Journal of the Nigerian Association of Mathematical Physics
Volume 57(June — July 2020 Issue), pp55 — 60
© J. of NAMP

COEFFICIENT INEQUALITY OF ERROR AND BESSEL FUNCTIONS IN THE SPACE OF
UNIVALENT HARMONIC FUNCTION

tAwolere 1.T., 2Gbolagade A.M. and Fadare A.O.

Department of Mathematical Science, Olusegun Agagu University of Science and Technology,
Okitipupa, Ondo State, Nigeria
?Department of Mathematics, Emmanuel Alayande College of Education,
P.M.B. 1010, Oyo, Oyo State, Nigeria
3Department of Mathematics, Federal College of Education (Special), Oyo, Oyo State, Nigeria

Abstract

The authors established results involving coefficient inequality, extreme points, convolution and
convex combinations using convolution of error and Bessel functions for new class
T, (1,8.%, kz,cl,cz)of harmonic univalent functions in the unit disc.
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1.0 Introduction
Error function is a special function of sigmoid shape that occurs in probability, statistics, and partial differential equations describing
diffusion as defined by [1, 2].

2 i )
— | e dt
5
The error function is an entire function. It has no singularities and its Taylor expansion always converges. Error function which is present
in diffusion is part of the transport phenomena that can be applied in many disciplines such as Physics, Chemistry, Biology, Thermo
mechanics and Mass flow. Abramowitz [3] transformed error function into series function as

o )" s O]
dt =
\FI fz 2k +1) K
Alzer [4] and Coman [5] studied the properties and inequality of error function while Elbert et. al. [6] also studied the properties and
complimentary error function. Also, Ramachandran et. al. [7] introduced and studied modified error function written in series as
k-1

F(z) = (f*En‘)(z_z+szk @)
5 (2k +1)(k — 1)
where Er fbe a normallzed analytic function which is obtained from (1) as

er f(z)=

erf

©

Er(z):@erf(f)_z zizk (4)

(2k —1)(k —2)
A continuous function ¢ =y +iv IS a complex-valued function in a complex domain G if both u and v are real and harmonic in G. In any

simply connected domain p c G, We can write f = h + 5 where h and g are analytic in D, then for f = h 5 < H , We can express the
analytic function fand g as
h(z)=z+Y a,z", g(z)=2+3 b,z", ‘b1‘<1 (®)

We refer h the analytic part and g co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and orientation
preserving i h (Z)‘ > ‘g r(z)‘ in U. For details on harmonic function see [8-12]

For complex parameters c ,k,,c,.k,(k, .k, = 0,-1,~2...), Porwal [13] defined generalized Bessel functions ¢ (z)= zu pl(z) and

#,(2)= 2 ,(z)- Corresponding to these functions, the following convolution operator was introduced.

Q=0(c,.k,.c, k,)iH > H (6)
defined by -

e, k0, k,)f = fxlgy 9, )= 0(2)*,(2)+ 0 (), (2) 7)
for any function ¢ _ . g in H by letting

Q(c, .k, c,.k,)f(z)= H(z)+G(z) (8)
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where
N V) , e ra)t 9)
M@= St e @)= 3 LT,

In a similar manner Libra type integral operator is given as
(s,)=H(2)+6(2)

where

& 2 e -c,/4)" " (10)
0= - 3 A 8O- Z i ) KOS TR
Using convolution (Hadarmard product) of error function g ¢ and generalized Bessel function B, @
BE, f(z)=(f *Er) (11)
Forany z e u , the following convolution operator is used as
BE, f(z)=BE ,H(z)+ BE H(z) (12)
where

2(c, 14) A gt (13)

BE H(z)=H(z)=z- z

(k) (k +1)(k —1)° (2k 1)

Az

and
- k1 14
BE.G(1)-3 2(c,/4) 8, 2" (14)
i (k) (K + 1)k - 1) (2K —1)
Definition 1. Let f e T, (1, 8.k, .,k ,¢,),0< B <1,1 =0, then

Ern'(z) Erg'(2) szrh'(zrstErg'(z)

Re — " Al>p SLAR

S,..EM(2)+5,. Erg (2) | s, Et(2)+s,. Erg(2)
forc, k,,c, k, eCc and k, k, = 0,-1,-2.....

For more details about generalized Bessel function see [14-17].

Motivated are the results of analytic and harmonic univalent functions defined by Powal [13] and Ramachandran et al [7] using generalized Bessel and
modified error functions hence we established coefficient inequality, distortion and extreme bounds, convolution and convex combinations using
convolution of error and Bessel functions.

We begin with the statement of the following lemma by Ahuja and Jahangiri [18].

Lemma 1: Let f =h+ awith hand g of the form (5). Then, let
ﬂ‘b

(15)

<1

\ J+ Z
Where 0<p<1. Then f is harmonic, orientation preserving, univalent U and s:(B)-
2.0 Main Result
Theorem 1: Let f ¢ i(/l,ﬁ, k,.k,,c,,c,)then we have

- 2(c, /14)"" 2(c, 14)* _ <1-2 (16)
kz:z TR (G [B(k-1)+k - 2] |Ak|+ :lm[p(k ~1)+k+4]|B,
Proof:
R S, Erh'(z)-28 ., Erg'(z) il ﬂ‘zsw, Erh’(z)-zS,,,Erg'(z) .
S,. Em(z)+S,, Erg(z) ‘ S,. Erh(z)+S,. Erg(z)
B 2k(c, /4)* 2k(c, 14)<" o
! ZH(kl)k 1)k -1 (2k - ™ X k), (k+ 1)k -1 2k -1) i
- 2(c, /4)" 2(c, 14)" — )
1_Zk:2(k1)m(k+l)( ko) R () (k+ 1)k —2)° @y’
( -y 2k(c, /4)" Aoy 2k(c2/4)“2 —sz]
P Y MR (e Y CANCERTET S
L 172*7 2(01/4) - Akzklizx, 2(C2/4) - Ezk 1J
2 (k) (k +1)(k =10 (2k 1) 2 (K, )y (k+ 1)k —1)° (2k —1)
Thus, we have
(C /4)%1 k-1 - Z(Cz /4)%1 R o k-1
A Z“ ke Dk -1 AT "X () (e k- )k AR
B 2(c, 14) B 2(c, 14)" —

B,z

k

lfzk:z Azk71+2k:2(

(k) (k + 1)k = 2)% (2K -1)

K, ) (k +1)(k =10 (2k -1)
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- 2(c, /4) r . - 2(c, 14)" —
1 K — A 1 _ 2 [ k B '
>Zk:2(kl)kil(k+l)(k—1)!z e A R i e B
l_zw 2(01/4)7 Akzk71+zw 2(02/4)7 Ezk—l
2 (k) (k +1)(k —1)% (2k -1) =2 (k, ), (k +1)(k —1)* (2k 1)
Upon further simplification, we have
- 2(c, 14)" - & 2(c, /4)" —
-i> : [Bk-p+k-2]A 25" 2 [Bk-p+k+2]B, 2"
*Z o R e AR

Using triangular inequality

ZA Bk -1)+k-]|A |+ ZA Blk-1)+k+2][B,|<1-2

where , _ 2(c,14)"" and A — 2(c, /4)""
Yok, (k +1)(k - 1) (2k - 1) L (ky) (kK + 1)k — 10 (2k —1)
Which complete the proof.

Theorem 2: Let f e T, (4, B, k,,k,,C,,C, ), then we have

\Mﬂs1+b\+mrcﬁ_ﬂ _ClrprA) a7
Lk1(2+ﬁ ) k,2+p- A)J
()= (e o, r —18] —20=2) z“+ﬂ+*”ﬁ (18)
Lk1(2+ﬂ—i k,(2+ 8- /I)J
Proof
F@) < @eloir+ 3 (A ]+ [B]) e < @s )+ r2S (A ]+ [5,)
k=2 k=2
~ 1-2 “ (c, 118k, )2+ 8 - 2] —
7(1+‘b1‘)r+(01/18k1)[2+/3 lkzz 1-1 QA“‘+ B )r
and so
1-2 [ pk-1)+k-2 Bk -1 +k+A— ,
[f(z) < @+, [)r+ TR P i]kZiAlilfﬂ ‘Ak‘+A27171 B.||r
[ 1-2 1-1 1+ 8+ ],
_(1+‘b1‘)r+L(01/18k1)[2+,8—/1]_(c2/18k2)[2+ﬁfﬂ][ 1- 24 j‘bl‘ '

c,@-2) c2(1+,3+4)1r2
k,2+p-4) k,(2+p-2)

s@+mﬁ+m{

Similarly
£ ()= @+ b)) -3 (A +[B])r? < @ pur + e23 (A, +[8,))
k=2 k=2
1-4 (¢, /18k, )2+ B - 1] —\
=1+1b - A B
(s (c, 118k, )2+ B - A] = 1- 4 ] Jr
and so
1-2 =T ~1)+k-21 Blk-1)+k+A =1,
‘f(z)‘z(h—‘bi‘)r TN AT lkzt - ‘Ak‘+A271—A B.||r
- - 1-2 - 1-4 1+ 8+4) (| ,
= elo,)r L(01/18k1)[2+ﬂ7/1] (c, 718k )[2+ﬂ—l]( 1-2 }‘bl‘ '

2(1+‘b1‘)r+18|— c,l-4) ¢ (1+ﬂ+i —|r2
Lkl(2+ﬁ A) k,(2+p- AJ
The upper bound given for f T (/1 B, k,,k,,c,,c,) is sharp and equality occurs for the function
[ c,@-2) LA+ p+2)]- 1-2 (19)

f(z):H‘Bl‘HlBLkI(Uﬁ /1_ L2+ 8- AJ 5| lipia
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Theorem3: Let f e T (4, 8, k,.k,.c,.c,), then we have

<l [ c,(1-2) _c2(1+ﬂ+/1)1r (20)
J< @) 36Lk1(2+ﬁ—1) k (2+,37,1)J
F(2)= @ b)) GF c,1-2) c,@+p+2)] 1)

Lk1(2+ﬂ—ﬂ) L2+ 8- Z,Jr

5.

Ak‘+

Proof:

(2) < 1+\b\+ kQAk‘+
(— )

2(01/18k N2+ p5-4]

B, [)< @+ )+ 2rS (A, +
k=2

(clllskl)[2+ﬂ—/l]q
= 1-2

5.

M s

= <l+ ‘bl‘)‘F

~

and so
@-2) Blk-1)+k-21

ZL

(01/18k)2+ﬁ A et 1-2

) r a-1) 1-2 1+ p+4 |
*(1+‘b1‘)+ZL(clflsm[zw—z]‘(czflsm[zw—u( 2 el

c,(1-2) (:2(1+ﬂ+1)1r
k2+p-2) Kk (2+p-2)

Bk -1)+k+2
1-2

1£/(2) < 1+ o) + sl

|A ]+ A,

< (@+]b,))+ 36{

Similarly

)
o))

@z @) 3k (a5 s b pears, (o]

) 1-2 - (c1/18k1)[2+ﬂfi]qu‘+
(c, 118k, )2+ B - A)is 1-2

=@+p,))-

and so

1-2 r Blk-1)+k-4 i
(c, 118k, )2+ g - 2] 2{ 1-2
2F 1-2 - 1-2 [1+ﬁ+,1J‘b ‘Tr
L(c1/18k1)[2+ﬁ—/1] (c, 118k, )2+ B - 2]\ 1-2 !

Bk -1)+k+ 4 5

[1'(z))= L+ ]b,])- 2 12 K

A+ A, r

=(+|p,))-

[ c,(1-2) c,@+p+2)]
z(1+\b1\)+36“1(2+ﬁ_1)— 2rp-2) r

The upper bound given for f e TT(A B, k., k,,c,,c,) issharp and inequality occurs for the function.

Theorem 4: Let f =h+ 5 , Where h;ndzg alre g;lven by (1).
Then f eclco T, (4, B, k,.K,.c,,c,) ifand only if
f(2)= 3 (X,h, +Y,9,) (22)
where k:1hl(z): z
h(2) =2+ ——— . 2" (k =2,3,..)
m[ﬂ(k 1)+k—/1]
9u(2)= 2+ —— S 2 (k=1,2,3,.),

(kg )y (k+1)(k-1)? (2k-1) [ﬂ(k - 1)+ k+ /1]

(X Y )X, 2 oandY, > 0. In particular, the extreme points of the class f < clco T, (2, 8, k,.k,.c,,c,) are {h }and {g,}

respectively.
Proof: For a function of the form (9), we have

o

f(z): (xkhk+Ykgk)

k=
1-2 )

,l(x e e

(k)L () D)F (2k1)

MR
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z 1-2 —x
Y.z

2(c, 14) "
= (K ),y (k+1)(k-1)* (2k-1) [ﬂ(k B 1)+ k+ A]
© 1-2 Lo
= Z+Z:1 = X,z +Z
T (k) (ke D)(k 1) (2k-1)

Implies that

2(c, 14)!

7[ﬂ(k—l)+k—i]’— 1
(ky )y (k=1 (k+1)(2k-1) ‘ 1-2 ‘
- Y [Bk-1)+k+A]X, |+
(ky )y (k=2 (k+1)(2k-1)

1-4 v ;k
[Bk -1)+ k- 2] o e [p(—1) k4]

(kp )y (k+1)(k=1)1% (2k 1)

M s

n
~

2(c, 14)t
(ky ),y (K=1)% (k+1)(2k-1) [ﬂ(k 7l)+ k- /‘L]|r 1-2 —I

Y
— 1-2 2(c, 14)" N k
=2 {(k Jes (k=1) (k+1)(2k-1) [ﬁ(k 1)+ k + ’1] J

M

=~

ikariYk =1-X,<1

k=1 k=1

Thus feT, (4 B, k. k,.c,.c,)

Conversely, suppose that f < T, (4, 4, k,.k,.c,.c,)- Set

B S T T
X, = (ky )y (k=1 (k+1)(2k-1) ‘ak , (k=23,..)
1-4
and
%[ﬁ(k “1)+k+41]
v, - (k) (D)2 (ke1)(2k 1) ‘bk , (k=12,3,..)

1-2
Then by the inequality theorem 1, we have 0 < X, <1(k =2,3,..)and 0<Y, <1(k =1,2,3,..)
Define —1-37 X, -3y, and note thatx, > 0. Thus, we obtain f2)=3"

k=1 k=2

X .h, +v, g, This completes the proof of
Theorem 4.

3.0 Convolution and Convex Combinations
For two harmonic functions

T
f(z)=2+3Y a2 +> byz
k=2 k=1

F(z)= Z+Z A z" +zgk;k
k=2 k=1
we define their convolution
(F*F)z)= Z+iakAka *iﬁk;k’
Using this definition, we show that the class 1, () is close under convolution.
Theorem5: Let f FecTua(2). Then f«F eTna(2)-

Proof: We note that |a,|<1 and ‘Bk ‘ < 1. Now for the convolution ¢« we have

N TCVE) _ _ 2t _
Z”: (K )y (k=17 (k+1)(2k-1) [ﬂ (k 1)+ K l]‘A a +Z°°: (K ),y (k=1)7 (k+1)(2k-1) [ﬂ(k 1)+ K +ﬂ]‘B b ‘
MR [Pk
P 1-4 Py 1-1
2(c, 14)" 2(c, 14) !

o (k) (k-1 (ks1)(2K-1) [6(-1)+ k-] (ko) (L) (ke1)(2k-1) [plk=1)+k+ 2]
<2 1ak\+2 }bk‘gl

k= 1-2 -1 1-1

Therefore ¢« < T, ,(2) Which completes the proof.
Now, we show that the case T, (1) is closed convex combination of its members.

Theorem 6: Theclass T ,, , (1) is closed under convex combination.

Proof: For (i=1,2,3..) let f, e T w.n(4)where f.(z) is given by

.
f(z)=z+ a,z"+> bz
k=2 k=1
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Then, by Theorem 1 we have
"t
i (2kk71)1(k717)! [2k - 2 71]‘a ‘+ Z 7“ e [2k + 2 +1]
1-2 e 1-2

For Z* t, =1,0<t <1, the convex combination of fi may be written as

<1

Iou <

it. _Z+Z(Ztak}z +Z(thk,}

k2|1 k2|1

Then, by Theorem 1 we have

R
A k- 1-1 “f72k+l+lf
Z Zklkl[ ]ZtaKI Z (2k-1)(k— [ ]Ztibki
k= i=1 k=1 1_2’ i=1

» (w%[zk—ﬂ,—l] ek A1) )
A e 1 D e M

t=1 k=2 1-2 o1 1-2 J
<3t =1

t=1
Therefore,

letlfleTHn( 2)

In conclusion, we established the convolution of error and Bessel functions in the space of univalent harmonic function for the purpose of
coefficient inequality and extreme points as established in theorems one to four. The paper also looked at convolution and convex
combinations of the function in theorems four and five.
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