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Abstract 
 

The authors established results involving coefficient inequality, extreme points, convolution and 

convex combinations using convolution of error and Bessel functions for new class

of harmonic univalent functions in the unit disc. 
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1.0 Introduction 
Error function is a special function of sigmoid shape that occurs in probability, statistics, and partial differential equations describing 

diffusion as defined by [1, 2]. 

       (1) 

The error function is an entire function. It has no singularities and its Taylor expansion always converges. Error function which is present 

in diffusion is part of the transport phenomena that can be applied in many disciplines such as Physics, Chemistry, Biology, Thermo 

mechanics and Mass flow. Abramowitz [3] transformed error function into series function as 

     (2) 

Alzer [4] and Coman [5] studied the properties and inequality of error function while Elbert et. al. [6] also studied the properties and 

complimentary error function. Also, Ramachandran et. al. [7] introduced and studied modified error function written in series as 

     (3) 

where Er f be a normalized analytic function which is obtained from (1) as 

     (4) 

A continuous function  is a complex-valued function in a complex domain G if both u and v are real and harmonic in G. In any 

simply connected domain , we can write  where h and g are analytic in D, then for , we can express the 

analytic function f and g as 

     (5) 

We refer h the analytic part and g co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and orientation 

preserving in D is that   in U. For details on harmonic function see [8-12] 

For complex parameters , Porwal [13] defined generalized Bessel functions  and 

. Corresponding to these functions, the following convolution operator was introduced. 

      (6) 

defined by 

    (7) 

for any function  in H by letting 

      (8) 
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where  

   (9) 

In a similar manner Libra type integral operator is given as 
 

where  

        (10) 

Using convolution (Hadarmard product) of error function  and generalized Bessel function  as 

        (11) 

For any , the following convolution operator is used as  

                  (12) 

where 

                (13) 

and  

     (14) 

Definition 1: Let then 

 

for   and   

For more details about generalized Bessel function see [14-17]. 
Motivated are the results of analytic and harmonic univalent functions defined by Powal [13] and Ramachandran et al [7] using generalized Bessel and 
modified error functions hence we established coefficient inequality, distortion and extreme bounds, convolution and convex combinations using 

convolution of error and Bessel functions. 

We begin with the statement of the following lemma by Ahuja and Jahangiri [18]. 

Lemma 1: Let with h and g of the form (5). Then, let 

       (15) 

where  Then f is harmonic, orientation preserving, univalent U and . 

2.0  Main Result 

Theorem 1: Let then we have 

 (16) 

 

Proof: 

 

 

 

Thus, we have 
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Upon further simplification, we have 

 

 

Using triangular inequality 

 

 

where  

Which complete the proof. 

Theorem 2: Let , then we have 

     (17) 

     (18) 

Proof: 

 

 

and so 

 

 

Similarly  

 

 

and so 

 

 

 

The upper bound given for  is sharp and equality occurs for the function  

  (19) 
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Theorem 3: Let , then we have 

    (20) 

    (21) 

Proof: 

 

 

and so 

 

 

 

Similarly  

 

 

and so 

 

 

 

The upper bound given for  is sharp and inequality occurs for the function. 

Theorem 4: Let , where hand g are given by (1).  

Then  if and only if  

        (22) 

where  

 

 

and . In particular, the extreme points of the class  are and  

respectively. 

Proof:   For a function of the form (9), we have 
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Implies that  

 

 

 

Thus   

Conversely, suppose that . Set  

 

and 

 

Then by the inequality theorem 1, we have and  

Define  and note that . Thus, we obtain . This completes the proof of 

Theorem 4. 

 

3.0   Convolution and Convex Combinations 

For two harmonic functions 
 

 

we define their convolution 
 

Using this definition, we show that the class is close under convolution. 

Theorem 5:  Let . Then . 

Proof: We note that  and . Now for the convolution  we have 

 

 

Therefore  which completes the proof. 

Now, we show that the case  is closed convex combination of its members. 

Theorem 6:  The class  is closed under convex combination. 

Proof:  For  let where  is given by 
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Then, by Theorem 1 we have 

 

For , the convex combination of fi may be written as 

 

Then, by Theorem 1 we have 

 

 

 

Therefore,  
 

In conclusion, we established the convolution of error and Bessel functions in the space of univalent harmonic function for the purpose of 

coefficient inequality and extreme points as established in theorems one to four. The paper also looked at convolution and convex 

combinations of the function in theorems four and five. 
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