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Abstract 

In this paper, ideas of the supersymmetric quantum mechanics (SUSYQ) has been 

used to obtain closed form analytical expression for bound state energy eigenvalues 

of the Tietz potential. The corresponding normalized eigenfunction was obtained by 

ansatz method. The Greene-Aldrich approximation model was used to deal with the 

centrifugal term of the effective potential energy function. Bound state energy 

eigenvalues were calculated for arbitrary rotational and vibrational quantum 

numbers, the results obtained are in excellent agreement with existing data for bound 

state eigen energies of the Tietz potential in the literature. The results obtained in the 

work may be useful in many areas of physics which include nuclear physics, atomic 

physics, chemical physics and solid-state physics. 
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1  Introduction 

The nonrelativistic and relativistic wave equations of a system are of enormous importance in quantum mechanics because 

of the valuable information that can be deduced from them [1-3]. Information such as thermodynamic properties [4, 5], 

information theoretic measures [6, 7], fisher information [8] and optical properties [9] of the system require a knowledge of 

the wave function, the list is too vast that we can only mention but a few. 

Generally, the interaction between a quantum mechanical system and its environment is described by a potential 

energy system (simply referred to as potential). By solving the Schrödinger wave equation for a given potential energy 

model, wave functions representing the system are readily obtained [3, 10]. One major challenge in this area of research is 

that exact solution of the Schrödinger equation for a prescribed potential is governed by the presence of the centrifugal or 

pseudo-spin orbit term in the effective potential of the equation [11-13]. The centrifugal term is given as Lħ²/2µr², where L 

= J (J + 1) is the angular momentum of the system, J is the rotational quantum number, µ is the reduced mass of the system 

and  0,r    is the internuclear separation. 

Only few potential energy functions have exact solution with the Schrödinger equation for all values of J, the 

Coulomb potential, harmonic oscillator and Mie-type potential are typical examples [1, 14]. On the other hand, the 

Schrödinger equation also have exact solution for the state J = 0 for most potential energy functions, this is the pure 

vibrational state solution [7, 13]. A host of other potential energy functions have no exact solution for nonzero rotational 

quantum numbers (J ≠ 0), the number is so enormous. 

In the absence of exact solution of the Schrödinger equation, approximate numerical or analytical solutions are 

considered [3, 10]. In the course of obtaining approximate analytical solutions, a suitable approximation scheme is used to 

model the pseudo-spin orbit term [15]. Many solution methods have been proposed in the literature for obtaining analytical 

solution of the Schrödinger equation for various potential models, some of the solution techniques include: exact and proper 

quantization rules [16], Nikiforov-Uvarov method [17, 18], path integral method [19] and supersymmetric quantum 

mechanics (SUSYQM) approach [20-22]. 

Solutions of Schrödinger equation with different potential energy functions have been obtained in the literature, in 

the present work, the Tietz potential is considered. Its uses and applications in many areas of physics which include solid-

state physics, chemical physics, atomic and molecular physics have been reported elsewhere in the literature [10, 17, 18].  
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For example, using the parametric Nikiforov-Uvarov concept, Nikoofard et al. have solved the Schrödinger equation with 

the Tietz potential, expression of the energy eigenvalues and eigenfunctions was used to study the oscillator strength of the 

potential [17]. In another development, studies of singlet-triplet transitions of a two-electron quantum dot was achieved for 

the Tietz potential [10]. Recently, Eyube and collaborators have applied the proper quantization rule to derive J – state 

solutions and thermodynamic properties of this potential [10]. The Tietz potential is expressed mathematically as [10, 17] 
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where V0 is the potential strength, α and re are the potential screening parameter and equilibrium bond length respectively. 

The present contribution aims at obtaining energy spectra and wave functions of a rotating Tietz potential withing the 

frameworks of SUSYQM approach. This paper is structured as follows. In section2, the SUSYQM method is applied in the 

derivation of energy eigenvalues. Normalized radial wave functions are obtained by ansatz solutions in section 3. In section 

4, results of numerical computations were concisely discussed. A brief conclusion of the work is given in section 5 

2 SUSYQM approach to energy spectrum of the Tietz potential 

In a three-dimensional coordinate system, the radial Schrödinger equation assumes form [3, 10] 
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where ν is the vibrational quantum number, uν J (r) is the radial wave function and the Hamiltonian of the system is 
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in which the effective potential is 
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Substituting Eq. (1) into (4), we have 
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It is noted that Eq. (2) has exact solution in the presence of Eq. (5) only for the pure vibrational state. However, by 

employing the Greene-Aldrich approximation scheme to model the pseudo-spin orbit term, approximate analytical solutions 

of the Schrödinger equation with the effective potential (5) is feasible. For small values of the screening parameter, the 

centrifugal term can be approximated by 
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Inserting Eq. (6) in (5) simplifying, we obtained 
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Note that in arriving at the relation (7), the following identity have been employed 
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Upon substituting Eq. (7) into (3) and replacing the resulting expression into Eq. (2) yields 
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where prime denotes derivatives with respect to argument in brackets. For mathematical simplicity, the following notations 

have been used. 
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If we assume supersymmetry (SUSY) as one in which E0J = 0, Eq. (9) is satisfied by the ground state (ν = 0) wave function 

     0 0
u N exp d

J J
r r r   ,         (13) 

where N0J is the normalization constant for the ground state wave function and ϕ is known as the superpotential in the 

context of SUSYQM [15, 20-22]. Substituting Eq. (13) in (9), we obtain the nonlinear Riccati differential equation given by 
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In order to solve Eq. (14), we choose a trial wave function of the form 
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where c0 and c1 are constant coefficients. Therefore, replacing Eq. (15) into (14) and comparing coefficients, it is easy to 

see that 
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where 
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with c0 and c1 defined by Eqs. (16) and (17) respectively. Next a pair of partner potentials [15, 20-22] is constructed for the 

Hamiltonian. Thus, we define these partner potentials as 
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If shape invariant condition of SUSYQM holds [15 20-22], then the partner potentials in (20) and (21) are connected by 

      0 1 1
V , V ,r a r a R a

 
  ,         (22) 

where a1 is a new set of parameters uniquely determined from the old set c0 ≡ A through the relations c1 = c0 + α, c2 = c0 +2 

α, …, cν = c0 + ν α. R (c1) is the remainder term and is independent of r [15, 20-22]. Eq. (22) leads to the relation 
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where j


 . To determine the energy eigenvalues, we define 
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Substituting (23) in (24) and expanding out the summation, we find 
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The energy eigenvalue is obtained from the expression 
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Inserting Eqs. (10), (18) and (25) into (26) and simplifying, we have 
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where 
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3 Radial wave functions of the rotating Tietz potential 

Since SUSYQM is only suitable for obtaining energy eigenvalues, the corresponding wave functions of the rotating Tietz 

potential can be obtained via ansatz solution method. Letting 
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where  0, 1x  , equation (9) is transformed to 
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Since Eq. (31) has singularities at x = 0 and x = 1, we suppose an ansatz solution of the form 
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where σ is a parameter, NνJ is the normalization constant, Ων J (x) is an unknown function of x and the parameter ω is given 

by Eq. (19). Replacing Eq. (32) into (31), we obtained the following Gauss hypergeometric differential equation 
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subject to the constraint 
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Considering bound state solutions, Eq. (33) we obtained the hypergeometric function 
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Normalization condition of wave functions requires that 
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Is the probability density function. Upon substituting Eqs. (37), (32) and then (35) into (36), the result leads to 
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Following Qiang and Dong [23], the definite integral in (38) yields 
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where Γ (y) is the gamma function of the argument y. 

4 Results and Discussion 

To enable us confirm the accuracy of our results, we have computed bound state energy eigenvalues as a function of 

potential strength for arbitrary rotational and vibrational quantum numbers. The results calculated using Eq. (27) are shown 

in Table 1. Also shown in the table are columns of available literature results for bound state energy eigenvalues of Tietz 

potential obtained by proper quantization rule (PQR) [10] and by numerical (NUM) method [10, 17]. Evidently, results 

obtained by the SUSYQM approach are in total agreement with existing data in the literature, thus, affirming the validity of 
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expression (27) as accurate equation for energy eigenvalues of the Tietz potential. Figure 1 shows graphical representation 

of eigen energy as a function of vibrational quantum number, the plot reveals that for small values of potential screening 

parameters and rotational quantum number, bound state energy obtained by the SUSYQM method are in near perfect fit 

with thos obtained by numerical methods in the literature. In figure 2, we have plotted energy eigenvalues versus rotational 

quantum number, from the plot, it is evident that for the low ro-vibrational states, energies obtained numerically tends to 

agree with those obtained by SUSYQM analytical methos, however, the disparity is well pronounced for the high ro-

vibrational states. It follows that analytical expression for bound state eigen energies of the Tietz oscillator are valid for 

small values of screening parameters and low quantum states. 

Table 1: Bound state energy eigenvalues (atomic unit) as a function of V0 for α = 0.01, re = 2, ħ = 1 and μ = 5 along with 

corresponding literature data 

state V0 = 0.1 

SUSYQM 

V0 = 0.2 V0 = 0.4 

Ν J SUSTQM PQR [10] NUM [17] SUSTQM PQR [10] NUM [17] 

0 0 0.039027 0.059294 0.059294 0.059294 0.088263 0.088263 0.088263 

1 0 0.068404 0.116235 0.116235 0.116235 0.190727 0.190727 0.190727 

1 1 0.074908 0.127523 0.127523 0.127529 0.207801 0.207801 0.207808 

2 0 0.080639 0.144408 0.144408 0.144408 0.249787 0.249787 0.249787 

2 1 0.083822 0.150593 0.150593 0.150599 0.260242 0.260242 0.260249 

2 2 0.087444 0.159111 0.159111 0.159131 0.276865 0.276865 0.276885 

3 0 0.086832 0.160332 0.160332 0.160332 0.286861 0.286861 0.286861 

3 1 0.088603 0.164068 0.164068 0.164074 0.293713 0.293713 0.293720 

3 2 0.090720 0.169384 0.169384 0.169405 0.304811 0.304811 0.304831 

3 3 0.092457 0.174507 0.174507 0.174573 0.317141 0.317141 0.317118 

4 0 0.090354 0.170164 … … 0.311615 … … 

4 1 0.091423 0.172579 … … 0.316338 … … 

4 2 0.092740 0.176097 … … 0.324098 … … 

4 3 0.093853 0.179587 … … 0.332890 … … 

4 4 0.094686 0.182580 … … 0.341364 … … 

5 0 0.092509 0.176622 0.176622 … 0.328926 0.328926 … 

5 1 0.093187 0.178261 0.178261 … 0.332311 0.332311 … 

5 2 0.094037 0.180691 0.180691 … 0.337936 0.337936 … 

5 3 0.094766 0.183152 0.183152 … 0.344406 0.344406 … 

5 4 0.095310 0.185304 … … 0.350750 … … 

5 5 0.095686 0.187070 0.187070 … 0.356488 0.356488 … 
 

    
Figure 1: Variation of energy eigenvalues as a function of   Figure 2: Variation of energy eigenvalues as a function of 

vibrational quantum number for α = 0.01, re = 2, ħ = 1 and μ = 5 rotational quantum number for α = 0.01, re = 2, ħ = 1 and μ = 5 
 

5 Conclusion 

In the present work, the Schrödinger equation has been solved in the presence of molecular Tietz oscillator to obtain 

analytical solutions of bound state eigen energies and normalized wave functions in compact form. In order to model the 

spin-orbit term of the Schrödinger equation, the Greene-Aldrich approximation recipe was considered. By constructing a 

pair of superpotential to the Hamiltonian of the system, the SUSYQM approach was employed in arriving at the formula for  
 

Journal of the Nigerian Association of Mathematical Physics Volume 59, (January - March 2021 Issue), 29 –34   



34 

 

SUSYQM Approach to Energy…                   Bitrus, Umar and Nwabueze                J. of NAMP 
[ 

 

 

bound state eigen energies. With the help of our energy equation, bound state energies were computed for the Tietz 

potential, the results obtained compares favorably with available data in the literature obtained by other methods. This work 

may be applied in many areas of physics which include: molecular and atomic physics, solid-state physics, statistical 

physics and chemical physics 
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