                                                                       (2.40) 

So that, 

𝐽(𝑡1) ≥ 𝐽(0)exp{−𝜇𝐽𝑡1} > 0.                                                                   (2.41) 

Hence, 𝐽(𝑡) > 0,  ∀ 𝑡 > 0. 
     

Thus, we have established positivity for all the state variables in model for all time. 

We proceed to establish the boundedness of solutions to the model (2.1). 
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Theorem 2.2: Let (𝑆𝐻(𝑡), 𝐸𝐻𝑆(𝑡), 𝐼𝐻𝑆(𝑡), 𝑇𝐻𝑆(𝑡), 𝐿(𝑡), 𝑆𝑆(𝑡), 𝐼𝑆(𝑡), 𝐽(𝑡)) be trajectories of the system with initial conditions 

and the biological feasible region given by the set 𝒟1 = 𝒟𝐻 × 𝒟𝐿 × 𝒟𝑆 × 𝒟𝐽 ⊂ ℝ+
4 × ℝ+

1 × ℝ+
2 × ℝ+

1 ⊂ ℝ+
8 , where: 

𝒟𝐻 = {(𝑆𝐻 , 𝐸𝐻𝑆, 𝐼𝐻𝑆 , 𝑇𝐻𝑆) ∈ ℝ+
4 : 𝑁𝐻 ≤

𝛬𝐻

𝜇𝐻

}

𝒟𝐿 = {𝐿 ∈ ℝ+
1 : 𝐿 ≤

𝑁𝑒𝛾𝛬𝐻

𝜇𝐿𝜇𝐻

}

𝒟𝑆 = {(𝑆𝑆, 𝐼𝑆) ∈ ℝ+
2 : 𝑁𝑆 ≤

𝛬𝑆

𝜇𝑆

}

𝒟𝐽 = {𝐽 ∈ ℝ+
1 : 𝐽 ≤

𝜙𝛬𝑆

𝜇𝐽𝜇𝑆

}

 

is positively-invariant and attracts the entire positive trajectories of the model . 

Proof: Adding up the right flank of the vector field for the human population in (2.1), yields 
𝑑𝑁𝐻

𝑑𝑡
= 𝛬𝐻 − 𝜇𝐻𝑁 − 𝛿𝑆𝐼𝐻𝑆.                                                                      (2.42) 

From  (2.42), it ensues that 
𝑑𝑁𝐻

𝑑𝑡
≤ 𝛬𝐻 − 𝜇𝐻𝑁𝐻. Hence, 

𝑑𝑁𝐻

𝑑𝑡
≤ 0 if 𝑁𝐻(𝑡) ≥

𝛬𝐻

𝜇𝐻
. Employing a standard comparison theorem 

[32], we prove that 𝑁𝐻(𝑡) ≤ 𝑁𝐻(0)𝑒−𝜇𝐻𝑡 +
𝛬𝐻

𝜇𝐻
(1 − 𝑒−𝜇𝐻𝑡). In particular, if 𝑁𝐻(0) ≤

𝛬𝐻

𝜇𝐻
, thus 𝑁𝐻(𝑡) ≤

𝛬𝐻

𝜇𝐻
 for every 𝑡 > 0. 

Hence, the set 𝒟𝐻 is positively invariant. Moreover, if 𝑁𝐻(0) >
𝛬𝐻

𝜇𝐻
, then either the orbits enters the domain 𝒟𝐻 in finite 

time or 𝑁𝐻(𝑡) asymptotically advances towards 
𝛬𝐻

𝜇𝐻
 as 𝑡 → ∞. Thus, the domain 𝒟𝐻 attracts every trajectory in ℝ+

4 . 

𝑑𝐿

𝑑𝑡
= 𝑁𝑒𝛾𝐼𝐻𝑆 − 𝜇𝐿𝐿.                                                                               (2.43) 

From (2.43), which follows that 
𝑑𝐿

𝑑𝑡
≤

𝑁𝑒𝛾𝛬𝐻

𝜇𝐻
− 𝜇𝐿𝐿 since 𝑁𝐻 = 𝑆𝐻 + 𝐸𝐻𝑆 + 𝐼𝐻𝑆 + 𝑇𝐻𝑆 ≤

𝛬𝐻

𝜇𝐻
⇒ 𝐼𝐻𝑆 ≤

𝛬𝐻

𝜇𝐻
. Hence, 

𝑑𝐿

𝑑𝑡
≤ 0 if 

𝐿(𝑡) ≥
𝑁𝑒𝛾𝛬𝐻

𝜇𝐿𝜇𝐻
. Employing a standard comparison theorem [32], we prove that 𝐿(𝑡) ≤ 𝐿(0)𝑒−𝜇𝐿𝑡 +

𝑁𝑒𝛾𝛬𝐻

𝜇𝐿𝜇𝐻
(1 − 𝑒−𝜇𝐿𝑡). In 

particular, if 𝐿(0) ≤
𝑁𝑒𝛾𝛬𝐻

𝜇𝐿𝜇𝐻
, then 𝐿(𝑡) ≤

𝑁𝑒𝛾𝛬𝐻

𝜇𝐿𝜇𝐻
 for all 𝑡 > 0. Hence, the set 𝒟𝐿 is positively invariant. Moreover, if 𝐿(0) >

𝑁𝑒𝛾𝛬𝐻

𝜇𝐿𝜇𝐻
, then either the orbits enters the domain 𝒟𝐿 in finite time or 𝐿(𝑡) asymptotically approaches 

𝑁𝑒𝛾𝛬𝐻

𝜇𝐿𝜇𝐻
 as 𝑡 → ∞. Thus, 

the domain 𝒟𝐿 attracts every trajectory in ℝ+
1 . 

For the snail population, we add up the right flank of the vector field of the snail population in (2.1), which gives 
𝑑𝑁𝑆

𝑑𝑡
= 𝛬𝑆 − 𝜇𝑆𝑁𝑆.                                                                                (2.44) 

From (2.44), it ensues that 
𝑑𝑁𝑆

𝑑𝑡
≤ 0 if 𝑁𝑆(𝑡) ≥

𝛬𝑆

𝜇𝑆
. Consequently, 𝑁𝑆(𝑡) = 𝑁𝑆(0)𝑒−𝜇𝑆𝑡 +

𝛬𝑆

𝜇𝑆
(1 − 𝑒−𝜇𝑆𝑡). Then the 

limsup𝑡→∞𝑁𝑆(𝑡) =
𝛬𝑆

𝜇𝑆
. In particular, if 𝑁𝑆(0) ≤

𝛬𝑆

𝜇𝑆
, then 𝑁𝑆(𝑡) ≤

𝛬𝑆

𝜇𝑆
 for every 𝑡 > 0. Hence, the set 𝒟𝑆 is positively 

invariant. Moreover, if 𝑁𝑆(0) >
𝛬𝑆

𝜇𝑆
, then either the orbits enters the domain 𝒟𝑆 in finite time or 𝑁𝑆(𝑡) asymptotically 

approaches 
𝛬𝑆

𝜇𝑆
 as 𝑡 → ∞. Thus, the domain 𝒟𝑆 attracts every trajectory in ℝ+

2 . 

For the concentration of the cercariae, we consider the right flank of the vector field 𝐽 in (2.1), yields 
𝑑𝐽

𝑑𝑡
= 𝜙𝐼𝑆 − 𝜇𝐽𝐽.                                                                                     (2.45) 

From (2.45), 
𝑑𝐽

𝑑𝑡
= 𝜙𝐼𝑆 − 𝜇𝐽𝐽 which follows that 

𝑑𝐽

𝑑𝑡
≤

𝜙𝛬𝑆

𝜇𝑆
− 𝜇𝐽𝐽 since 𝑁𝑆 = 𝑆𝑆 + 𝐼𝑆 ≤

𝛬𝑆

𝜇𝑆
⇒ 𝐼𝑆 ≤

𝛬𝑆

𝜇𝑆
. Hence, 

𝑑𝐽

𝑑𝑡
≤ 0 if 

𝐽(𝑡) ≥
𝜙𝛬𝑆

𝜇𝐽𝜇𝑆
. Employing a standard comparison theorem [32], we prove that 𝐽(𝑡) ≤ 𝐽(0)𝑒−𝜇𝐽𝑡 +

𝜙𝛬𝑆

𝜇𝐽𝜇𝑆
(1 − 𝑒−𝜇𝐽𝑡). In 

particular, if 𝐽(0) ≤
𝜙𝛬𝑆

𝜇𝐽𝜇𝑆
, then 𝐽(𝑡) ≤

𝜙𝛬𝑆

𝜇𝐽𝜇𝑆
 for all 𝑡 > 0. Hence, the set 𝒟𝐽 is positively invariant. Moreover, if 𝐽(0) >

𝜙𝛬𝑆

𝜇𝐽𝜇𝑆
, 

then either the orbits enters the domain 𝒟𝐽 in finite time or 𝐽(𝑡) asymptotically approaches 
𝜙𝛬𝑆

𝜇𝐽𝜇𝑆
 as 𝑡 → ∞. 

Thus, the domain 𝒟𝐽 attracts every trajectory in ℝ+
1 . 

Therefore, it is sufficient to study the dynamics of the flows engendered by the model system in 𝒟. We conclude, therefore, 

that the model is together mathematically and epidemiologically well-posed. 
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3.0 Mathematical Analysis of the Model 

We proceed to qualitatively analyze the model (2.1). 

 

3.1  Local Asymptotic Stability (LAS) of the Disease-free Equilibrium (DFE) 

The model system has a disease-free equilibrium (DFE) given by 
ℰ0 = (𝑆𝐻

∗ , 𝐸𝐻𝑆
∗ , 𝐼𝐻𝑆

∗ , 𝑇𝐻𝑆
∗ , 𝐿∗, 𝑆𝑆

∗, 𝐼𝑆
∗, 𝐽∗)

= (
𝛬𝐻

𝜇𝐻

, 0,0,0,0,
𝛬𝑆

𝜇𝑆

, 0,0)                                                                            (3.1)
 

The linear stability of ℰ0 is established by deploying the next-generation operator method on the model system [26]. 

Deploying specific notations as espoused by [33], it follows that matrices F and V, respectively, for the fresh infection 

terms and the other transition terms, are given by 

𝐹 =

[
 
 
 
 
 0 0 0 0

𝛽𝐽𝛬𝐻

𝐽0𝜇𝐻

0 0 0 0 0

0 0 0
𝛽𝐿𝛬𝑆

𝐿0𝜇𝑆
0

0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 

   and   𝑉 =

[
 
 
 
 
(𝛼1 + 𝜇𝐻) 0 0 0 0

−𝛼1 (𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻) 0 0 0
0 0 𝜇𝑆 0 0
0 −𝑁𝑒𝛾 0 −𝜇𝐿 0
0 0 −𝜙 0 𝜇𝐽]

 
 
 
 

. 

It ensues that effective reproduction number, denoted by  ℛ𝐻𝑆 = 𝜌(𝐹𝑉−1), is denoted by 

ℛ𝐻𝑆 = √
𝛼1𝛽𝐽𝛽𝐿𝛬𝐻𝛬𝑆𝜙𝑁𝑒𝛾

𝐽0𝐿0𝜇𝐻𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)

                                     (3.2) 

where 𝜌(𝐹𝑉−1) is the spectral radius belonging to the matrix 𝐹𝑉−1. Consequently, the result below stems from the 

conclusion of Theorem 2 in [33]. 

Lemma 3.1: The DFE ℰ0 of is locally asymptotically stable on the condition that ℛ𝐻𝑆 < 1 and unstable on the condition 

that ℛ𝐻𝑆 > 1. 

The threshold quantity,ℛ𝐻𝑆, is the effective reproduction number of the disease [33-34]. It is a measure of the mean number 

of secondary schistosomiasis infections engendered by a typical infected human in a completely exposed population or at 

the DFE [33-34]. The epidemiological connotation of Lemma 3.1 implies that whenever ℛ𝐻𝑆 is less than one, 

schistosomiasis can be annihilated from the populace if the basic (initial) sizes of the classes of the model system (2.1) are 

in the basin of attraction of the infection-free equilibrium ℰ0. Thus, a small arrival of schistosomiasis-infected humans into 

the populace will not engender enormous schistosomiasis outbreaks, with the resultant effect of the disease dying out over 

time. 

 

3.2 Analysis of the Effective Reproduction Number, 𝓡𝑯𝑺 

Utilizing the threshold parameter, ℛ𝐻𝑆, we wish to determine the effect of the medical care rate (𝜁𝑆) of humans occupying 

the infectious class on the control of schistosomiasis in the population. 

Calculating the partial derivatives of ℛ𝐻𝑆 with respect to the parameter under scrutiny (𝜁𝑆 ) further exposes the 

consequence of this parameter on schistosomiasis regulation among the populace. This implies 

𝜕ℛ𝐻𝑆
2

𝜕𝜁𝑆

= −
𝛼1𝛽𝐽𝛽𝐿𝛬𝐻𝛬𝑆𝜙𝑁𝑒𝛾

𝐽0𝐿0𝜇𝐻𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)2

< 0                          (3.3) 

Apparently, it ensues from (3.3) that the partial derivative is negative, unconditionally. Thus, effective medical care rate of 

schistosomiasis at the phase of infection will exert a positive consequence in decreasing the burden of schistosomiasis 

among the populace, regardless of the rates of the other parameters in the expression on the right flank of (3.3). It is 

obvious from (3.2)  that 

lim
𝜁𝑆→∞

ℛ𝐻𝑆 = 0                                                                                                       (3.4) 

From (3.4), a near complete annihilation of schistosomiasis is feasible. In this situation, an effective strategy will be to pay 

close attention to medical care programmes for infected humans. 

Lemma 3.2: Effective treatment rate (𝜁𝑆) for the infectious phase of infection will exert a positive influence in decreasing 

the schistosomiasis hardship in a populace, regardless of the rates of the other parameters that constitute the effective 

reproduction number. 

 

3.3 Endemic Equilibrium Point (EEP) 

Let the endemic equilibrium point, ℰ𝑆
∗, of the system is defined by 

ℰ𝑆
∗ = (𝑆𝐻

∗∗,  𝐸𝐻𝑆
∗∗ ,  𝐼𝐻𝑆

∗∗ ,  𝑇𝐻𝑆
∗∗ ,  𝐿∗∗,  𝑆𝑆

∗∗,  𝐼𝑆
∗∗,  𝐽∗∗)                                              (3.5) 
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where 

𝑆𝐻
∗∗ =

𝛬𝐻

𝜆𝐽
∗∗ + 𝜇𝐻

,

𝐸𝐻𝑆
∗∗ =

𝛬𝐻(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝜆𝐽
∗∗(𝜓𝜆𝐽

∗∗ + 𝜇𝐻)

(𝜆𝐽
∗∗ + 𝜇𝐻)[(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)(𝜓𝜆𝐽

∗∗ + 𝜇𝐻) − 𝛼1𝜁𝑆𝜓𝜆𝐽
∗∗]

,

𝐼𝐻𝑆
∗∗ =

𝛼1𝛬𝐻𝜆𝐽
∗∗(𝜓𝜆𝐽

∗∗ + 𝜇𝐻)

(𝜆𝐽
∗∗ + 𝜇𝐻)[(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)(𝜓𝜆𝐽

∗∗ + 𝜇𝐻) − 𝛼1𝜁𝑆𝜓𝜆𝐽
∗∗]

,

𝑇𝐻𝑆
∗∗ =

𝛼1𝛬𝐻𝜁𝑆𝜆𝐽
∗∗(𝜓𝜆𝐽

∗∗ + 𝜇𝐻)

(𝜓𝜆𝐽
∗∗ + 𝜇𝐻)(𝜆𝐽

∗∗ + 𝜇𝐻)[(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)(𝜓𝜆𝐽
∗∗ + 𝜇𝐻) − 𝛼1𝜁𝑆𝜓𝜆𝐽

∗∗]
,     (3.6)

𝐿∗∗ =
𝛼1𝛬𝐻𝑁𝑒𝛾𝜆𝐽

∗∗(𝜓𝜆𝐽
∗∗ + 𝜇𝐻)

𝜇𝐿(𝜆𝐽
∗∗ + 𝜇𝐻)[(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)(𝜓𝜆𝐽

∗∗ + 𝜇𝐻) − 𝛼1𝜁𝑆𝜓𝜆𝐽
∗∗]

,

𝑆𝑆
∗∗ =

𝛬𝑆

𝜆𝐿
∗∗ + 𝜇𝑆

,

𝐼𝑆
∗∗ =

𝛬𝑆𝜆𝐿
∗∗

𝜇𝑆(𝜆𝐿
∗∗ + 𝜇𝑆)

,

𝐽∗∗ =
𝛬𝑆𝜙𝜆𝐿

∗∗

𝜇𝐽𝜇𝑆(𝜆𝐿
∗∗ + 𝜇𝑆)

.

 

The forces of infection, respectively, are: 

𝜆𝐽
∗∗ =

𝛽𝐽𝐽
∗∗

𝐽0 + 𝜖𝐽∗∗
,                                                                                                                               (3.7)   

and 

𝜆𝐿
∗∗ =

𝛽𝐿𝐿
∗∗

𝐿0 + 𝜖𝐿∗∗
.                                                                                                                                 (3.8) 

Substituting the value for 𝐽∗∗ in (3.6) into (3.7), the force of infection for cercarial penetration becomes: 

𝜆𝐽
∗∗ =

𝛽𝐽𝛬𝑆𝜙𝜆𝐿
∗∗

𝐽0𝜇𝐽𝜇𝑆(𝜆𝐿
∗∗ + 𝜇𝑆) + 𝜖𝛬𝑆𝜙𝜆𝐿

∗∗ ,                                                                                              (3.9) 

while substituting the value for 𝐿∗∗ into (3.8), the force of infection for miracidial penetration becomes: 

𝜆𝐿
∗∗ =

𝛼1𝛽𝐿𝛬𝐻𝑁𝑒𝛾𝜆𝐽
∗∗(𝜓𝜆𝐽

∗∗ + 𝜇𝐻)

𝐿0𝜇𝐿(𝜆𝐽
∗∗ + 𝜇𝐻)[(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)(𝜓𝜆𝐽

∗∗ + 𝜇𝐻) − 𝛼1𝜁𝑆𝜓𝜆𝐽
∗∗] + 𝜖𝛼1𝛬𝐻𝑁𝑒𝛾𝜆𝐽

∗∗ .      (3.10) 

Substituting (3.10) into (3.9) and after several algebraic manipulations and simplifications, it is shown that the EEP 

associated with the system (2.1)  satisfies the polynomial (expressed as a function of 𝜆𝐽
∗∗) 

𝜆𝐽
∗∗(𝐴22(𝜆𝐽

∗∗)2 + 𝐴11𝜆𝐽
∗∗ + 𝐴00) = 0.                                                                                         (3.11) 

Now, 
𝜆𝐽

∗∗ = 0                                                                                                                                             (3.12) 

or 

𝐴22(𝜆𝐽
∗∗)2 + 𝐴11𝜆𝐽

∗∗ + 𝐴00 = 0.                                                                                                  (3.13) 

where 

𝐴00 = 𝐽0𝐿0𝜇𝐻
2 𝜇𝐽𝜇𝐿𝜇𝑆

2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)(1 − ℛ𝐻𝑆
2 ),

𝐴11 = 𝜖𝛼1𝛽𝐿𝛬𝐻𝛬𝑆𝑁𝑒𝛾𝜇𝐻 + 𝐽0𝜇𝐻𝜇𝐽𝜇𝑆𝛼1𝑁𝑒𝛾(𝛽𝐿 + 𝜖𝛬𝐻𝜇𝑆)

     +𝐽0𝐿0𝜇𝐻𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)

     +𝜓𝐽0𝐿0𝜇𝐻𝜇𝐽𝜇𝐿𝜇𝑆
2𝛼1(𝛿𝑆 + 𝜇𝐻)

     +𝜓𝐽0𝐿0𝜇𝐻
2 𝜇𝐽𝜇𝐿𝜇𝑆

2(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻) − 𝜓𝛼1𝛽𝐽𝛽𝐿𝛬𝐻𝛬𝑆𝑁𝑒𝛾𝜙

𝐴22 = 𝜓(𝜖𝛼1𝛽𝐿𝛬𝐻𝛬𝑆𝑁𝑒𝛾𝜙 + 𝐽0𝜇𝐽𝜇𝑆𝛼1𝑁𝑒𝛾(𝛽𝐿 + 𝜖𝛬𝐻𝜇𝑆)

     +𝐽0𝐿0𝛼1𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛿𝑆 + 𝜇𝐻) + 𝐽0𝐿0𝜇𝐻𝜇𝐽𝜇𝐿𝜇𝑆

2(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻))

                              (3.14) 

The components of the EEP are obtained when we solve for 𝜆𝐽
∗∗ from the polynomial given in (3.13). Thus, we substitute 

the values obtained for 𝜆𝐽
∗∗ into (3.6). The above result is captured in the theorem below. 

Theorem 3.3: The model system has: 
1. two endemic equilibria on the assumption that 𝐴11 < 0, 𝐴00 > 0 and ℛ𝐻𝑆 < 1, 

2. one unique endemic equilibrium on the assumption that 𝐴11 > 0,𝐴00 < 0 or 𝐴11 < 0,𝐴00 < 0 and ℛ𝐻𝑆 > 1, 

3. nil endemic steady state otherwise, whenever ℛ𝐻𝑆 < 1. 
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It is significant to mention, at this juncture, that item (1) of Theorem 3.3 (above) is indicative of the presence of backward bifurcation in 

the model . The backward bifurcation phenomenon is pronounced as a consequence of the co-existence of an infection-free state as well 

as an endemic steady state that are both stable at whatever time the corresponding reproduction number is less than one. This, therefore, 

implies that the standard condition required for disease control (ℛ𝐻𝑆 < 1) is not any more sufficient for effectively regulating 

schistosomiasis among the populace, although it remains a necessary condition. In such a scenario, effective strategies for 

schistosomiasis control will now have to be based on the basic conditions of different compartments of the model system under 

consideration [2]. We observe that the EEP of the model (2.1) possesses a unique endemic equilibrium point when ℛ𝐻𝑆 > 1 (and does 

not have an EEP whenever ℛ𝐻𝑆 < 1, and hence no possibility of a backward bifurcation when ℛ𝐻𝑆 < 1). 

 

3.4 Backward Bifurcation Analysis 

Theorem 3.4: The model (2.1) experiences backward bifurcation at ℛ𝐻𝑆 = 1 whenever 𝜓 > 𝜓𝑐 , with 𝜓𝑐  expressed as 

𝜓𝑐 =
𝜈2𝑊44 + 𝜈7𝑊55

𝜈2𝑊66

> 0,                                                                                              (3.15) 

and 

𝑊44 = 𝛽𝐽
∗𝜙(𝐽0𝐿0𝜇𝐽𝜇𝐿𝜇𝑆

2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻) + 𝜖𝛼1𝛽𝐿𝛬𝐻𝛬𝑆𝜙𝑁𝑒𝛾),

𝑊55 = 𝐽0
2𝛼1𝜇𝐻𝜇𝐽

2𝜇𝑆
2𝑁𝑒𝛾(𝛽𝐿 + 𝜖𝜇𝑆),

𝑊66 = 𝐽0𝐿0𝛼1𝛽𝐽
∗𝜁𝑆𝜙𝜇𝐽𝜇𝐿𝜇𝑆

2.

        (3.16) 

Proof: We employ the ensuing alteration of variables. Let 𝑆𝐻 = 𝑥1, 𝐸𝐻𝑆 = 𝑥2, 𝐼𝐻𝑆 = 𝑥3, 𝑇𝐻𝑆 = 𝑥4, 𝐿 = 𝑥5, 𝑆𝑆 = 𝑥6, 𝐼𝑆 =
𝑥7 and 𝐽 = 𝑥8, so that 𝑁𝐻 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4; hence the model (2.1) is re-written as 

�̇�1 ≡ 𝑓1 = 𝛬𝐻 −
𝛽𝐽𝑥1𝑥8

𝐽0 + 𝜖𝑥8

− 𝜇𝐻𝑥1,

�̇�2 ≡ 𝑓2 =
𝛽𝐽𝑥1𝑥8

𝐽0 + 𝜖𝑥8

(𝑥1 + 𝜓𝑥4) − (𝛼1 + 𝜇𝐻)𝑥2,

�̇�3 ≡ 𝑓3 = 𝛼1𝑥2 − (𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝑥3,

�̇�4 ≡ 𝑓4 = 𝜁𝑆𝑥3 − 𝜓
𝛽𝐽𝑥4𝑥8

𝐽0 + 𝜖𝑥8

− 𝜇𝐻𝑥4,

�̇�5 ≡ 𝑓5 = 𝑁𝑒𝛾𝑥3 − 𝜇𝐿𝑥5,

�̇�6 ≡ 𝑓6 = 𝛬𝑆 −
𝛽𝐿𝑥5𝑥6

𝐿0 + 𝜖𝑥5

− 𝜇𝑆𝑥6,

�̇�7 ≡ 𝑓7 =
𝛽𝐿𝑥5𝑥6

𝐿0 + 𝜖𝑥5

− 𝜇𝑆𝑥7,

�̇�8 ≡ 𝑓8 = 𝜙𝑥7 − 𝜇𝐽𝑥8.

                                                     (3.17) 

The Jacobian for the system (3.16) at the DFE is given by 

𝐽𝛽𝐽
∗ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 −𝜇𝐻 0 0 0 0 0 0 −

𝛽𝐽𝛬𝐻

𝐽0𝜇𝐻

0 −(𝛼1 + 𝜇𝐻) 0 0 0 0 0
𝛽𝐽𝛬𝐻

𝐽0𝜇𝐻

0 𝛼1 −(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻) 0 0 0 0 0
0 0 𝜁𝑆 −𝜇𝐻 0 0 0 0
0 0 𝑁𝑒𝛾 0 −𝜇𝐿 0 0 0

0 0 0 0 −
𝛽𝐿𝛬𝑆

𝐿0𝜇𝑆
−𝜇𝑆 0 0

0 0 0 0
𝛽𝐿𝛬𝑆

𝐿0𝜇𝑆
0 −𝜇𝑆 0

0 0 0 0 0 0 𝜙 −𝜇𝐽 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

  (3.18) 

Consider the case when ℛ𝐻𝑆 = 1. Working out the value for 𝛽𝐽 = 𝛽𝐽
∗ from ℛ𝐻𝑆 = 1 gives 

𝛽𝐽 = 𝛽𝐽
∗ =

𝐽0𝐿0𝜇𝐻𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)

𝛼1𝛽𝐿𝛬𝐻𝛬𝑆𝜙𝑁𝑒𝛾
                                   (3.18) 

Matrix 𝐽𝛽𝐽
∗ possesses a right eigenvector given by 𝐰 = (𝜔1, 𝜔2, . . . , 𝜔8)

𝑇, such that 
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𝜔1 = −
(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝜔3

𝛼1𝜇𝐻

, 𝜔2 =
(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝜔3

𝛼1

,

𝜔3 = 𝜔3 > 0,𝜔4 =
𝜁𝑆𝜔3

𝜇𝐻

, 𝜔5 =
𝑁𝑒𝛾𝜔3

𝜇𝐿

, 𝜔6 = −
𝛽𝐿𝛬𝑆𝑁𝑒𝛾𝜔3

𝐿0𝜇𝐿𝜇𝑆
2 ,

𝜔7 =
𝛽𝐿𝛬𝑆𝑁𝑒𝛾𝜔3

𝐿0𝜇𝐿𝜇𝑆
2 , 𝜔8 =

𝛽𝐿𝛬𝑆𝜙𝑁𝑒𝛾𝜔3

𝐿0𝜇𝐽𝜇𝐿𝜇𝑆
2 ,

         (3.19) 

In addition, 𝐽𝛽𝐽
∗ possesses a left eigenvector 𝐯 = (𝜈1, 𝜈2, . . . . , 𝜈8) satisfying 𝐯.𝐰 =  𝟏, with 

𝜈1 = 0, 𝜈2 =
𝛼1𝜈3

𝛼1 + 𝜇𝐻

, 𝜈3 = 𝜈3 > 0, 𝜈4 = 0,

𝜈5 =
(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝜈3

𝑁𝑒𝛾
, 𝜈6 = 0,

𝜈7 =
𝐿0𝜇𝐿𝜇𝑆(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝜈3

𝛽𝐿𝛬𝑆𝑁𝑒𝛾
,

𝜈8 =
𝐿0𝜇𝐿𝜇𝑆

2(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝜈3

𝛽𝐿𝛬𝑆𝜙𝑁𝑒𝛾
.

                                            (3.20) 

Applying the Center Manifold Theory as espoused by [35], we calculate the related non-zero partial derivatives of the right 

flanks of the transformed system (3.16), (appraised in the absence of infection with 𝛽𝐽 = 𝛽𝐽
∗) that the related bifurcation 

coefficients, 𝑎 and 𝑏, are given by 

𝑎 = ∑ 𝑣𝑘

𝑛

𝑘,𝑖,𝑗=1

𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗

(0,0), and 𝑏 = ∑ 𝑣𝑘

𝑛

𝑘,𝑖=1

𝑤𝑖

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽∗
(0,0),    (3.21) 

The related non-zero partial derivatives for bifurcation coefficient 𝑎 for the model system (3.16) (or (2.1) ) are: 

𝜕2𝑓2

𝜕𝑥1𝜕𝑥8

=
𝛽𝐽

∗

𝐽0
=

𝜕2𝑓2

𝜕𝑥8𝜕𝑥1

,

𝜕2𝑓2

𝜕𝑥4𝜕𝑥8

=
𝜓𝛽𝐽

∗

𝐽0
=

𝜕2𝑓2

𝜕𝑥8𝜕𝑥4

,

𝜕2𝑓2

𝜕𝑥8
2 = −

2𝜖𝛽𝐽
∗𝛬𝐻

𝐽0
2𝜇𝐻

,                                                                               (3.22)

𝜕2𝑓7

𝜕𝑥5
2 = −

2𝜖𝛽𝐿𝛬𝑆

𝐿0
2𝜇𝑆

,

𝜕2𝑓7

𝜕𝑥5𝜕𝑥6

=
𝛽𝐿

𝐿0

=
𝜕2𝑓7

𝜕𝑥6𝜕𝑥5

.

 

It ensues from the above expressions, (after several algebraic calculations), that 

𝑎 = 𝑣2 ∑ 𝑤𝑖

8

𝑖,𝑗=1

𝑤𝑗

𝜕2𝑓2

𝜕𝑥𝑖𝜕𝑥𝑗

+ 𝑣7 ∑ 𝑤𝑖

8

𝑖,𝑗=1

𝑤𝑗

𝜕2𝑓7

𝜕𝑥𝑖𝜕𝑥𝑗

                                                    

=
2𝛽𝐿𝛬𝑆𝑁𝑒𝛾𝜈2𝜔3

2

𝐿0
2𝜇𝐿

2𝜇𝑆
2

[𝜓𝑊11] −
2𝛽𝐿𝛬𝑆𝑁𝑒𝛾𝜔3

2

𝐿0
2𝜇𝐿

2𝜇𝑆
2

[𝜈2𝑊22 + 𝜈7𝑊33].        (3.23)

 

where 

𝑊11 =
𝐿0𝛽𝐽

∗𝜁𝑆𝜙𝜇𝐿

𝐽0𝜇𝐻𝜇𝐽

,

𝑊22 =
𝜙(𝐽0𝐿0𝛽𝐽

∗𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻) + 𝜖𝛼1𝛽𝐽

∗𝛽𝐿𝛬𝐻𝛬𝑆𝜙𝑁𝑒𝛾)

𝐽0
2𝛼1𝜇𝐻𝜇𝐽

2𝜇𝑆
2 , (3.24)

𝑊33 = 𝑁𝑒𝛾(𝛽𝐿 + 𝜖𝜇𝑆).

 

Hence, 𝑎 > 0 implies that 

2𝛽𝐿𝛬𝑆𝑁𝑒𝛾𝜈2𝜔3
2

𝐿0
2𝜇𝐿

2𝜇𝑆
2

[𝜓𝑊11] >
2𝛽𝐿𝛬𝑆𝑁𝑒𝛾𝜔3

2

𝐿0
2𝜇𝐿

2𝜇𝑆
2

[𝜈2𝑊22 + 𝜈7𝑊33].                           (3.25) 
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That is, 𝜓 > 𝜓𝑐 > 0, where 

𝜓𝑐 =
𝜈2𝑊44 + 𝜈7𝑊55

𝜈2𝑊66

                                                                                              (3.26) 

where 

𝑊44 = 𝛽𝐽
∗𝜙(𝐽0𝐿0𝜇𝐽𝜇𝐿𝜇𝑆

2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻) + 𝜖𝛼1𝛽𝐿𝛬𝐻𝛬𝑆𝜙𝑁𝑒𝛾),

𝑊55 = 𝐽0
2𝛼1𝜇𝐻𝜇𝐽

2𝜇𝑆
2𝑁𝑒𝛾(𝛽𝐿 + 𝜖𝜇𝑆),

𝑊66 = 𝐽0𝐿0𝛼1𝛽𝐽
∗𝜁𝑆𝜙𝜇𝐽𝜇𝐿𝜇𝑆

2.

(3.27) 

The related non-zero partial derivative for bifurcation coefficient 𝑏 for the model system (3.16) (or (2.1)) is: 

𝜕2𝑓2

𝜕𝑥8𝜕𝛽𝐽
∗ =

𝛬𝐻

𝐽0𝜇𝐻

.                                                                                                       (3.28) 

It ensues also from that 

𝑏 = 𝑣2 ∑𝑤𝑖

8

𝑖=1

𝜕2𝑓2

𝜕𝑥𝑖𝜕𝛽𝐽
∗ ,

= 𝜈2𝜔8 [
𝛬𝐻

𝐽0𝜇𝐻

]                                                                                               (3.29)

 

Obviously 𝑏 > 0 for all biologically reasonable parameter values. Thus, backward bifurcation appearers if and only if the 

rate of reduced re-infection (𝜓), is large enough such that 𝑎 > 0. This, therefore, implies that if the reduced re-infection 

rate is less than the quantity, 𝜓𝑐 , the effective reproduction number then becomes a necessary and sufficient tool for 

promoting control measures that will lead to disease eradication. 

Consequent upon the results obtained in Theorem 3.4 above, we claim the following result. 

Theorem 3.5: (Non-existence of backward bifurcation) The model  (2.1) (or (3.16)) does not experience backward 

bifurcation in the direction ℛ𝐻𝑆 = 1, whenever 𝜓 = 0. 

Proof: Consider the distinctive case of the model (2.1) with negligible reduced re-infection (i.e., 𝜓 = 0). Then the 

backward bifurcation coefficient, 𝑎, in (3.23) reduces to: 

𝑎 = −
2𝛽𝐿𝛬𝑆𝑁𝑒𝛾𝜔3

2

𝐿0
2𝜇𝐿

2𝜇𝑆
2

[𝜈2𝑊22 + 𝜈7𝑊33] < 0.                                                  (3.30) 

Thus, this study has confirmed that the existence of reduced re-infection activates backward bifurcation in the epidemic 

dynamics of schistosomiasis. 

 

3.5 Global Asymptotic Stability (GAS) of DFE 

Consider the special case of the model (2.1)  with 𝜓 = 0 (i.e., removing the parameter that causes backward bifurcation as 

discussed above). In this case, the model reduces to 
𝑆𝐻

′ = 𝛬𝐻 − 𝜆𝐽𝑆𝐻 − 𝜇𝐻𝑆𝐻 ,

𝐸𝐻𝑆
′ = 𝜆𝐽𝑆𝐻 − (𝛼1 + 𝜇𝐻)𝐸𝐻𝑆,

𝐼𝐻𝑆
′ = 𝛼1𝐸𝐻𝑆 − (𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝐼𝐻𝑆 ,

𝑇𝐻𝑆
′ = 𝜁𝑆𝐼𝐻𝑆 − 𝜇𝐻𝑇𝐻𝑆,

𝐿′ = 𝑁𝑒𝛾𝐼𝐻𝑆 − 𝜇𝐿𝐿,

𝑆𝑆
′ = 𝛬𝑆 − 𝜆𝐿𝑆𝑆 − 𝜇𝑆𝑆𝑆,

𝐼𝑆
′ = 𝜆𝐿𝑆𝑆 − 𝜇𝑆𝐼𝑆,

𝐽′ = 𝜙𝐼𝑆 − 𝜇𝐽𝐽.

                                                             (3.31) 

We claim the following result. 

The DFE of the model (3.31), without re-infection (i.e., 𝜓 = 0) is GAS in 𝒟1 if ℛ𝐻𝑆 ≤ 1 and unstable on the condition that 

ℛ𝐻𝑆 > 1. 
Proof: Consider the following Lyapunov function 

𝒰 = 𝐾1𝐸𝐻𝑆 + 𝐾2𝐼𝐻𝑆 + 𝐾3𝐼𝑆 + 𝐾4𝐿 + 𝐾5𝐽,                 (3.32) 

where 

  𝐾1 =
𝛼1𝛽𝐿𝛬𝑆𝜙𝑁𝑒𝛾

𝐿0𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛼1+𝜇𝐻)(𝜁𝑆+𝛿𝑆+𝜇𝐻)

, 𝐾2 =
𝛽𝐿𝛬𝑆𝜙𝑁𝑒𝛾

𝐿0𝜇𝐽𝜇𝐿𝜇𝑆
2(𝜁𝑆+𝛿𝑆+𝜇𝐻)

,

𝐾3 =
ℛ𝐻𝑆𝜙

𝜇𝐽𝜇𝑆
, 𝐾4 =

𝛽𝐿𝛬𝑆𝜙

𝐿0𝜇𝐽𝜇𝐿𝜇𝑆
2 , and 𝐾5 =

ℛ𝐻𝑆

𝜇𝐽
,

           (3.33)  
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with Lyapunov derivatives (where a dot represents a time derivative) 

�̇� = 𝐾1 �̇�𝐻𝑆 + 𝐾2 �̇�𝐻𝑆 + 𝐾3 �̇�𝑆 + 𝐾4 �̇� + 𝐾5 �̇� .                                           (3.34)  

Substituting the right hand side of model (3.31) into (3.34) gives 

�̇� = 𝐾1𝜆𝐽𝑆𝐻 + [𝛼1𝐾2 − (𝛼1 + 𝜇𝐻)𝐾1]𝐸𝐻𝑆

+[𝑁𝑒𝛾𝐾4 − (𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)𝐾2]𝐼𝐻𝑆

+[𝜙𝐾5 − 𝜇𝑆𝐾3]𝐼𝑆
−𝜇𝐿𝐾4𝐿

−𝜇𝐽𝐾5𝐽,                                                                                    

=
𝛼1𝛽𝐿𝛬𝑆𝜙𝑁𝑒𝛾

𝐿0𝜇𝐽𝜇𝐿𝜇𝑆
2(𝛼1 + 𝜇𝐻)(𝜁𝑆 + 𝛿𝑆 + 𝜇𝐻)

[(
𝛽𝐽𝐽

𝐽0 + 𝜖𝐽
)𝑆𝐻] − ℛ𝐻𝑆𝐽

 +
ℛ𝐻𝑆𝜙

𝜇𝐽𝜇𝑆

[(
𝛽𝐿𝐿

𝐿0 + 𝜖𝐿
) 𝑆𝑆] − (

𝛽𝐿𝛬𝑆𝜙

𝐿0𝜇𝐽𝜇𝑆
2) 𝐿.                                           (3.35)

 

At DFE, 𝑆𝐻 ≤ 𝛬𝐻/𝜇𝐻, 𝑆𝑆 ≤ 𝛬𝑆/𝜇𝑆 and 𝜖 = 0. Hence 

∴ �̇� ≤ ((
𝛽𝐿𝛬𝑆𝜙

𝐿0𝜇𝐽𝜇𝑆
2)𝐿 + ℛ𝐻𝑆𝐽)[ℛ𝐻𝑆 − 1].                                                    (3.36) 

Hence, �̇� ≤ 0 whenever ℛ𝐻𝑆 ≤ 1 with �̇� = 0 if and only if 𝐿 = 𝐽 = 0. Hence, 𝒰 represents a Lyapunov function in 𝒟1. 

Therefore, it ensues from LaSalle’s Invariance Principle [36] that: 

(𝐸𝐻𝑆(𝑡), 𝐼𝐻𝑆(𝑡), 𝐼𝑆(𝑡), 𝐿(𝑡), 𝐽(𝑡)) → (0,0,0,0,0) as 𝑡 → ∞.              (3.37) 

Consequently, every orbit of the equations of the model (3.31), with 𝜓 = 0, approaches the DFE of the model (3.31), as 

𝑡 → ∞ for ℛ𝐻𝑆 ≤ 1. 

This result shows that in a population where there is treatment for active schistosomiasis cases, on the condition that there 

is negligible re-infection, that is, 𝜓 = 0, the DFE will be GAS whenever ℛ𝐻𝑆 ≤ 1. Hence, schistosomiasis can be 

annihilated from the populace whenever ℛ𝐻𝑆 ≤ 1, irrespective of the basic sizes of the sub-populations. 

 

3.6 Global Asymptotic Stability (GAS) of EEP 

Assume that the stable manifold of the DFE of the model system (3.31) is 
𝒟0 = {(𝑆𝐻 , 𝐸𝐻𝑆 , 𝐼𝐻𝑆, 𝑇𝐻𝑆, 𝐿, 𝑆𝑆, 𝐼𝑆, 𝐽) ∈ 𝒟1: 𝐸𝐻𝑆 = 𝐼𝐻𝑆 = 𝑇𝐻𝑆 = 𝐿 = 𝐼𝑆 = 𝐽 = 0}. 
We claim the following result. 

Theorem 3.6: The unique EEP, ℰ𝑆
∗, of model (3.31) with 𝜓 = 0 is globally asymptotically stable in 𝒟1 ∖ 𝒟0 at any time 

ℛ𝐻𝑆 > 1. 

Proof: Consider also, the ensuing non-linear Lyapunov function 

𝒬 = 𝑆𝐻 − 𝑆𝐻
∗∗ln(

𝑆𝐻

𝑆𝐻
∗∗) + 𝐸𝐻𝑆 − 𝐸𝐻𝑆

∗∗ ln(
𝐸𝐻𝑆

𝐸𝐻𝑆
∗∗ ) + 𝑅1(𝐼𝐻𝑆 − 𝐼𝐻𝑆

∗∗ ln
𝐼𝐻𝑆

𝐼ℎ
∗∗ )

+𝑅2(𝑇𝐻𝑆 − 𝑇𝐻𝑆
∗∗ ln

𝑇𝐻𝑆

𝑇𝐻𝑆
∗∗) + 𝑅3(𝐿 − 𝐿∗∗ln

𝐿

𝐿∗∗
) + 𝑆𝑆 − 𝑆𝑆

∗∗ln(
𝑆𝑆

𝑆𝑆
∗∗)

+𝐼𝑆 − 𝐼𝑆
∗∗ln (

𝐼𝑆
𝐼𝑆
∗∗) + 𝑅4 (𝐽 − 𝐽∗∗ln

𝐽

𝐽∗∗
),                                                     (3.38)

 

Where 

𝑅1 =
𝛼1+𝜇𝐻

𝛼1
, 𝑅2 = 0, 𝑅3 =

(𝛼1+𝜇𝐻)(𝜁𝑆+𝛿𝑆+𝜇𝐻)

𝛼1𝑁𝑒𝛾
, 𝑅4 =

𝜇𝑆

𝜙
.                 (3.39) 

𝒬 has Lyapunov derivatives, given as 

�̇� = (1 −
𝑆𝐻

∗∗

𝑆𝐻

) �̇�𝐻 + (1 −
𝐸𝐻𝑆

∗∗

𝐸𝐻𝑆

) �̇�𝐻𝑆 + 𝑅1(1 −
𝐼𝐻𝑆
∗∗

𝐼𝐻𝑆

) �̇�𝐻𝑆 + 𝑅2(1 −
𝑇𝐻𝑆

∗∗

𝑇𝐻𝑆

) 𝑇𝐻𝑆
̇

+𝑅3 (1 −
𝐿∗∗

𝐿
) �̇� + (1 −

𝑆𝑆
∗∗

𝑆𝑆

) 𝑆𝑆
̇ + (1 −

𝐼𝑆
∗∗

𝐼𝑆
) �̇�𝑆 + 𝑅4 (1 −

𝐽∗∗

𝐽
) �̇� .      (3.40)

 

Substituting the right flanks of the equations in model (3.31) corresponding to �̇�𝐻, �̇�𝐻𝑆, �̇�𝐻𝑆, �̇�𝐻𝑆, �̇�, �̇�𝑆, �̇�𝑆, �̇� into (3.40), after several 

algebraic calculations gives: 
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�̇� = 𝜇𝐻𝑆𝐻
∗∗(2 −

𝑆𝐻
∗∗

𝑆𝐻
−

𝑆𝐻

𝑆𝐻
∗∗)

+𝜆𝐽
∗∗𝑆𝐻

∗∗(4 −
𝑆𝐻

∗∗

𝑆𝐻
−

𝐸𝐻𝑆𝐼𝐻𝑆
∗∗

𝐸𝐻𝑆
∗∗ 𝐼𝐻𝑆

−
𝐼𝐻𝑆𝐿

∗∗

𝐼𝐻𝑆
∗∗ 𝐿

−
𝑆𝑆𝐼𝑆

∗∗𝐿

𝑆𝑆
∗∗𝐼𝑆𝐿

∗∗
)

+𝜇𝑆𝑆𝑆
∗∗(2 −

𝑆𝑆
∗∗

𝑆𝑆
−

𝑆𝑆

𝑆𝑆
∗∗)

+𝜇𝑆𝐼𝑆
∗∗(2 −

𝐼𝑆𝐽
∗∗

𝐼𝑆
∗∗𝐽

−
𝑆𝐻𝐸𝐻𝑆

∗∗ 𝐽

𝑆𝐻
∗∗𝐸𝐻𝑆𝐽

∗∗)

+𝜆𝐿
∗∗𝑆𝑆

∗∗ (1 −
𝑆𝑆

𝑆𝑆
∗∗).                                                                                  (3.41)

 

For as much as the arithmetic mean exceeds the geometric mean, the ensuing inequalities hold 

2 −
𝑆𝐻

∗∗

𝑆𝐻
−

𝑆𝐻

𝑆𝐻
∗∗ ≤ 0, 2 −

𝑆𝑆
∗∗

𝑆𝑆
−

𝑆𝑆

𝑆𝑆
∗∗ ≤ 0, 2 −

𝐼𝑆𝐽
∗∗

𝐼𝑆
∗∗𝐽

−
𝑆𝐻𝐸𝐻𝑆

∗∗ 𝐽

𝑆𝐻
∗∗𝐸𝐻𝑆𝐽

∗∗ ,

4 −
𝑆𝐻

∗∗

𝑆𝐻
−

𝐸𝐻𝑆𝐼𝐻𝑆
∗∗

𝐸𝐻𝑆
∗∗ 𝐼𝐻𝑆

−
𝐼𝐻𝑆𝐿

∗∗

𝐼𝐻𝑆
∗∗ 𝐿

−
𝑆𝑆𝐼𝑆

∗∗𝐿

𝑆𝑆
∗∗𝐼𝑆𝐿

∗∗ ≤ 0, 1 −
𝑆𝑆

𝑆𝑆
∗∗ ≤ 0.

      (3.42) 

Thus,  �̇� ≤ 0  whenever  ℛ𝐻𝑆 > 1. 

Since the relevant variables in the equation of 𝐼𝐻𝑆 is at the endemic equilibrium, they can be supplanted into the equations representing 

𝐼𝐻𝑆 in the model (3.31) so that 

𝐼𝐻𝑆(𝑡) → 𝐼𝐻𝑆
∗∗  as 𝑡 → ∞. 

Therefore, 𝒬 represents a Lyapunov function in 𝒟1\𝒟0. 

This result shows that in a population where schistosomiasis is endemic, if 𝜓 = 0, the EEP will be globally asymptotically stable (GAS) 

whenever ℛ𝐻𝑆 > 1. Hence, schistosomiasis will persist in the population regardless of the initial magnitudes of the sub-populations 

whenever ℛ𝐻𝑆 > 1. 

 

4.0 Conclusion 

A new mathematical model to theoretically investigate the role of the impact of reduced re-infection on the population dynamics for 

schistosomiasis disease burden in the presence of intermediate stages of development of the pathogen responsible for the disease in a 

given population was developed in this work. The model was shown to undergo the backward bifurcation phenomenon due to the 

presence of the reduced re-infection parameter. This implies that as long as there is re-infection of the population with schistosomiasis, 

the disease will remain endemic in the given population. A unique threshold for the reduced rate of re-infection was also obtained. A 

special case of the model showed that the disease-free equilibrium was locally asymptotic stable in the absence of the reduced rate of re-

infection. 
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