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Abstract 

 

Gravitational field strength in spherical coordinates and their applications are well-

known. It is however, known that almost all rotating astronomical bodies are more 

precisely spheroidal in geometry. Consequently, in this paper we formulated 

gravitational field strength in oblate spheroidal earth along the pole and the equator. 
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Introduction 

Before 1950, almost all theoretical study of astronomical massive bodies was restricted to a perfect spherical geometry [1]. 

The only reason for these restrictions are because of the mathematical convenience and simplicity. Most planetary bodies 

have been assumed to be spherical and consequently, many treatments of motion involving these bodies have been taken 

into consideration of the spherical approximation of these bodies [2]. However, despite the spherical assumption of 

planetary bodies, since 1950, studies have shown that the real fact of nature is that the equilibrium shape of a rotating star 

or planet, for that matter is not a sphere but rather a flattened oblate spheroid [3]and almost all major astronomical bodies in 

the universe are spheroidal in geometry which is a more approximate description of these bodies. And it is obvious that 

their spheroidal geometry will have corresponding consequences and effects in the motion of all particles in their 

gravitational field strength [4]. These effects will exist in both Newtonian theories of gravitation and Einsteinian theory of 

gravitation. consequently, we hereby prepare the way for the study of motion of all particles in the gravitational field 

strength of oblate spheroidal earth along the pole and the equator. 

 

Methodology 

In this paper we applied the well-known gravitational field strength equation in oblate spheroidal [4] given by 

 ,
g

g            (1) 

where  ,
g
  is the gravitational scalar potential [3] given by 
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where 
0

Q and 
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Q are the Legendre functions of the second kind linearly independent to the Legendre polynomials 
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Theoretical Analysis 

Consider the earth to be static homogeneous massive oblate spheroid as shown in Figure 1. It is obviously seen from the 

figure that the x -coordinate point on the surface of the static oblate spheroidal earth corresponds to its equatorial radius 

while, the z -coordinate point on the surface correspond the polar radius [3]. 

 
Figure 1: Static Homogeneous Oblate Spheroidal Massive Body 
 

Now, we recall equation (1) given as 
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where h


is the scale factor given by 
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Putting equations (2) and (11) into equation (9) we get 
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Putting equations (3), (4), (5) and (6) into equation (12) we get 
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From the figure 1. We can see that at the equator 0  then equation (13) become 
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Similarly, at the pole 1  then equation (13) become 
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Now we differentiate both equations (14) and (15) with respect to  we get 
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Equation (16) is the gravitational field strength at the equator 
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Equation (17) is the gravitational field strength at the pole 
 

Results and Discussion 

In this paper we have successfully formulated the gravitational field strength of a static homogeneous oblate spheroidal 

massive body along the equator and the pole of the earth (16) and (17) respectively. 

These results (16) and (17) extend the Newton’s theory of classical mechanics from the well-known spherical bodies to 

those of spheroidal bodies. This sets of equations pave the way for the equations of motion for a particle of non-zero rest 

mass using spheroidal coordinates. It is most interesting and instructive to note that by the definition of the Legendre 

functions of the second kind 
0

Q and 
2

Q the gravitational field strength due to oblate spheroidal body are all even orders in 

the inverse coordinate  .  
 

Conclusion 

In this paper, gravitational field strength for a static homogeneous oblate spheroidal massive body along the equator and the 

pole of the earth is formulated as given by equations (16) and (17). Consequently, the physical interpretation of these 

results which we hope it would come up in the next edition of this paper and hence this paper opens the door for the 

experimental investigation in the motion of all bodies in the earth’s atmosphere and solar system as well as all other 

gravitating systems in the universe. 
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