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Abstract 

A new lifetime distribution called the Lomax-Exponential distribution is 

proposed in this study with its defining functions presented. Statistical 

properties such as quantile function, moments, inequality curves, entropy 

measures, measures of residual life and order statistics are discussed. 

Inference for point and interval estimation for parameters of the proposed 

distribution is presented. Application of the new distribution to lifetime data is 

illustrated to determine the usefulness and applicability in lifetime analysis.  
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1.  Introduction 

Competing risk method has been used to generate several flexible univariate models to analyze monotonic and non-monotonic lifetime 

data over the years [1]. For a series system with 𝑖𝑡ℎ (i=1,2) components which will independently failure at time 𝑧, then the probability of 

survival, 𝑃𝑟(𝑍1 > 𝑧, 𝑍2 > 𝑧) which is the survival function for the series distribution is given by  
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where 𝑆𝑖(𝑧) = 𝑃𝑟(𝑋𝑖 > 𝑧) is the survival probability of the 𝑖𝑡ℎ component at time 𝑧. The corresponding cdf, pdf and hazard function to 

(1) are given respectively as  
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where cdf, pdf and hazard function are denoted by is 𝐹(𝑧), 𝑓(𝑧) and ℎ(𝑧) respectively.  

Examples of some existing univariate models that have been introduced with the distribution form of a competing risk model include the 

log-logistic Weibull distribution [2], additive Weibull distribution [3] and modified Weibull distribution [4].  

The motivation behind proposition of the Lomax-Exponential (Lom-E) distribution as a lifetime model is to generate a flexible model 

that combines the structural properties of the Lomax and exponential distributions, thereby enhancing the flexibility and applicability of 

the proposed distribution to lifetime data analysis. The flexiblility and usefulness of the new distribution is presented by its application to 

Vinyl chloride data.  

The organization of the paper is presented as follows. Section 2 presents formulation of Lom-E distribution by presenting the defining 

distribution functions. Other structural properties of the proposed distribution are detailed in section 3. Section 4 presents inference of the 

distribution which leds to point and interval estimation of its parameters using maximum likelihood estimation (MLE) method. Section 5 

presents application of the LomE, Lomax and exponential distributions to some lifetime datasets and discussion of results from the 

application. Section 6 gives concluding remarks to the study on the proposed distribution. 
 

2.  Lomax-Exponential distribution  

2.1   Formulation of the Lom-E distribution 

Let a series system be made up of two independently components that will fail at time 𝑧 such that one of the component's failure follows 

the Lomax distribution while the failure of the other component has the exponential distribution, the defining distribution functions of 

Lom-E model are obtained from (1)-(4) and given as  
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𝑆(𝑧) = (1 + 𝛼𝑧)−𝜃𝑒−𝜆𝑧 , 𝑧 > 0, 𝛼 > 0, 𝜃 > 0, 𝜆 > 0,    (5) 

𝐹(𝑧) = 1 − (1 + 𝛼𝑧)−𝜃𝑒−𝜆𝑧,       (6) 

𝑓(𝑧) = (𝛼𝜃 + 𝜆(1 + 𝛼𝑧))(1 + 𝛼𝑧)−𝜃−1𝑒−𝜆𝑧     (7) 

and  
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Expansion of the pdf of the Lom-E distribution can be derived from (7) for simplified manipulations to derive other structural properties 

of the distribution which include quantile function, moments, entropy measures, order statistics and residual lifetime.  

The algebraic expansion of (7) is given as  
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which defines a simple expression for the pdf of Lom-E distribution.  
 

3. Structural properties of Lom-E distribution 

Other defining structural properties of Lom-E distribution will be consider in this section.  

3.1  Quantile function 

For 𝑝 ∈ (0,1), the quantile function for Lom-E distribution is the root, 𝑧𝑝, of the equation which is given by  

𝜃𝑙𝑜𝑔(1 + 𝛼𝑧𝑝) + 𝜆𝑧𝑝 + 𝑙𝑜𝑔(1 − 𝑝) = 0.     (10) 
 

The root, 𝑧𝑝, is obtained as a unique solution for every value of 𝑝 ∈ (0,1) in (10) for different values of 𝜃, 𝛼 and 𝜆 numerically with 

method such as the Newton-Raphson method or the Lambert-W function. A detailed of evaluating solutions to some algebraic equations 

using Lambert-W function [5]. The unique algebraic solution of (10) using Lambert-W function is given as  
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 where 𝑊(𝑥) is the Lambert-W function which defines the inverse function of 𝑊(𝑥)𝑒𝑊(𝑥) = 𝑥.  

Random number generation can be achieved using (10) or (11) if 𝑝 ∈ 𝑈(0,1) where 𝑈(0,1) is the Uniform distribution. 
 

3.2  Moment, conditional moment and moment generating function 

The 𝑟𝑡ℎ raw moment (𝜇𝑟) for the Lom-E distribution can be expressed as  
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The conditional moment of Lom-E distribution denoted by 𝜇𝑟
∗  is derived as follows  
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Evaluating the numerator of the right-hand side of the above expression for which 𝑥 = 𝜆𝑧, the 𝑟𝑡ℎ conditional moment for Lom-E 

distribution is given as  
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The evaluation of standard deviation (SD), coefficients of variation (CV), skewness (CS) and kurtosis (CK) for Lom-E distribution can 

be obtained from (12) using moments based relations given by 
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where 𝜇 defined the first raw moment if 𝑟=1.  
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The moment generating (mgf), 𝑀𝑍(𝑡) for LomE distribution is derived as  

𝑀𝑍(𝑡) = 𝐸[𝑒𝑡𝑍] = ∫
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 Further algebraic manipulation of integral at the right-hand side of (14) results in  
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3.3  Measures of entropy 

The Shannon and Rényi entropies ([6]; [7]) are important information measures needed in investigation of randomness of a variable 

having a lifetime distribution, which have found relevance in sciencific areas such as physics, ecology, statistics, medicine and 

engineering. The Shannon ))](([ zfH S
 entropy for Lom-E distribution can be derived as follows.  

Let  
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 Substituting the two expansions into the right-hand side of (15), the Shannon entropy for Lom-E distribution is given as  
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where the explicit expressions for ][
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ZE , ][ZE  and ][
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ZE  are obtained from (12).  

Also, we derive the Rényi )]([ RI  entropy for Lom-E distribution.  
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 Using the expression for the definite integral in Gradshteyn and Ryzhik (2007) which is  
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the explicit expression for Rényi entropy of the Lom-E distribution is given as  
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3.4  Mean deviations of Lom-E distribution about its mean and median 

Mean deviation (MD) measures total variations from the mean and median of a set of data. The mean deviations of the Lom-E 

distribution about the mean (  ) and median ( M ) are derived as follow.  
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3.5  Order statistics for Lom-E distribution 
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This is a new lifetime model called the exponentiated Lomax-Exponential distribution with the exponentiated parameter, n , where n  is 

a positive integer. 
 

3.6  Residual lifetime 

Residual lifetime function is an important measures which is used to test reliability and survival of systems that will experience failures 

over time, say t. Its application has been employed in diverse scientific fields for maintenance and survival analysis. The residual lifetime 

function defines the life remaining for a system beyond age 0t  until failure time is known. It is known as the conditional random 

variable ]./)[( tZtZZ
t

   

Suppose ]/)[()( tZtZEtm
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  denotes the th
r  moments for residual lifetime functions for a random variable Z following Lom-E 

distribution, then ...,2,1;)( rtm
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4. Point and interval estimation for parameters of Lom-E distribution 

Let 
n

zzz ,...,,
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 be n -sized random sample drawn from a random variable Z which follows the Lom-E distribution, then its total 

log-likelihood function is given as  
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The first partial derivatives of equation (19) with respect to each of the parameters are equated to zero to obtain the set of nonlinear 

equations given as 
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To obtain the estimates for  ,  and  , the set of equations are solved simultaneously using any known iterative method. The unique 

solutions from the set of nonlinear equations are the point estimates given as ̂ ,̂  and ̂ are achieved by numerical packages found in 

R.  

For interval estimation, then the asymptotic distribution of ))(,0()ˆ(
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 is the expected Fisher's information. A valid asymptotic results exist 

with )ˆ(A  as observed information matrix evaluated at ˆ  whenever )ˆ(A  replaces )(I . The multivariate normal distribution given 
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The )%1(100   approximate confidence intervals for  ,  and   are presented as 
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5. Vinyl chloride data analysis 

The Lom-E distribution is applied to the Vinyl chloride data and compared with four distributions (namely the Marshall Olkin Fréchet 

(MOF)[8], Lomax-Gumbel{Fréchet} (LG{F})[9], Weibull (W)[10] and exponential (Exp) distributions) using values of the log- 
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likelihood function, Kolmogorov-Smirnov (KS) test and p-value of KS test as goodness-of-fit criteria. the goodness-of-fit criteria are 

computed using AdequacyModel package in R software. The cdf of comparing distributions are given as  
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The vinyl chloride data are obtained from clean upgradient monitoring wells in mg/l which is obtained from [11]. Vinyl chloride is an 

organic compound which is volatile and carginogenic in nature. They are given as: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6, 0.9, 

0.4, 2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1, 0.2, 0.1, 0.1, 1.8, 0.9, 2, 4, 6.8, 1.2, 0.4, 0.2.  

Table 1 presents the parameter estimates and the goodness-of-fit tests for the Lom-E and the competing distributions.  

Table 1: Point estimates and goodness-of-fit criteria for five compared distributions 
Model   

(std.error) 
  

(std.error) 

  

(std.error) 
-loglik KS p-value 

Lom-E 0.3571 

(2.0070) 

0.3744 

(2.9121) 

0.4432 

(0.4022) 
55.4080 0.0856 0.9644 

MOF 27.2840 

(44.9725) 

1.4676 

(0.2356) 

0.0424 

(0.0658) 
55.7062 0.0857 0.9640 

LG{F} 0.1280 

(0.2454) 

0.0202 

(0.0179) 

27.4570 

(23.7631) 
55.9650 0.1005 0.8819 

Weibul 1.0104 

(0.1327) 
---- 

0.5262 

(0.1177) 
55.4496 0.0919 0.9364 

Exponential 
---- ---- 

0.5321 

(0.0913) 
727.1127 2.7048 

0.3402 

(0.0000) 
 

It should be noted that in comparing the lifetime distributions, the distribution with the smallest values of loglikelihood function and KS 

test fits the data better than the other distribution while the distribution with the largest value of p-value of the KS test, also, fits the data 

better the the remaining distribution. It is seen from Table 1 that that the values of the loglikelihood function and KS test of the Lom-E 

distribution is the smallest value, while the p-value of the KS test is the largest. It indicates that the Lom-E distribution better fits the 

vinyl data than the four competing distributions. 
 

6.  Conclusion 

A new three-parameter Lomax-Exponential distribution is proposed and some structural properties are derived. Point and interval 

estimatations are presented for the parameters of the new distribution. The usefulness of the new distribution to lifetime data analysis is 

presented by application of the new distribution to Vinyl chloride data. Results obtained from the application based on some discrepancy 

criteria show the superiority of the proposed distribution over some competing distributions in literature. It is desire that the new three-

parameter Lomax-Exponential distribution will attract wider usefulness in scientific areas where lifetime data analysis is required.  
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