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Abstract 

The paper considers the proposition of the exponentiated Lomax-Exponential 

distribution as a new four-parameter distribution which the aim of attracting 

applications in analysing monotonic and nonmonotonic lifetime data. Some special 

cases are presented as submodels. Several structural properties of the distribution are 

derived as explicit mathematical expressions. Inference about the parameters of the 

new distribution are obtained by the use of the maximum likelihood estimation. Real 

data sets are used to comparethe proposed distribution with some competing models 

existing in literature.  
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1. Introduction 

Parameter induction into classical univariate distributions such as Weibull and exponential distributions to generate new distributions 

have been have been given great scholarly attentions by researchers in lifetime data analysis over the last twenty years. Methods for 

generating new distributions from classical ones have been discussed in literature with the works of [1], [2] and [3]. One method that is 

frequently employed in constructing new lifetime distributions is the exponentiated-G family. Suppose 𝐹(𝑥) and 𝑓(𝑥) are cumulative 

distribution function (cdf) and probability density function (pdf) of a baseline distribution, then the cdf and pdf for an exponentiated 

family are given as  

0,)];([)(  


xFxG        (1.1) 

where 𝜀 > 0 defines the parameter vector of the baseline distribution.  

First pioneered by [4], several classes of lifetime distributions have been generated using (1.1). Some of these classes include 

exponentiated 𝑇-𝑋 family by [5], exponentiated Weibull−𝐺 family by [6], exponentiated half-logistic family by [7] and exponentiated 

generalized Topp Leone−𝐺 family by [8] amongst others in literature.  

Suppose a system has two independent components connected serially. Let the first component has survival function of the Lomax 

distribution defined by 𝑆𝐿(𝑥) and the second component has survival function of the exponential distribution defined by 𝑆𝐸𝑥𝑝(𝑥), then 

the cdf of the competing risk distribution for the series system is given by  

𝐹(𝑥) = 1 − 𝑆𝐿(𝑥)𝑆𝐸𝑥𝑝(𝑥) 

 Substituting 𝑆𝐿(𝑥) = (1 + 𝜃𝑥)−𝛾 and 𝑆𝐸𝑥𝑝(𝑥) = 𝑒−𝜂𝑥 into the above equation, we have  

𝐹(𝑥) = 1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂𝑥, 𝜃 > 0, 𝛾 > 0, 𝜂 > 0         (1.2) 

which is a new three-parameter lifetime model known as the Lomax-Exponential distribution. More discussions on series (or competing 

risk) distributions are found in the work of [9]. The exponentiation of a baseline model given in (1.2) is considered in the paper. As a 

flexible distribution, it could be useful in the modelling lifetime data for prediction of survival behaviours of systems over time.  

The paper is divided into the followig sections. Section 2 derives Exponentiated Lomax-Exponential (ELExp) distribution as new 

lifetime model with its defining structural properties. Section 3 presents other structural properties of the proposed distribution. Parameter 

estimation for the ELExp distribution is, also, considered in this section. Section 4 considers the application of the ELExp distribution to 

secondary data sets and discussion on the results is presented. Section 5 gives concluding remarks on the study of the ELExp distribution. 
 

2.  Exponentiated Lomax-Exponential (ELExp) distribution 

2.1. Model and its defining properties 

Substituting (1.2) into (1.1), the cdf of the ELExp distribution is obtained as  

 

𝐺(𝑥) = [1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌, 𝜃 > 0, 𝛾 > 0, 𝜂 > 0, 𝜌 > 0   (2.1) 
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The ELExp distribution generalizes some submodels such as new Lomax-exponential, exponentiated Lomax ([10]), Lomax and 

exponential distributions. 

Differentiating (2.1) with respect to x gives the pdf of the ELExp distribution which is given as 

 𝑔(𝑥) = 𝜌(𝛾𝜃 + 𝜂(1 + 𝜃𝑥))(1 + 𝜃𝑥)−𝛾−1𝑒−𝜂𝑥[1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌−1  (2.2) 

The pdf of the ELExp distribution can be expanded into a simplier form using the power series expansion. The expansion is needed for 

evaluation of some structural properties of the distribution. For 𝑏 > 0 which is also an integer,  

(1 + 𝑥)𝑏 = ∑

∞

𝑘=0

𝑏
𝑘
𝑥𝑘 , 

 holds provided 𝑥 < 1.  

Then, we have  
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   (2.3) 

The survival, hazard and reversed hazard functions which are denoted by 𝐺(𝑥), ℎ(𝑥) and ℎ(𝑥) are given as  

𝐺(𝑥) = 1 − 𝐺(𝑥) = 1 − [1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌,    (2.4) 

 ℎ(𝑥) =
𝑓(𝑥)

𝐺(𝑥)
=

𝜌(𝛾𝜃+𝜂(1+𝜃𝑥))(1+𝜃𝑥)−𝛾−1𝑒−𝜂𝑥[1−(1+𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌−1

[1−(1+𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌
   (2.5) 

 and  

ℎ(𝑥) =
𝑓(𝑥)

𝐺(𝑥)
=

𝜌(𝛾𝜃+𝜂(1+𝜃𝑥))(1+𝜃𝑥)−𝛾−1𝑒−𝜂𝑥[1−(1+𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌−1

1−[1−(1+𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌
   (2.6) 

respectively. 

   
 

Figure 1: Plots for g(x) and h(x) of ELExp distribution 
 

2.2.  Other Structural properties 

In this section, other structural properties of the ELExp distribution that are useful in lifetime data analysis will be considered.  

2.2.1  Quantile function 

For 0 < 𝑈 < 1 , the ELExp quantile function is derived by inverting the cdf of ELExp distribution using 𝐹(𝑥𝑈) = 𝑈. It implies that  

𝑥𝑈 = 𝐺−1(𝑈). 
which gives  

𝛾𝑙𝑜𝑔(1 + 𝜃𝑥𝑈) + 𝜂𝑥𝑈 + 𝑙𝑜𝑔(1 − 𝑈
1

𝜌) = 0.      (2.7) 

 𝑥𝑈 defines the root of (2.6) for 𝑈 ∈ (0,1) for every set of values for parameters of ELExp distribution employed. Different values of 𝑥𝑈 

are obtained for sets of values of parameters (𝜃, 𝛾, 𝜂, 𝜌) of ELExp distribution and are listed in Table 2.1.  
 

Table  1: Quantile function and parameter values of ELExp distribution  

U (0.06,0.08,0.04,2) (4,0.5,0.7,3) (0.2,5.8,0.6,10) (3,9,4.6,1.9) 

0.1 8.7101 0.2410 1.8200 0.0117 

0.2 13.7090 0.3454 2.2904 0.0190 

0.3 18.4753 0.4415 2.6910 0.0262 

0.4 23.4387 0.5404 3.0800 0.0341 

0.5 28.9023 0.6490 3.4875 0.0432 

0.6 35.2366 0.7758 3.9421 0.0544 

0.7 43.0604 0.9348 4.4866 0.0689 

0.8 53.7083 1.1569 5.2092 0.0903 

0.9 71.3879 1.5425 6.3842 0.1299 
 

It is obvious from Table 1 that monotone increasing values are obtained for the different sets of parameter values of ELExp distribution 

whenever 𝑈 ∈ (0,1). 
 

2.2.2.  Moments 

Moments are important quantities of distribution theory in statistics employed in the study of important characteristics of random 

variable, 𝑋, having a distribution. Some moments mainly discussed in distribution theory and lifetime data analysis include non-central 

moment, conditional moment and probability weight moment (PWM). Mathematical expressions will be presented for these moments.  
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(i)  The 𝜏𝑡ℎ non-central moment denoted by 𝜇𝜏 is derived with the relation given by  

 𝜇𝜏 = 𝐸[𝑋𝜏] = ∫
∞

0
𝑥𝜏𝑔(𝑥)𝑑𝑥  

 Substituting (2.2) into the above relation gives  
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 Algebraic evaluation of (2.8) gives  
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Hence, the 𝜏𝑡ℎ non-central moment of the ELExp distribution is given as  
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   (2.9) 

(ii) The PWM of a randam variable 𝑋 is defined as  

𝑃𝑊𝑀𝜏,𝜑,𝜙(𝑋) = 𝐸 [𝑋𝜏𝐺𝜑(𝑋)𝐺
𝜙
(𝑋)] = ∫

∞

0
𝑥𝜏𝐺𝜑(𝑥)𝐺

𝜙
(𝑥)𝑔(𝑥)𝑑𝑥    (2.10) 

Substituting (2.1),(2.2) and (2.4) into (2.10), the PWM of the ELExp distribution can be derived from the integral defined as  

𝑃𝑊𝑀𝜏,𝜑,𝜙(𝑋) = 𝜌∫
∞

0

𝑥𝜏(𝛾𝜃 + 𝜂(1 + 𝜃𝑥))(1 + 𝜃𝑥)−𝛾−1[1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌(𝜑+1)−1𝑒−𝜂𝑥

(1 − [1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌)𝜙𝑒−𝜂𝑥𝑑𝑥.

 

 Further algebraic expansion of the integrand gives the PMW of the distribution as  
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 Evaluation of (2.11) results in  
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It should be noted that the 𝑃𝑊𝑀𝜏,𝜑,𝜙(𝑋) can becomes the 𝜏𝑡ℎ non-central moment. This is true if 𝜑 = 𝜙 = 1.  

 

(iii)  The conditional moment defined by 𝐸[𝑋𝜏/𝑋 > 𝑡] for a random variable 𝑋 is defined by the relation  

 𝐸[𝑋𝜏/𝑋 > 𝑡] =
1

𝐺(𝑡)
∫
∞

𝑡
𝑥𝜏𝑔(𝑥)𝑑𝑥 

Hence, the conditional moment of the ELExp distribution is given as  
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  (2.12) 

 where Ω(𝑛, 𝑡) = ∫
∞

𝑡
𝑧𝑛−1𝑔(𝑧)𝑑𝑧 and Γ(𝑛) = ∫

∞

0
𝑧𝑛−1𝑔(𝑧)𝑑𝑧 define the incomplete upper and complete gamma functions. 

 

2.2.3.  Moment generating function 

The moment generating function, 𝑀𝑋(𝑡) for random variable 𝑋 can be defined as  

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋] = ∫
∞

0

𝑒𝑡𝑥𝑔(𝑥)𝑑𝑦 

Substituting (2.2) into the above integral and performing some algebraic manipulations on the resulting integrand gives  
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           (2.14) 

 which defines the expression of moment generating function for the ELExp distribution. 
 

2.2.4.  Measures of entropy 

The Rényi and Shannon entropies are quantitive measures used to investigate the expected amount of uncertainty related to random 

variable having a lifetime distribution. The Rényi entropy denoted by [ℛ𝛼(𝑋)] for a random variable 𝑋 having ELExp distribution is 

given as  
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Substituting (2.2) into (2.15) and performing some algebraic manipulations gives 
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as the expression for Rényi entropy of the ELExp distribution. 

The Shannon entropy denoted by [𝒮ℋ(𝑋)] for a random variable 𝑋 having ELExp distribution is given as  
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The mathematical expression for 𝐸(𝑋𝜏) is defined in (2.9). 
 

2.2.5.  Residual and reversed residual lifetime function 

The residual lifetime function denoted by 𝑚𝑅𝐿
𝑟 (𝑡) determines the remaining lifetime for a system beyond age 𝑡 ≥ 0 until failure time 

occurs while the reversed residual lifetime function (also known as the inactivity time function) denoted by ℳ𝑅𝐿
𝑟 (𝑡) determines the 

elapsed lifetime for a system from its failure for which its lifetime is less than or equals to age 𝑡 ≥ 0.  

For  ,...,2,1r  we have  
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respectively, where Ω(𝑛, 𝑡) = ∫
∞

𝑡
𝑧𝑛−1𝑔(𝑧)𝑑𝑧 and Φ(𝑛, 𝑡) = ∫

𝑡

0
𝑧𝑛−1𝑔(𝑧)𝑑𝑧 define incomplete upper and lower gamma functions. It is 

worth noting that the mean residual lifetime (𝑚𝑟𝑙) and reversed mean residual lifetime (𝑟𝑚𝑟𝑙) can be obtained if 𝑟 = 1 in (2.18) and 

(2.19) respectively. 
 

2.2.6.  Order statistics, its cdf and raw moment 

The pdf, cdf and 𝑟𝑡ℎ non-central moments for the order statistics {𝑋(𝑖)}𝑖=1
𝑛

 of random variable 𝑋 following the ELExp distribution will be 

presented. Suppose 𝑋1, 𝑋2, . . . , 𝑋𝑛 is a n-sized random sample for random variable 𝑋, then its ordered sample is given as 

𝑋(1), 𝑋(2), . . . , 𝑋(𝑛). The pdf for the order statistics {𝑋(𝑖)}𝑖=1
𝑛

 is defined as  

𝑔𝑛:𝑚(𝑥) =
𝑚!𝑔(𝑥)

(𝑛 − 1)! (𝑚 − 𝑛)!
[𝐺(𝑥)]𝑛−1[𝐺(𝑥)]

𝑚−𝑛
, 1 ≤ 𝑛 ≤ 𝑚 

Employing (2.1), (2.2) and (2.4), the pdf for the order statistics of ELExp distribution is given as 
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The cdf and 𝑟𝑡ℎ non-central moments forthe order statistics of ELExp distribution are given as 
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2.2.7  Stress-Strength reliability for ELExp distribution 

An important event which occurs in lifetime analysis is the measure of stress-strength reliability of a system with strenght 𝑋1 subjected to 

some random stress 𝑋2. For independent variables 𝑋1 and 𝑋2, the reliability of a system denoted by 𝑅 = 𝑃𝑟(𝑋2 < 𝑋1) signifies 

deterioration in the performance of the system occurs when the stress exprencienced exceeds its strenght. More discussion of stress-

strenght analysis of systems can be found in[11]. The reliability for a system for which 𝑋1 and 𝑋2 follows the same probability 

distribution is given as  

𝑅 = ∫
∞

0
𝑔1(𝑥; ℵ)𝐺2(𝑥; ℵ)𝑑𝑥        (2.23) 

where  denotes the parameter vector for the distribution of random variables 𝑋1 and 𝑋2. Two cases will be given presented for the 

reliability of a system with with strenght 𝑋1 experiencing stress 𝑋2.  

Case 1: If 𝑋1 ∽ 𝐸𝐿𝐸𝑥𝑝(𝜃, 𝛾, 𝜂, 𝜌1) and 𝑋2 ∽ 𝐸𝐿𝐸𝑥𝑝(𝜃, 𝛾, 𝜂, 𝜌2), the reliability of the system is given as  

𝑅 = 𝜌1 ∫
∞

0
(𝛾𝜃 + 𝜂(1 + 𝜃𝑥))(1 + 𝜃𝑥)−𝛾−1𝑒−𝜂𝑥[1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂𝑥]𝜌1+𝜌2−1𝑑𝑥

=
𝜌1

𝜌1+𝜌2

  (2.24) 

which shows the parameters   ,,  has insignificant effect on the reliability of the system. 

Case 2: If 𝑋1 ∽ 𝐸𝐿𝐸𝑥𝑝(𝜃, 𝛾, 𝜂1, 𝜌) and 𝑋2 ∽ 𝐸𝐿𝐸𝑥𝑝(𝜃, 𝛾, 𝜂2, 𝜌), then the reliability of the system is given as  

𝑅 = 𝜌∫
∞

0

(𝛾𝜃 + 𝜂1(1 + 𝜃𝑥))(1 + 𝜃𝑥)−𝛾−1𝑒−𝜂1𝑥[1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂1𝑥]𝜌−1

[1 − (1 + 𝜃𝑥)−𝛾𝑒−𝜂2𝑥]𝜌𝑑𝑥

 

Several algebraic manipulation of above expression gives  
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Remarks  

For 0 ≤ 𝑅 ≤ 1, the following remarks can be drawn from the two cases.  

Case 1  

1. if 𝜌1 < 𝜌2, then 𝑅 → 0 which implies deterioration in the performance of the system.  

2. if 𝜌2 < 𝜌1, then 𝑅 → 1 which implies consistent performance of the system.  

Case 2  

1. if 𝜂1 < 𝜂2, then 𝑅 → 0 which implies reduction in the performance of the system.  

2. if 𝜂2 < 𝜂1, then 𝑅 → 1 implying consistency in the performance of the system. 
 

3.  Maximum Likelihood Estimation (MLE) 

Point estimation of parameters of lifetime distributions have mostly been implemented using MLE method because it possesses several 

advantages over other estimation methods. For a random sample, 𝑥1, 𝑥2, . . . , 𝑥𝑛, from variable 𝑋 ∽ 𝐸𝐿𝐸𝑥𝑝(𝜃, 𝛾, 𝜂, 𝜌), the total log-

likelihood function is presented as  

𝐿𝑜𝑔ℒ𝑛 = 𝑛𝑙𝑛(𝜌) + ∑𝑛
𝑖=1 𝑙𝑛(𝛾𝜃 + 𝜂(1 + 𝜃𝑥𝑖)) − (𝛾 + 1)∑𝑛

𝑖=1 𝑙𝑛(1 + 𝜃𝑥𝑖) − 𝜂 ∑𝑛
𝑖=1 𝑥𝑖

+(𝜌 − 1)∑𝑛
𝑖=1 𝑙𝑛(1 − (1 + 𝜃𝑥𝑖)

−𝛾𝑒−𝜂𝑦𝑖)
 (3.1)  

The partial derivatives of (3.1) with respect to the parameters of interest equated to zero result in the system of nonlinear equations given 

as  

𝜕𝐿𝑜𝑔ℒ𝑛

𝜕𝜃
= −(𝛾 + 1)∑𝑛

𝑖=1
𝑥𝑖

(1+𝜃𝑥𝑖)
+ (𝜌 − 1)∑𝑛

𝑖=1 (
𝛾𝑥𝑖(1+𝜃𝑥𝑖)

−(𝛾+1)𝑒−𝜂𝑥𝑖

1−(1+𝜃𝑥𝑖)
−𝛾𝑒−𝜂𝑥𝑖

)

+∑𝑛
𝑖=1 (

𝛾+𝜂𝑥𝑖

𝛾𝜃+𝜂(1+𝜃𝑥𝑖)
) = 0,

   (3.2) 

𝜕𝐿𝑜𝑔ℒ𝑛

𝜕𝛾
= −∑𝑛

𝑖=1 𝑙𝑜𝑔(1 + 𝜃𝑥𝑖) + (𝜌 − 1)∑𝑛
𝑖=1 (

(1+𝜃𝑥𝑖)
−𝛾𝑒−𝜂𝑥𝑖𝑙𝑛(1+𝜃𝑥𝑖)

1−(1+𝜃𝑥𝑖)
−𝛾𝑒−𝜂𝑥𝑖

)

+∑𝑛
𝑖=1 (

𝜃

𝛾𝜃+𝜂(1+𝜃𝑥𝑖))
) = 0,

   (3.3) 

 
𝜕𝐿𝑜𝑔ℒ𝑛

𝜕𝜂
= −∑𝑛

𝑖=1 𝑥𝑖 + (𝜌 − 1)∑𝑛
𝑖=1 (

𝑥𝑖(1+𝜃𝑥𝑖)
−𝛾𝑒−𝜂𝑥𝑖

1−(1+𝜃𝑥𝑖)
−𝛾𝑒−𝜂𝑥𝑖

) + ∑𝑛
𝑖=1 (

1+𝜃𝑥𝑖

𝛾𝜃+𝜂(1+𝜃𝑥𝑖)
) = 0,  (3.4) 

 and  
𝜕𝐿𝑜𝑔ℒ𝑛

𝜕𝜌
=

𝑛

𝜌
+ ∑𝑛

𝑖=1 𝑙𝑛(1 − (1 + 𝜃𝑥𝑖)
−𝛾𝑒−𝜂𝑥𝑖) = 0.     (3.5) 

The system of equations given by (3.2), (3.3), (3.4) and (3.5) are solved simultaneously or numerical iterative methods. The point 

estimates, 𝜃, 𝛾, �̂�, 𝜃 are the unique solutions obtained as the maximum likelihood estimates for the random sample 𝑥1, 𝑥2, . . . , 𝑥𝑛. 
 

4.  Applications of ELExp distribution to real lifetime data 

The paper considers the application of the ELExp distribution to the percentage ( ) of the body fat for the 202 athletes as reported in 
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[12]. Comparative analysis will be carried out among the new four-parameter distribution and some well-established distributions in 

literature using goodness-of-fit tests such Cramér von Mises (𝑊∗), Anderson darling (𝐴∗) and Kolmogorov-Smirnov (KS) tests. The 

parameter estimates (with standard errors in parentheses) and the log-likelihood values (−𝑙𝑙) of the competing distributions are presented 

with the comparison criteria. All computations are achieved using AdequacyModel package in R software. The data are given as  

19.75, 21.30, 19.88, 23.66, 17.64, 15.58, 19.99, 22.43, 17.95, 15.07, 28.83, 18.08, 23.30, 17.71, 18.77, 19.83, 25.16, 18.04, 21.79, 22.25, 

16.25, 16.38, 19.35, 19.20, 17.89, 12.20, 23.70, 24.69, 16.58, 21.47, 20.12, 17.51, 23.70, 22.39, 20.43, 11.29, 25.26, 19.39,  19.63, 23.11, 

16.86, 21.32, 26.57, 17.93, 24.97, 22.62, 15.01, 18.14, 26.78, 17.22, 26.50, 23.01, 30.10, 13.93, 26.65, 35.52, 15.59, 19.61, 14.52, 11.47, 

17.71, 18.48, 11.22, 13.61, 12.78, 11.85, 13.35, 11.77, 11.07, 21.30, 20.10, 24.88, 19.26, 19.51, 23.01, 8.07, 11.05, 12.39, 15.95, 9.91, 

16.20, 9.02, 14.26, 10.48, 11.64, 12.16, 10.53, 10.15, 10.74, 20.86, 19.64, 17.07, 15.31, 11.07, 12.92, 8.45, 10.16, 12.55, 9.10, 13.46, 

8.47, 7.68, 6.16, 8.56, 6.86, 9.40, 9.17, 8.54,9.20, 11.72, 8.44, 7.19, 6.46, 9.00, 12.61, 9.03 ,6.96, 10.05, 9.56, 9.36, 10.81, 8.61, 9.53, 

7.42, 9.79, 8.97, 7.49, 11.95, 7.35, 7.16, 8.77, 9.56, 14.53, 8.51, 10.64, 7.06, 8.87, 7.88, 9.20, 7.19, 6.06,5.63, 6.59, 9.50, 13.97, 1.66, 

6.43, 6.99, 6.00, 6.56, 6.03, 6.33, 6.82, 6.20, 5.93, 5.80, 6.56, 6.76, 7.22, 8.51, 7.72, 19.94, 13.91, 6.10, 7.52, 9.56, 6.06,7.35, 6.00, 6.92, 

6.33, 5.90, 8.84, 8.94, 6.53, 9.40, 8.18, 17.41, 18.08, 9.86,7.29, 18.72, 10.12, 19.17, 17.24, 9.89, 13.06, 8.84, 8.87, 14.69, 8.64, 14.98, 

7.82, 8.97, 11.63, 13.49, 10.25, 11.79, 10.05, 8.51, 11.50, 6.26.  
The pdfs of the competing distributions are given as  

Kumarawamy Fréchet (KFr) distribution [13];  

𝑓(𝑥) = 𝜌𝛾𝜂𝑥−𝛾−1𝑒−𝜂(
𝜃

𝑥
)𝛾 (1 − 𝑒−𝜂(

𝜃

𝑥
)𝛾)

𝜌−1

. 

Extended log-logistic (ELL) distribution [14];  

𝑓(𝑥) =
𝜌𝛾𝜃

𝜂𝛾
𝑥𝛾−1 (1 −

𝑥𝛾

𝜂𝛾 + 𝑥𝛾
)

𝜃+1

(1 − (1 −
𝑥𝛾

𝜂𝛾 + 𝑥𝛾
)

𝜃

)

𝜌−1

. 

Transmuted exponentiated generalized Weibull (TExGW) distribution [15];  

𝑓(𝑥) = 𝜌𝛾𝜃𝑥𝛾−1𝑒−𝜃𝑥
𝛾
(1 − 𝑒−𝜃𝑥

𝛾
)
𝜌−1

(1 + 𝜂 − 2𝜂(1 − 𝑒−𝜃𝑥
𝛾
)
𝜌
). 

Lomax distribution [16];  

𝑓(𝑥) = 𝛾𝜃(1 + 𝜃𝑥)−𝛾−1. 

Exponentiated exponential (EExp) distribution [17];  

𝑓(𝑥) = 𝜂𝜌𝑒−𝜂𝑥(1 − 𝑒−𝜂𝑥)𝜌−1. 

Exponential (Exp) distribution  

𝑓(𝑥) = 𝜂𝑒−𝜂𝑥. 

Table 2 list the values of the point estimates (𝜃, 𝛾, �̂�, �̂�) and the goodness-of-fit criteria for the competing lifetime distributions applied to 

the data on body fat for the 202 athletes. 
 

Table 2: Point estimates and goodness-of-fit tests for competing distributions 

Distribution ̂  

(s.e) 

̂  

(s.e) 

̂  

(s.e) 

̂  

(s.e) 
-ll W* A* 

KS 

(p-value) 

ELExp 0.1678 

(0.5351) 

0.3504 

(1.1497) 

0.1738 

(0.0550) 

8.1464 

(4.7819) 
637.7663 0.3750 2.3096 

0.0845 

(0.1117) 

KFr 7.5405 

(141.9260) 

0.5667 

(0.1547) 

5.6392 

(60.1655) 

49.0594 

(58.2407) 
638.4590 0.4001 2.4313 

0.0871 

(0.0935) 

ELL 11.8564 

(11.6217) 

1.1975 

(0.3230) 

47.4959 

(48.9783) 

5.4343 

(3.6084) 
638.3432 0.3946 2.4221 

0.0864 

(0.0978) 

TExGW 0.1871 

(0.1748) 

1.0016 

(0.2448) 

0.0782 

(0.2448) 

6.8746 

(4.6779) 
637.7694 0.3886 2.3746 

0.0852 

(0.1063) 

Lomax 0.0039 

(0.0006) 

19.4308 

(3.2152) 
---- ---- 731.1652 0.4496 2.6574 

0.3402 

(0.0000) 

EExp 
---- ---- 

0.1917 

(0.0126) 

6.8801 

(0.9664) 
637.8236 0.3935 2.3967 

0.0848 

(0.1089) 

Exp 
---- ---- 

0.0743 

(0.0052) 
---- 727.1127 0.4597 2.7048 

0.3402 

(0.0000) 

 

The flexibility of the ELExp distribution over the six competing distributions is evident in Table 2. It is seen that the values of the 

goodness-of-fit criteria is smaller to the corresponding values of the competing distribution which presents the ELExp distribution better 

fit the data better than the other six distributions. The plot of the histogram of the data and the estimated densities of the seven 

distributions is presented in Figure 2.  
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Figure  2: Plot for Histogram, estimated ELExp pdf and pdfs for competing distributions 

  

5. Conclusion 

A new four-parameter distribution known as the exponentiated Lomax-exponential (ELExp) distribution is presented. Mathematical 

expressions are derived for the structural properties of the new distribution. Expressions to obtain maximum likelihood stimates for the 

new distribution are presented in the study. Applications of the distribution to data of body fat percentage for 202 athletes demonstrate its 

flexiblity is considered. It shows that the new distribution provide better fit for the data over the competing distributions used in the 

study.  
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