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Abstract 
 

This paper examines and analyses the vibrations of a particle situated in a dihedral 

potential and subjected to dual frequency forcing. Based on the method of separation 

of time scales, the response amplitude of the particle at low-frequency (LF) is 

theoretically derived. It is found that a close agreement exists between the theoretical 

prediction and numerical simulation. The presence of externally applied electric field 

could be optimized to promote large amplitude multiple vibrational resonances. 
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1. Introduction 

For many years, noise was widely understood to constitute a nuisance in a system, mainly due to its capabilities to distort 

signal processing. However, in 1981 a remarkable turning point occurred when Benzi et al. [1] demonstrated the positive 

influence of noise in enhancing weak signal. This breakthrough popularly known as stochastic resonance (SR) reported in 

Ref. [1] has attracted the attention of many researchers and has remained a subject of intense research focus in recent time 

[2–8]. About two decades later, it was demonstrated numerically by Landa and McClintock [9] that when the noisy input in 

SR framework is replaced with appropriate high frequency (HF) harmonic force field, a related phenomenon termed 

vibrational resonance (VR) occurred [9]; and was later analysed theoretically [10]. Following these pioneering works, the 

phenomenon of VR has been experimentally demonstrated in physical systems such as bistable and multistable vertical-

cavity surface-emitting lasers (VCSELs) [11–13].  

Some studies on VR have shown that enhancement in the system’s response takes place at the bifurcation of effective 

potential of slow motion of the system. For this purpose, research attentions have been focused on the possible roles played 

by the system’s bifurcation parameters [14–16], nonlinear dissipation [17–19], fractional order [20–22], and delay [23–25] 

on the generation and suppression of VR. Recently [26], it was also shown that system’s parameters can be modified to 

control the depth and location of wells in the system’s potential as a means of enhancing VR in quintic oscillators. Very 

recently, research efforts have proven that VR can be induced in time-delayed fractional order quintic oscillator system 

when the fractional order term is varied, and the bifurcation point changes periodically as the time delay is varied 

progressively [22]. In some very recent reports, we have proved the existence of response amplification induced by 

deformation in an asymmetric deformed potential [27] as well as the possibility of roughness-induced resonances in a rough 

potential [28]. In the quantum domain, VR is also being explored in quantum mechanical oscillators, such as the Tietz Hua 

potential well, in which quantum VR was demonstrated theoretically and numerically [29]. 

Despite the huge body of knowledge outlined in the previous works, we note that non has been devoted to systems 

modelled by united atom model - a class of systems consisting of bounded and unbounded potentials [30–32]. One of the 

bounded potentials describing the united atom model is the dihedral potential which has been studied extensively [32,33]. 

For example, in complex medium such as polymers, the potential has been explored on a molecular level to examine 

polymer crystallisation under quiescent conditions as well as large deformations [32, 34–38]. In addition, the potential find 

numerous applications in organic electronics for organic light emitting diodes, organic solar cells as well as in organic and 

inorganic substances at atomic levels and other scientific and engineering applications [See Ref. [39] and the references 

therein]. Recently, Nicholson and Rutledge [33], employed dihedral potential to examine flow induced crystallization of 

linear polymer chains comprising 1000 polymers. The dihedral potential has been studied and shown to be useful from  
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scientific and technologic point of views. In particular, in the polymer processing, its understanding is vital for industrial 

production of materials with desired mechanical, optical and thermal properties.  

Thus, we investigate nonlinear response in the framework of vibrational resonance when a particle moving the dihedral 

potential is subjected to dual frequency driving forces. Moreover, we derived analytical expression of response amplitude 

for the values of systems inherent parameters at which VR occurs. Our analytical result is validated with numerical 

experiments, showing that both are consistent. The paper also reports the occurrence of multiple resonance peaks with 

variation in the fast motion parameters.  

The rest of this paper is structured as follows: In section 2, the proposed model is presented. Section 3 is focused on the 

theoretical analyses for the occurrence of VR. In section 4 the results obtained from the numerical experiments are 

discussed. The paper is summarized and conclusions drawn in section 5. 

 

2. The Model and its dynamics 

In this paper, we examined VR in an oscillator modelled by dihedral potential [33]. The equation of motion for a particle 

biharmonically driven by two widely varying frequencies (𝜔 ≪ Ω) in the potential may be written as follows: 

𝜙̈ + 𝑏𝜙̇ +
𝑑𝑢(𝜙)

𝑑𝜙
= 𝑓 𝑐𝑜𝑠( 𝜔𝑡) + 𝑔 𝑐𝑜𝑠( 𝛺𝑡),        (1)   

where 𝑏 is the damping coefficient, 𝒰(𝜙) is the dihedral potential, 𝑓𝑐𝑜𝑠(𝜔𝑡)  and 𝑔𝑐𝑜𝑠(Ω𝑡) are respectively low-input 

signal and high-input signal with frequency 𝜔 ≪ Ω. The potential of system (1) is given by: 

𝒰(𝜙) =
1

2
[𝛾1(1 − 𝑐𝑜𝑠 𝜙) + 𝛾2(1 − 𝑐𝑜𝑠 2 𝜙) + 𝛾3(1 − 𝑐𝑜𝑠 3 𝜙)],     (2) 

where 𝛾𝑖(i = 1, 2, 3) are the dihedral specific force field parameters. The potential, 𝒰(𝜙) against  𝜙 is shown in Figure 1. 

The following parameters were chosen: 𝑏 = 0.5 𝛾1 = 1.6, 𝛾2 = −0.867, 𝛾3 = 3.24; and 𝜔 = 2. The equilibrium point of the 

unforced system has three minima located at (0, ±2) around which oscillatory motion of the driven particle takes place.  

 

 
Fig. 1 (Colour online) The potential of system (1) against 𝜙 with the following parameters: 𝑏 = 0.5, 𝛾1  = 1.6, 𝛾2 = −0.867, 

𝛾3  = 3.24; and 𝜔 = 2 

The shape of potential depends only on three parameters (𝛾1, 𝛾2, and 𝛾3) which is different from quintic oscillator in which 

the shape of the potential depends on four parameters( 𝜔2
0 , 𝛽, 𝜉, 𝑎𝑛𝑑 𝛾) [22].  

In order to examine the stability of fixed points of the system in the absence of external forcing, equation (1) can be 

expressed as two coupled autonomous ordinary differential equations (ODEs) in the form: 

                                                       

       

    (3) 

 

 

 

The equilibrium points of system (3) are found by solving the following system of equations with parameters taken as  𝑏 =
0.5, 𝛾1  = 1.6, 𝛾2 = −0.867, 𝛾3  = 3.24: 

 

 

    (4) 

 

 

By linearizing the system, it yields the Jacobian matrix: 

, 

              (5) 
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where 𝐾 = −
1

2
(𝛾1 𝑐𝑜𝑠 𝜙1 + 4𝛾2 𝑐𝑜𝑠 2 𝜙1 + 9𝛾3 𝑐𝑜𝑠 3 𝜙1). The characteristics equation is given as  

 

.           

       

 

 

 

Considering equilibrium point 𝐸𝑎(0,0); the eigenvalues of  𝐽(𝐸𝑎) are computed as 𝜆1,2 = −0.2500 ± 3.6856𝑖. Thus 𝐸𝑎 is a 

stable focus. Also, for equilibrium point 𝐸𝑏(−2,2), the eigenvalues are computed as 𝜆1,2 = −0.2500 ± 3.8389𝑖. Thus 𝐸𝑏  is 

also a stable focus. For equilibrium point 𝐸𝑐(−1,1), the eigenvalues are computed as 𝜆1 = −3.9028 and 𝜆2 = 3.4028. 

Thus, 𝐸𝑐 is a saddle and therefore unstable. 𝐸𝑎(0,0), 𝐸𝑏(−2,2) and 𝐸𝑐(−1,1) re-affirm the equilibrium positions in Figure 

1. 

 

3. Theoretical Analysis 

In the following, VR would be analysed in system (1) (𝑓 ≪ 𝑔 𝑎𝑛𝑑 𝜔 ≪ Ω.) expressed in the form: 

𝜙̈ = −𝑏𝜙̇ −
1

2
(𝛾1 𝑠𝑖𝑛 𝜙 + 2𝛾2 𝑠𝑖𝑛 2 𝜙 + 3𝛾3 𝑠𝑖𝑛 3 𝜙) + 𝑓 𝑐𝑜𝑠( 𝜔𝑡) + 𝑔 𝑐𝑜𝑠( 𝛺𝑡). (6) 

Our aim is to derive and compute the response amplitude, 𝑄𝑎𝑛𝑎𝑙 as a function of the system’s parameter. Due to the action 

of the biharmonic force fields, 𝑓𝑐𝑜𝑠(𝜔𝑡) and 𝑔𝑐𝑜𝑠(Ω𝑡) with 𝜔 ≪ Ω, the motion of Eq. (3) consists of a slow motion and a 

fast motion. In this regard, the method of direct separation of motions described by Blekhman [40] and frequently used by 

many authors is employed for the analysis. This gives us a set of integro-differential equations consisting of slow motion of 

the system whose response can be modulated by adjusting the parameters of the high-frequency force field. Based on this 

method, the solution of Equation (3) is assumed to be comprised of a slow motion 𝜒(𝑡) with period Τ =  
2𝜋

𝜔
 and a fast 

motion 𝜓(𝑡, Ω𝑡) with period Τ =  
2𝜋

Ω
  i.e. 

𝜙(𝑡) = 𝜒 + 𝜓 .        (7) 

The mean value of the fast oscillatory signal 𝜓 with respect to fast time 𝜏 = Ω𝑡 is given by: 

𝜓 =
1

2𝜋
∫ 𝜓

2𝜋

0
𝑑𝜏 = 0 .        (8) 

Substituting equation (7) into equation (6), we have, 

𝜒̈ + 𝜓̈ + 𝑏𝜒̇ + 𝜆𝜓̇ +
1

2
(𝛾1 𝑠𝑖𝑛(𝜒 + 𝜓)) + (𝛾2 𝑠𝑖𝑛 2 (𝜒 + 𝜓)) +

3

2
(𝛾3 𝑠𝑖𝑛 3 (𝜒 + 𝜓)) = 𝑓 𝑐𝑜𝑠(𝜔𝑡) + 𝑔 𝑐𝑜𝑠(𝛺𝑡). 

          (9)  

We can express the function 𝑠𝑖𝑛(𝜒 + 𝜓) using trigonometry identity (i.e. 𝑠𝑖𝑛(𝜒 + 𝜓) = 𝑠𝑖𝑛𝜒 𝑐𝑜𝑠𝜓 + 𝑐𝑜𝑠𝜒 𝑠𝑖𝑛𝜓) and 

averaging Equation (9) w.r.t. fast motion component to obtain, 

𝜒̈ + 𝑏𝜒̇ +
1

2
𝛾1(𝑠𝑖𝑛 𝜒 𝑐𝑜𝑠 𝜓 + 𝑐𝑜𝑠 𝜒 𝑠𝑖𝑛 𝜓) + 𝛾2(𝑠𝑖𝑛 2 𝜒 𝑐𝑜𝑠 2 𝜓 + 𝑐𝑜𝑠 2 𝜒 𝑠𝑖𝑛 2 𝜓) +

3

2
𝛾3(𝑠𝑖𝑛 3 𝜒 𝑐𝑜𝑠 3 𝜓 +

𝑐𝑜𝑠 3 𝜒 𝑠𝑖𝑛 3 𝜓) = 𝑓 𝑐𝑜𝑠(𝜔𝑡).                                (10) 

Subtracting Equation (10) from Equation (9) yields 

𝜓̈ + 𝑏𝜓̇ +
1

2
𝛾1 (𝑠𝑖𝑛 𝜒 (𝑐𝑜𝑠 𝜓 − 𝑐𝑜𝑠 𝜓) + 𝑐𝑜𝑠 𝜒 (𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜓))

+ 𝛾2 (𝑠𝑖𝑛 2 𝜒(𝑐𝑜𝑠 2 𝜓 − 𝑐𝑜𝑠 2 𝜓) + 𝑐𝑜𝑠 2 𝜒(𝑠𝑖𝑛 2 𝜓 − 𝑠𝑖𝑛 2 𝜓)) 

+
3

2
𝛾3 (𝑠𝑖𝑛 3 𝜒(𝑐𝑜𝑠 3 𝜓 − 𝑐𝑜𝑠 3 𝜓) + 𝛾3 𝑐𝑜𝑠 𝜒 (𝑠𝑖𝑛 3 𝜓 − 𝑠𝑖𝑛 3 𝜓)) = 𝑔 𝑐𝑜𝑠(𝛺𝑡).      (11)     

Equations (10) and (11) are the required integro-differential equations of motion for the slow motion 𝜒 and the fast motion 

𝜓 respectively. Equation (10) is more important for this analysis because it is the equation of motion for the slow dynamics, 

which is expected to be modulated appropriately by changing the parameters of the fast signal in order to achieve 

vibrational resonance. Proceeding further, we impose inertia approximation  𝜓 ̈ ≫ 𝜓̇  ≫  𝜓 on Equation (11) so that 𝜓̈ =
𝑔 𝑐𝑜𝑠(𝛺𝑡) with the solution 

𝜓 = −
𝑔

𝛺2 𝑐𝑜𝑠 𝛺 𝑡.        (12) 

With 𝜓 in equation (12), we obtain the following mean values 
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 where 𝐽0 (
𝑔

Ω2) is the zeroth-order Bessel function of the first kind. 

Substituting solutions (13) into equation (10) gives 

2 30 0 0

31

2

2 3
sin sin 2 sin 3 cos( ) 0

2 2

3g g g
f tb J J J    
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
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By making the following substitutions 

1 0

22 0

33 0

1

2

3

2

2

3

2
3

g

g

g

C J

C J

C J






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 
 
 

 
 
 







        (15) 

in (14), we obtain 

1 2 3sin sin 2 sin 3 cos( )f tC C Cb          .    (16) 

Equation (16) can be treated as the equation of motion of a particle subjected to an external periodic force 𝑓𝑐𝑜𝑠(𝜔𝑡)   and 

linear damping in the effective potential, 𝒰𝑒𝑓𝑓( 𝜒), given as: 

 
2 3

1

cos 2 cos 3
cos .

2 3
eff

C C
CU

 
          (17) 

Figure 2 shows the plots of  𝒰𝑒𝑓𝑓( 𝜒)  against the slow motion component, χ for selected values of the amplitude of the 

high-frequency signal with fixed parameter values  𝛾1 = 1.6, 𝛾2 = −0.867, 𝛾3 = 3.24; 𝑎𝑛𝑑 𝜔 = 2. It is evident from Figure 3 

that the shape of effective potential depends on the parameters of the modulating signal. 

  
Fig. 2 (Colour online) The shape of effective potential against χ with the following parameters: 𝑏 = 0.5, 𝛾1 = 1.6, 𝛾2 = 

−0.867, 𝛾3= 3.24; 𝑎𝑛𝑑 𝜔 = 2  

By considering Equation (17), and Figure 2, the effective potential of the slow motion depends essentially on the 

parameters (g and Ω) of the fast motion. Therefore, by varying the parameter g (or  Ω) of the fast signal, appropriately, one 

can easily verify the appearance of resonances. It is obvious from Figure 2 that both the height and depth of the effective 

potential depends on the parameters of the modulating signal. This happens because the parameter (g or  Ω) dictates the 

equilibrium point of the slow dynamics which can be computed from equation (14) as 

3
1

2 2 20 0 02

2 3
sin sin 2 sin 0,

2 2

g g g
J J J

 
  

          
            

                      

    (18) 

thereby yielding a simple stable equilibrium at 𝜒∗ = 0 
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With  𝐽0 > 0, the minima of 𝒰𝑒𝑓𝑓( 𝜒)  are 𝜒∗
min = ±2nπ, n = 0, 1, 2, 3 . . . and the maxima are located at 𝜒∗

max = ±(2n + 1)π. 

The location of the minima and maxim are interchanged when the values of J0 changes. A slow oscillation occurs about the 

equilibrium point 𝜒∗. Thus, by perturbing the system about the equilibrium point, 𝜒∗ = 0, at which the motion takes place, 

δ = 𝜒 − 𝜒∗is introduced in (14) so that slow oscillation occurs and the motion is described by the following equation: 

𝛿̈ + 𝜒̈ ∗ +𝑏𝛿̇ + 𝑏𝜒̇ ∗ +𝐶1 (𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝜒 ∗ + 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 * ) + 𝐶2 (𝑠𝑖𝑛 2 𝛿 𝑐𝑜𝑠 2 * + 𝑐𝑜𝑠 2 𝛿 𝑠𝑖𝑛 2 * ) +

𝐶3 (𝑠𝑖𝑛 3 𝛿 𝑐𝑜𝑠 3 * + 𝑐𝑜𝑠 3 𝛿 𝑠𝑖𝑛 3 * ) = 𝑓 𝑐𝑜𝑠(𝜔𝑡) .     (19) 

By considering a small deviation from the equilibrium point, 𝜒∗ = 0, we can take 𝑠𝑖𝑛𝛿 ≈ 𝛿 , 𝑠𝑖𝑛2𝛿 ≈ 2𝛿 and 𝑠𝑖𝑛3𝛿 ≈ 3𝛿, 

so that at the equilibrium point we have 

𝛿̈ + 𝑏𝛿̇ + 𝐶1 𝛿 + 2𝐶2 𝛿 + 3𝐶3𝛿 = 𝑓 𝑐𝑜𝑠(𝜔𝑡).      (20) 

If 𝐽0 (
𝑔

Ω2)  > 0 (< 0). Then 𝜒∗ = 𝜒∗
min (𝜒∗

max). Therefore, 𝐽0 (
𝑔

Ω2)  𝑐𝑜𝑠𝜒∗ = |𝐽0 (
𝑔

Ω2) |. For  𝑓 ≪ 1, we assume that |𝛿| ≪  1 

and 𝑠𝑖𝑛𝛿 ≈ 𝛿. By neglecting nonlinear terms in Equation (20), we obtain a linearly damped-driven oscillator whose 

dynamics is written as: 

𝛿̈ + 𝑏𝛿̇ + 𝜔𝑟
2𝛿 = 𝑓 𝑐𝑜𝑠(𝜔𝑡).       (21) 

where 𝜔𝑟
2 =  𝐶1 + 2𝐶2 +  3𝐶3  is the resonant frequency. In the long time limit, the solution of Eq. (21) is 𝛿(𝑡)  =

 𝐴𝐿 𝑐𝑜𝑠(𝜔𝑡 +  𝜃) 𝑎𝑠 𝑡 → ∞  𝐴𝐿  is given as 

 𝐴𝐿 =
𝑓

[(𝜔𝑟2−𝜔2)2+𝑏2𝜔2]1 2⁄  .       (22) 

and the phase angle, 𝜃 is defined as: 

𝜃 = 𝑡𝑎𝑛−1 [
𝑏𝜔

𝜔2−𝜔𝑟2].        (23) 

In general, the response amplitude, 𝑄𝑎𝑛𝑎𝑙  of the system can be expressed as 

𝑄𝑎𝑛𝑎𝑙 =
𝐴𝐿

𝑓
=

1

[(𝜔𝑟2−𝜔2)2+𝑏2𝜔2]1 2⁄   .       (24) 

From Equation (24), resonance (i.e. maximum Qanal) can occur when S = 𝜔𝑟
2 − 𝜔2 is minimum (i.e.  𝜔𝑟 =  𝜔). In the 

numerical analysis that follows, the analytical computed response amplitude 𝑄𝑎𝑛𝑎𝑙 is compared with the corresponding 

numerical result obtained by solving Equation (3) directly. 

 

4 Numerical results and discussion 

In order to validate the theoretical result for response amplitude, 𝑄𝑎𝑛𝑎𝑙  in Eq. (24), presented in section 3 we performed 

numerical experiment by applying the fourth-order Runge-Kutta integration routine to integrate Equation (3) with step size 

∆𝑡 = 0.01 𝑇 over a simulation time interval 𝑇𝑠 = n 𝑇; 𝑇 = 
2𝜋

𝜔
 representing the period of the oscillation where ω is the low 

frequency input signal and positive integer n stands for number of complete oscillations. We use initial conditions (ϕ1, ϕ2) = 

(0, 0.5), a relaxation time of 20T and fixed the parameters of the system as 𝑏 = 0.5, f = 0.1, ω = 2, 𝛾1 = 1.6, 𝛾2 = −0.867, 𝛾3 

= 3.24 throughout the computation. The other parameters of the system are chosen within a regime where VR is optimized. 

We solved Equation (3) numerically and after discarding the transients, the numerically computed amplitude,  𝑄𝑛𝑢𝑚  was 

calculated from the Fourier spectrum of the output signal 𝜙(𝑡)with Fourier coefficients 𝑄𝑠 and 𝑄𝑐 based on the following 

expression 

𝑄𝑛𝑢𝑚 =
√𝑄𝑠

2+𝑄𝑐
2

𝑓
 ,         (25) 

with 𝑄𝑠 and 𝑄𝑐  being respectively defined as        

𝑄𝑠 =
2

𝑛𝑇
∫ 𝜑(𝑡) 𝑠𝑖𝑛 𝜔 𝑡𝑑𝑡

𝑛𝑇

0

 

𝑄𝑐 =
2

𝑛𝑇
∫ 𝜑(𝑡) 𝑐𝑜𝑠 𝜔 𝑡𝑑𝑡

𝑛𝑇

0
,                   (26)                                                                                                                                                                                                                                     

and 𝑇 = 
2𝜋

𝜔
, and n is a positive integer which should be very large to ensure the convergence of the solution. The 

numerically computed response amplitude, 𝑄𝑛𝑢𝑚   from Eq. (25) are then compared with the analytical ones, 𝑄𝑎𝑛𝑎𝑙   from 

Eq. (21) and shown in Figure 3. It is clear that the two results are consistent considering that the analytical calculations 

have been done based on approximations using the method of the separation of motion on two time scale - fast and slow 

motion - from which fast motion have been averaged out to obtain Equation (21) while the numerical integration of 

Equation (3) preserves all the time scales of the dynamics of the system. In Figure 3, the continuous lines represent the 

numerical response curve obtained from Equation (25) while the dash lines denote theoretical/analytical curve derived from 

Equation (21). 
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From Figure 3, it is obvious that in each of the sub-plots the number of peaks that appears for each plot is more than two, 

indicating the occurrence of multi-resonances. In addition, Figure 3 reveals that the response amplitude, Q reaches the peak 

when the frequency of slow motion is small. This is a confirmation of an important requirement for the manifestation of VR 

- that is   𝜔 ≪ Ω . However, there is a difference between the numerically computed response amplitude and the analytical 

ones. For example, when 𝜔 = 2.5 in Figure 3(d), the numerically computed response amplitude is about twice the analytical 

one in magnitude.  

The frequency response for different values of g or Ω is shown in Figure 4. The value of g or Ω impacts significantly on the 

frequency response curve. From Figure 4, it is obvious that as the amplitude of fast motion increases, the maximum 

response amplitude 𝑄𝑚𝑎𝑥  also increases. For instance, with g = 500, the response amplitude is approximately 2.8 while for 

g = 1750 the response amplitude becomes approximately 6.8. This implies that in practice one can adjust the parameters (g 

and/or Ω) of the high frequency forcing, appropriately, in order to achieve the desired frequency response or to avoid some 

frequency range. 

 

    

    
Fig. 3 (Colour online) Evolution of response amplitude, Q, versus amplitude of high signal, g with: (a) 𝜔 = 1.0; (b) 𝜔 = 1.5; 

(c) 𝜔 = 2.0 and (d) 𝜔 = 2.4 and other parameters fixed at 𝑏= 0.5, f = 0.1, ω = 2, 𝛾1 = 1.6, 𝛾2 = −0.867, 𝛾3  = 3.24. The 

continuous lines represent numerically generated 𝑄𝑛𝑢𝑚 from Eq. (23) while the broken lines represent the corresponding 

analytical values computed from Eq. (21) 

    
Fig. 4 (Colour online) Frequency response of the system with different values of g and Ω with other parameters fixed at  𝑏= 

0.5, f = 0.1, ω = 2, 𝛾1 = 1.6, 𝛾2 = −0.867, 𝛾3  = 3.24 
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5 Conclusion 

In this paper, we have examined the response of a particle subjected to bi-harmonic forcing in a dihedral potential. The 

dihedral potential with triple well is explored based on both analytical and numerical approaches. By applying vibrations 

mechanics principle in which the slow and fast motions are separated, we predicted the analytical linear response 

amplitude, indicating the occurrence of VR. It was found that variations in the parameters of the fast signal significantly 

impact the frequency response of the system and thus lead to the occurrence of multiple VR. Since the approach with low-

frequency force field modulated by a high-frequency one has applications in many scientific and technological fields [41-

43], we hope that the result presented in this paper would be of importance to these fields.  In particular, the presence of 

high-frequency carrier signal could be of great importance in the tunning the frequency of the power transmission systems 

in order to eradicate resonance, fundamental frequency should not fall within critical frequency range [44].    
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