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Abstract 
 

The approximate analytical bound state solutions of the Schrodinger equation for the 

general molecular oscillator (GMO) were obtained within the confines of the exact 

quantization rule (EQR). The Improved Pekeris-type approximation was used to deal 

with the spin-orbit term of the effective potential of the Schrodinger equation. Energy 

eigenvalues and corresponding wave-functions were obtained for different quantum 

numbers and some diatomic molecules. Special cases of the Morse and shifted Deng-

fan oscillator were studied; their energy level values were compared with those in 

literature, results obtained by EQR are in good accord with those in literature. 

 
    Keywords:  General molecular oscillator, exact quantization rule, Riccati equation. 

1.  Introduction 

It is well known that exact solutions of Schrödinger equation  play an important role in quantum mechanics since they 

contain all information regarding the quantum system under consideration [1-2].The exact analytical solutions of the wave 

equations are possible for only few potentials of physical interest such as, the Coulombic potential and harmonic oscillator 

potential [3-4] for all quantum states n,ℓ where n is the vibrational quantum number and ℓ is the rotational quantum number 

[5], similarly, few other potential energy functions such as Eckart, Hulthén and Morse potentials give exact solution only 

for the s-wave (ℓ = 0) state [6-7]. Most of the known potential energy functions have no exact solutions with the 

Schrödinger equation for all values of n and ℓ, for such potentials, approximate solutions (numerical or analytical) can be 

used in place of exact solutions [8]. In order to obtain approximate analytical solution, a very suitable approximation 

scheme [9-11] must be applied on the spin-orbit term of the effective potential, having applied the approximation model on 

the centrifugal term; a solution method must be adopted to solve the resulting equation. Over the last few decades a variety 

of analytical solution methods such as: ansatz method [12], generalized pseudospectral method [13], proper quantization 

rule [14], variational  method [15], path integral approach [16], Laplace transform approach [4], Nikiforov-Uvarov method 

[17-18],asymptotic iteration method [19] have been developed to solve the wave equations exactly for physically 

interesting potentials. Recently an alternative method for solving radial Schrödinger equation for a given potential energy 

function was developed by Ma and Xu [20] which is called exact quantization rule (EQR) to find the exact energy 

eigenvalues for Coulombic and harmonic oscillator potentials.  By employing this method Qiang et al. have solved the 

arbitrary ℓ-state approximate solutions of the Hulthén potential [21]. Moreover, Ikhdair and Sever applied the exact 

quantization rule to the Kratzer-type oscillator and obtained the energy eigenvalues for some diatomic molecule [22], their 

results show that the EQR is a powerful tool in finding the eigenvalues of all solvable quantum oscillators especially for 

large values of n and ℓ. In describing a suitable molecular potential for diatomic molecule, researchers have developed and 

used various forms of potential energy functions, Jia et al. have shown that improved Tietz potential is equivalent with the 

Wei potential for diatomic molecules [23], Wang et al. have defined an improved form of Manning-Rosen and Schiöberg 

potentials and proved that the Deng-Fan and the improved forms of Manning-Rosen and Schiöberg potentials they are same 

solvable potentials [24]. The answer to which potential is more successful in explaining experimental data, will depends on 

the examined molecule, for these reasons it can be said that none of these potentials are sufficiently successful on their own,  
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thus in order to overcome this problem, Yanar et al. proposed the general molecular oscillator, to model all diatomic 

molecule, they used the GMO to model diatomic molecules and successfully computed the vibrational energies of some 

molecules which were consistent with RKR data, they also showed that the general molecular potential can be reduced to 

Rosen-Morse potential which gave outstanding results in explaining the vibration of nitrogen in ammonia molecule [25]. In 

previous study, Ikot et al. obtained the energy spectral of general molecular oscillator and used their results to explore the 

thermodynamic properties of this potential [26]. Motivated by the successes in the application of EQR as a solution method 

of the Schrodinger equation, in this letter, we are encouraged to solve the radial Schrodinger equation with the GMO, to 

obtain closed form expressions for bound state energy eigenvalues and radial wave-functions, to test the accuracy of our 

results we will deduce closed form expressions for the bound state energy eigenvalues of Morse and shifted Deng-fan 

oscillator which are special cases of the GMO and compare our results with the existing  literature. To the best of our 

knowledge this approach of EQR on GMO was not done before. 

 

2. Review of the concepts of exact quantization rule 

Here we present a brief introduction of the exact quantization rule as proposed by Ma and Xu [20]. The EQR has been 

proposed to solve the one-dimensional Schrödinger equation: 
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where  x
n 

 represent the logarithmic derivative of the wave function, given as: 

     xxx
nnn 

          (3) 

n
E is the energy eigenvalue,  is the reduced mass of the two interacting particle and the effective potential  xV

eff
 is a 

piecewise continuous real function of x and  x
n 

 is the wave function. Due to Sturm-Liouville theorem,  x
n 



decreases monotonically with respect to x between two turning points determined by the equation  xVE
effn
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Specifically, as x increases across a node of the wave function  ,x
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 where  ,xVE
effn




 x
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 decreases to -∞ and 

jumps to +∞ and then decreases again. In the usual notation, Eq. (2) is expressed as Riccati non linear differential form as  
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2  . After carefully studying the Schrödinger equation, the exact quantization rule was 

proposed (Ma and Xu, 2005) as: 
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where
An

x and
Bn

x are two turning points determined by letting  xVE
effn




and
BnAn

xx  . N is the number of nodes 

of  x
n 

 in the neighborhood of Enℓ ≥ Veff (x) and it is larger by one than the number of nodes n of the wavefunction

 ,x
n 

 the term, Nπ in Eq.(5) is the contribution from the nodes of the phase angle while the second term is the quantum 

correction, it is independent of n for all exactly solvable quantum systems, accordingly it can be evaluated at the ground 

state (n = 0), for a spherically symmetric potential Eq. (5) can be expressed as: 
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Eq. (6) is equivalent to Eq. (7), where

c
Q is the quantum correction term. The quantization rule Eq. (5) is generalized to 

the three dimensional Schrodinger equation with spherical symmetric potential as follows: 
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Explicitly, Eq. (6) can be written as: 

c
QNI            (9) 

where the momentum integral is given by: 
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and the quantum correction is: 
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The radial Schrödinger equation in three-dimensional spherical coordinates [4] is written as: 
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 r
n 

 is the radial wave function, r is the inter-nuclear separation and  rV
eff

is the effective potential defined in terms 

of a spherically symmetric potential  rV and a parameter L =ℓ (ℓ+1) by: 

   
2

2

2 r

L
rVrV

eff





        (13) 

3. The energy eigenvalues and eigenfunctions of the generalized molecular oscillator 

The general molecular oscillator can be expressed in the form [25]: 
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where E, F, G, δ are adjustable potential parameters, q is a dimensionless parameter and re, is the equilibrium bond length. 

The effective potential is given by:  
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where α =δ re, u = r/ (re-1), L = ℓ (ℓ + 1) and ħ is the reduced Planck’s constant 

For a given value of parameters: E, F, G and q, Eqs. (15) and (12) have solution only for the pure vibrational state (ℓ = 0). 

In order to obtain analytical solution for all states, an approximation scheme must be used on the spin-orbit or centrifugal 

term of Eq. (15), therefore, we invoke the Pekeris-type approximation model [27] given by: 

  



















2

21

022

11

qe

c

qe

c
c

rr uu

e


       (16) 

where ,
0

c 1
c and 

2
c are constants given by: 

     
2

20
1

3
31

1
1 qqqc 



       (17) 

     
3

2

2

1
1

6
21

2
qqqc 



       (18) 

     
4

2

3

2
1

3
11

1
qqqc 



       (19) 

However, by taking c0, c1, and c2 as 4
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d  has the value ⅓, the Pekeris-

type approximation reduces to the improved Green and Aldrich approximation model [28], we shall use these 

approximation schemes to test the accuracy of our results where appropriate. By substituting Eq. (16) in (15), the effective 

potential is then: 
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using the following transformation on Eq. (20) 
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For brevity, Eq. (22) can be written in the more compact form as: 

  CBxAxxV
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Following Ma and Xu (2005), we can determine the turning points
An

x and  
AnBn

xx   by imposing the condition: 
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In what will be required in the evaluation of quantum correction, the ground state equivalents of Eqs. (31) and (32) are 

required, therefore putting n = 0 in Eqs. (31) and (32), we have:  
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Clearly, the sum
BnAn

xx  is independent of the vibrational and rotational quantum numbers. 

The expression for the momentum of the system is given by: 
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Expressing Eq. (35) in terms of the turning points, this results to: 
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And the derivative of Eq. (36) is given by: 
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Evaluating the derivative of the momentum for the ground state, this gives:   
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Expressing the Riccati equation given by Eq. (4) in terms of variable x, we have that: 
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For a trial solution of Eq. (40), choose: 

 
210

axax 


         (41) 

where a1 and a2 are constants. Substituting Eq. (41) in Eq. (40) gives: 

    0
2

2
2

02

2

221

22

1

21  CxBxAEaxaaxaxqx
r

a

e




    (42) 

From Eq. (42) we have: 

  0
22

2
2

02

2

2221

12

2

12

1







































 CEax

B
aa

r

a
x

A

r

qa
a

ee




    (43) 

equate the corresponding coefficients of x2, x and x0 respectively on both sides of the Eq. (43) we have the following 

equations: 
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from Eq. (44) and (45), we can get our constants and thus find our trial solution  

Eq. (11) gives the quantum correction in terms of the variable x as: 
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substituting Eq. (41) and (37) and taking n = 0 in Eq. (50), we have  
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the above integral can be evaluated by standard integral eq. (A1) [28], which gives: 
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Eq. (52) simplifies to: 
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Next, we evaluate the momentum integral on the left hand side of Eq. (8) and applying the transformation given by Eq. 

(21), we have: 
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The momentum integral of Eq. (36) was used in arriving at Eq. (54). In order to evaluate the definite integral in (54), we 

employ the following standard integral Eq. (A2) [29], therefore, Eq. (54) gives: 
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It follows that by using Eqs. (32), (24), (26) and (55), the energy eigenvalues of the GMO is given by: 
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Using Eqs. (27) (28), (29) and (49) to eliminate 
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,,  ,α and  in Eq. (56) we have: 
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To obtain the energy eigenfunctions of the general molecular oscillator, we need to solve the Riccati equation given by 

(39), this will give the solution for the phase angle  x
n

 , therefore, by using the definition of the phase angle, the wave 

function,  x
n

  can be recovered. Using the following transformation equation: 
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and the definition of the phase angle, Eq. (39) gives, with slight simplification:  
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Following [2] Eq. (59) has solution of the form: 

     znnFzzNz
nn

;122,1
12

 



   (63) 

where 2F1 is the hypergeometric function and the constants ϛ and ξ are subjected to the following constraints: 
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4. Discussion 

The Morse oscillator 

If we let q= 0, E = 1, F = -2 and G = 1 in Eq. (14), the effective potential reduces to: 
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Eq. (66) can be recognized to be the effective Morse oscillator, in which case the constant δ is the Morse constant [13,30]. 

Therefore, by inserting the above parameters in Eq. (57), the resulting energy eigenvalues are expected to give the energy 
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using standard integrals (A3-A6 in the appendix) obtained from ref. [29], Eq. (68) simplifies to: 
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similarly, Eq. (54) gives for q = 0,  
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application of the standard integral (A6) on Eq. (70) gives: 
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Substituting Eqs. (72) and (69) in the exact quantization rule given by Eq. (9), we have that: 
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Table 1 

Spectroscopic data of the molecules used in the present work, [6, 28] 

Molecule De (eV) re (Å) µ (amu) δ (Å-1) 

H2 4.7446 0.7416 0.50391 1.9506 

LiH 2.5152672118 1.5956 0.8801221 1.128 

HCl 4.619030905 1.2746 0.9801045 1.8677 

CO 11.2256 1.1283 6.8606719 2.2994 
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Using Eq. (72) with q= 0, E = 1, F = -2 and G = 1, we have computed the bound state energy eigenvalues of the GMO, the 

computed results for the four diatomic molecules (H2, CO, HCl and LiH) are shown in Tables 2 and 3, to enable 

comparison with existing literature results we have included in the table, the bound state energy eigenvalues for these 

molecules corresponding to the Morse oscillator obtained by generalized pseudospectral method (GPS) and the Nikiforov-

Uvarov (NU) method. Firstly, it will be observed that the expressions for the Morse oscillator used in [32] has to be shifted 

by +De to agree with the GMO given by Eq. (66), for the purpose of comparing results, our computed bound state energy 

eigenvalues of Eq. (72) must be stepped down by –De, the results are shown in the tables from these results it is evident 

that the present results obtained by exact quantization rule agrees totally with those obtained by other method in the 

literature for both the low and the high lying quantum states. 

Table 2 Bound state energy eigenvalues (in eV) for H2, CO, HCl and LiH along with literature results  
states H2 CO HCl LiH 

N ℓ PR [32] [33] PR [32] [33] PR [32] [33] PR [32] [33] 

0 
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4.474909

47 

4.476

01 

4.476013

13 

11.091535

13 

11.09

15 

11.09105

88 

4.435525

55 

4.435

56 

4.435563

94 

2.428843

75 

2.428

86 

2.428863

21 
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4.460126
83 … 

4.461228
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11.091058
56 … 

11.09010
57 

4.432939
05 … 

4.432977
53 

2.427002
59 

… 2.427022
1 
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4.430694

67 … 

4.431799

8 

11.090105

45 … 

11.09010

57 

4.427767

61 … 

4.427806
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2.423322

80 

… 2.423342

44 
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4.257701

00 

4.176

44 
4.17644 

11.084387

29 

11.08

44 … 

4.396782

97 

4.396

82 

… 2.401314

80 

2.401
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 1
0 

3.720574
13 

3.721
94 

3.72194 
11.065333
05 

11.06
53 … 

4.294043
32 

4.294
08 

… 2.328817
25 

2.328
84 

… 

1 
0 

3.959200

56 … 

3.962315

34 

10.825821

50 … 

10.82582

21 

4.079673

09 

… 4.079710

06 

2.260529

23 

… 2.260548

05 
 

1 
3.944973

82 … 

3.948116

47 

10.825349

01 … 

10.82534

96 

4.077163

58 

… 4.077201

44 

2.258735

96 

… 2.258755

59 
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3.916647
28 … 

3.919864
23 

10.824404
04 … 

10.82440
47 

4.072146
12 

… 4.072185
79 

2.255151
90 

… 2.255173
24 
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3.750119

26 … … 

10.818734

77 … … 

4.042084

87 

… … 2.233716

86 

… … 

 1
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3.232664

12 … … 

10.799843

48 … … 

3.942417

88 

… … 2.163112

35 

… … 

2 
0 

3.475054
52 … 
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82 

10.563329
35 … 

10.56333
03 
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30 
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84 

2.098257
93 
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11 
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75 
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10.56286

19 
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78 
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39 
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06 
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35 
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16 
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09 
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79 
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9 
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2.684692
81 
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71 
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91 
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74 

… 
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9.2978466
8 … … 
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04 
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3 
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33 
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34 
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78 
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05 

… 
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3 
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Fig 1. Plot of variation of effective general molecular potential Morse, V(r) in (a), and approximate effective general 

molecular potential Morse, V(r) in (b) with combined plot of (a) and (b) for H2 in (c) 
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Eq. (73) is just the effective shifted generalized Morse oscillator,  rV
SgMeff _

  [13]. It follows that upon substituting these 

values of the parameters in the expression for the energy eigenvalues of the general molecular oscillator given by Eq. (57), 

we have the energy eigenvalues for the shifted generalized Morse oscillator given as: 
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(74) 

To further test the accuracy our results we have employed the energy eigenvalues of the GMO of Eq. (74) to compute 

bound state energy eigenvalues for four diatomic molecules viz: H2, CO, HCl and LiH the results of our computation are 

shown by the entries in Tables 4 and 5 and also the literature results which were obtained by alternative means of proper 

quantization rule (PQR) and asymptotic iteration method (AIM). The PQR results were available for H2 and CO and upon 

comparison our present results is in near perfect agreement with the results for PQR. If we further compare the results EQR, 

PRQ and AIM, the results we obtained by EQR is almost indistinguishable with the other two methods except for few 

isolated cases of the H2 molecule. The results obtained in this study are a clear demonstration of the efficacy of the EQR in 

obtaining bound state energy for diatomic molecules when considered for low and high quantum states.  
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Fig 2. Plot of variation of effective general molecular potential V(r) in (a), and approximate effective general molecular 

potential V(r) in (b) with combined plot of (a) and (b) for HCl in (c). 
Table 3 Bound state energy eigenvalues (in eV) for H2, CO, HCl and LiH along with literature results 
states H2 CO HCl LiH 

N ℓ PR [31] [29] PR [31] [29] PR [31] PR  [31] 

0 0 4.39383750 4.39461978 4.39461978 11.08075134 11.0807518 11.08075178 4.41704940 4.417077 2.41193393 2.41194905 

 1 4.37912480       … … 11.08020383 … … 4.41417939      … 2.41003189 … 

 2 4.34977450 … … 11.07910881 … … 4.40844043 … 2.40622945 … 

 5 4.17575583 4.17661805 4.17661316 11.07253907 11.0725399 11.07253746 4.37403672 4.37406578 2.38346076 2.38347625 

 10 3.62064027 3.62183842 3.62182049 11.05064413 11.0506458 11.05064208 4.25972896 4.25976195 2.30813095 2.30814747 

1 0 3.74562763 … … 10.79416640 … … 4.02829079 … 2.21326520 … 

 1 3.73207676 … … 10.79362281 … … 4.02550106 … 2.21143254 … 

 2 3.70504523 … … 10.79253563 … … 4.01992265 … 2.20776881 … 

 5 3.54480384 … … 10.78601289 … … 3.98648179 … 2.18583121 … 

 10 3.03399921 … … 10.76427465 … … 3.87537764 … 2.11325695 … 

2 0 3.16095471 … … 10.51162718 … … 3.65903222 … 2.02458767 … 

 1 3.14849738 … … 10.51108749 … … 3.65632173 … 2.02282281 … 

 2 3.12364843 … … 10.51000812 … … 3.65090178 … 2.01929464 … 

 5 2.97637761 … … 10.50353225 … … 3.61841118 … 1.99816919 … 

 10 2.50731885 … … 10.48195021 … … 3.51046879 … 1.92828778 … 

5 0 1.75274100 1.75845157 1.75845157 9.68815923 9.68814619 9.688146187 2.66574180 2.66574902 1.51627313 1.51627729 

 1 1.74320803 … … 9.68763118 … … 2.66326292 … 1.51470268 … 

 2 1.72419619 … … 9.68657510 … … 2.65830616 … 1.51156322 … 

 5 1.61162673 1.61741062 1.61740572 9.68023898 9.68022628 9.680226284 2.62859335 2.62860119 1.49276676 1.49277143 

 10 1.25440404 1.26045164 1.26043371 9.65912268 9.659164 9.659110919 2.52989351 2.52990569 1.43060825 1.4306143 

7 0 1.07146436 1.07763699 1.07763699 9.15918188 9.159164 9.159164003 2.09652455 2.0965248 1.22339249 1.22339354 

 1 1.06362899 … … 9.15866154 … … 2.09419521 … 1.22194465 … 

 2 1.04800595 … … 9.15762087 … … 2.08953750 … 1.21905034 … 

 5 0.95559189s 0.96181478 0.96180989 9.15137718 9.15135966 9.151359661 2.06161809 2.06162002 1.20172274 1.20172434 

 10 0.66343343 0.66984407 0.66982613 9.13056901 9.13055243 9.130552425 1.96888561 1.96889204 1.14443549 1.14443859 

 

5. Conclusion 

Closed form expressions for bound state energy eigenvalues and radial wavefunctions of the GMO were obtained by 

solving the Schrodinger equation for this potential energy function, the exact quantization rule and ansatz solution model 

were used to obtain the solutions, bound state eigen energies and eigenfunctions for the s-wave and for non zero angular 

momentum of the GMO were deduced, cases of generalized Morse oscillator as well as generalized shifted Morse oscillator 

were considered. We have computed rotational-vibrational energies for four diatomic molecules viz: H2, CO, HCl and LiH 

and compared our result with existing results in the literature. The results we obtained are quite satisfactory and within the 

context of non-relativistic Schrodinger equation. This method of EQR presented in this letter is systemic, efficient and 

gives practical solutions to interacting problems; it can be applied to solve other oscillators of remarkable interest.  
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