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Abstract 
 

We present in this paper, by using the basic tool of Lyapunov's second method the 

existence of periodic or almost periodic solutions of a kind of third order nonlinear 

delay differential equations with a continuous deviating argument 𝝉(𝒕). We provide 

in a different form that is based on Routh-Hurwitz conditions, sufficient conditions 

which ensure the existence of periodic or almost periodic solutions of the delay 

differential equations considered when the forcing term 𝒑 is periodic or almost 

periodic in 𝒕 uniformly in 𝒙, 𝒙′ and 𝒙′′. The new result obtained extends and 

improves on earlier results on delay differential equations.  
 

Keywords: Periodic solutions, Almost periodic solutions, Third order nonlinear delay differential equations, Lyapunov's method           

2000 Mathematics Subject Classification: 34C27, 34D23, 34C25. 
 

1. Introduction 

We consider the third-order nonlinear delay differential equation  

𝑥′′′ + 𝑎𝑥′′ + 𝑓(𝑥(𝑡 − 𝜏(𝑡)), 𝑥′(𝑡 − 𝜏(𝑡))) = 𝑝(𝑡, 𝑥, 𝑥′, 𝑥′′)     (1.1) 

where 𝑎 is positive constant and 𝑓, 𝑝 are continuous in their respective arguments. 0 ≤ 𝜏(𝑡) ≤ 𝛾, 𝜏′(𝑡) ≤ 𝛽, 0 < 𝛽 < 1, 𝛽 and 𝛾 are 

some positive constants, 𝛾 will be determined later. The functions 𝑓(𝑥, 𝑦), 𝑓(𝑥(𝑡 − 𝜏(𝑡)), 𝑦(𝑡 − 𝜏(𝑡))) and 𝑝(𝑡, 𝑥, 𝑦, 𝑧) satisfy a 

Lipschitz condition in 𝑥, 𝑦, 𝑥(𝑡 − 𝑟(𝑡)), 𝑦(𝑡 − 𝑟(𝑡)) and 𝑧. Then, the solutions of (1.1) are unique. Throughout the paper, 𝑥(𝑡), 𝑦(𝑡) and 

𝑧(𝑡) are respectively abbreviated as 𝑥, 𝑦 and 𝑧.  

Periodic properties of solutions play a very significant role in characterizing the behavior of solutions of sufficiently complicated 

nonlinear physical system like differential equations which are important tools in scientific modeling of some practical problems and 

often arise in many fields of science and technology such as after effect, nonlinear oscillations, biological systems and equations with 

deviating arguments (see [1 – 3] ). Various and more general form of equation (1.1) have been studied by several authors, see for instance 

[4 - 6], [7], [8 - 10], [11 - 15], to mention a few. Almost all the results immediately mentioned above hold good for one or more nonlinear 

terms depending on the either constant, continuous or multiple deviating arguments where they obtained the stability and boundedness of 

solutions. A number of methods have been developed for proving the existence of forced oscillations of nonlinear ordinary differential 

equations. Most of these methods are naturally based on applications of fixed point theorems [16]. It should be noted that the existence of 

periodic solutions of some kind of nonlinear third order scalar differential equations without deviating arguments or delay being zero 

have been investigated by some authors, for example [16 - 19]. The methods employed by [16 - 19] were based on the Brouwer and the 

Lerray-Schauder fixed point theorems also referred to as the "non-Routh Hurwitz" direction in proving the existence of periodic solutions 

of third order differential equations. However, here, we consider a different approach that is based on Routh-Hurwitz conditions in 

establishing the existence of periodic or almost periodic solutions of (1.1) if 𝑝 is periodic or almost periodic due to the presence of the 

perturbation 𝑟. Analysis of the periodic properties of solutions for nonlinear delay differential equations using this approach is quite 

complicated. The difficulty increases depending on the assumptions made on forced function 𝑝 and the requirement for a complete 

Lyapunov function.(See also [20]). 

Our motivation comes from the papers of [16 - 19]. With respect to our observation in the relevant literature, periodic properties of 

solutions of delay differential equations in various forms of (1.1) based on Routh-Hurwitz conditions is rarely scarce. We established 

sufficient conditions which ensure the existence of periodic or almost periodic solutions of (1.1) when the forcing term 𝑝 is periodic or 

almost periodic in 𝑡 uniformly in 𝑥, 𝑥′ and 𝑥′′. An example is given to illustrate the correctness and significance of the result obtained. 

Now, we will state the stability criteria for the general non-autonomous delay differential system. We consider:  

�̇� = 𝑓(𝑡, 𝑥), 𝑥𝑡 = 𝑥(𝑡 + 𝜃)    − 𝑟 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0, (1.2) 

where 𝑓: 𝐈 × 𝐶𝐻 ⟶ ℝ𝑛 is a continuous mapping,  

𝑓(𝑡, 0) = 0, 𝐶𝐻: = {𝜙 ∈ (𝐶[−𝑟, 0], ℝ𝑛): ∥ 𝜙 ∥≤ 𝐻} 

 and for 𝐻1 ≤ 𝐻, there exists 𝐿(𝐻1) > 0, with  

|𝑓(𝜙)| ≤ 𝐿(𝐻1)    𝑤ℎ𝑒𝑛    ∥ 𝜙 ∥≤ 𝐻1. 
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Definition 1 ([12]) An element 𝜓 ∈ 𝐶 is in the 𝜔-limit set of 𝜙, say, 𝛺(𝜙), if 𝑥(𝑡, 0, 𝜙) is defined on [0, ∞) and there is a sequence {𝑡𝑛}, 

𝑡𝑛 → ∞ as 𝑛 → ∞, with ∥ 𝑥𝑡𝑛
(𝜙) − 𝜓 ∥→ 0 as 𝑛 → ∞ where  

𝑥𝑡𝑛(𝜙) = 𝑥(𝑡𝑛 + 𝜃, 0, 𝜙)    𝑓𝑜𝑟    − 𝑟 ≤ 𝜃 ≤ 0. 
Definition 2 ([12], [15]) A set 𝑄 ∈ 𝐶𝐻 is an invariant set if for any 𝜙 ∈ 𝑄, the solution of (1.2), 𝑥(𝑡, 0, 𝜙), is defined on [0, ∞) and 

𝑥𝑡(𝜙) ∈ 𝑄 for 𝑡 ∈ [0, ∞).  

Lemma 1 ([12], [15]) An element 𝜙 ∈ 𝐶𝐻 is such that the solution 𝑥𝑡(𝜙) of (1.2) with 𝑥𝑜(𝜙) = 𝜙 is defined on [0, ∞) and ∥ 𝑥𝑡(𝜙) ∥≤
𝐻1 < 𝐻 for 𝑡 ∈ [0, ∞), then 𝛺(𝜙) is a non-empty, compact, invariant set and  

𝑑𝑖𝑠𝑡(𝑥𝑡(𝜙), Ω(𝜙)) → 0    𝑎𝑠    𝑡 → ∞. 
Lemma 2 ([12], [15]) Let 𝑉(𝑡, 𝜙): 𝐼 × 𝐶𝐻 ⟶ ℝ be a continuous functional satisfying a local Lipschitz condition. 𝑉(𝑡, 𝜙) ≠ 0, and such that:   

𝑊1|𝜙(0)| ≤ 𝑉(𝑡, 𝜙) ≤ 𝑊2 ∥ 𝜙 ∥where 𝑊1(𝑟), 𝑊2(𝑟) are wedges  

�̇�(1.2)(𝑡, 𝜙) ≤ 0 for 𝜙 ≤ 𝐶𝐻. 

Then the zero solution of (1.2) is uniformly stable. If we define 𝑍 = {𝜙 ∈ 𝐶𝐻: �̇�(1.2)(𝑡, 𝜙) = 0}, then the zero solution of (1.2) is 

asymptotically stable provided that the largest invariant set in Z is 𝑄 = {0}.  

Definition 3 A continuous function 𝑓: ℝ → 𝑥 is called almost periodic if for each 휀 > 0 there exists ℓ(휀) > 0 such that every interval of 

length ℓ(휀) contains a number 휁 with property that  

|𝑓(𝑡 + 휁) − 𝑓(𝑡)| < 휀    𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑡 ∈ ℝ. 
Definition 4 A continuous function 𝑓: ℝ → 𝑥 is said to be periodic with period 𝜔 for all 𝑡 ∈ ℝ such that  

𝑓(𝑡 + 𝜔) = 𝑓(𝑡)    𝑓𝑜𝑟  𝑎𝑙𝑙  𝑡 ∈ ℝ. 
Assume now that 𝑟 is the perturbation such that 𝑝 the continuous function 𝑝(𝑡, 𝑥, 𝑥′, 𝑥′′) is separable in the form  

𝑝(𝑡, 𝑥, 𝑥′, 𝑥′′) = 𝑞(𝑡) + 𝑟(𝑡, 𝑥, 𝑥′, 𝑥′′), 
with 𝑞(𝑡) + 𝑟(𝑡, 0,0,0) continuous in their respective arguments, where  

|𝑞(𝑡)| ≤ 𝑑1, 𝑑1  𝑖𝑠  𝑎  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑓𝑜𝑟    𝑎𝑙𝑙    − ∞ < 𝑡 < ∞. 
Equation (1.1) may be replaced with equivalent system  

𝑥′ = 𝑦, 
𝑦′ = 𝑧 − 𝑞(𝑡), 
𝑧′ = −𝑎𝑧 − 𝑓(𝑥, 𝑦) − 𝑎𝑞(𝑡) + 𝑝(𝑡, 𝑥, 𝑦, 𝑧) 

+ ∫
𝑡

𝑡−𝜏(𝑡)
𝑓′𝑥(𝑥(𝑠), 𝑦(𝑠))𝑧(𝑠)𝑑𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)
𝑓′𝑦′(𝑥(𝑠), 𝑦(𝑠))𝑧(𝑠)𝑑𝑠.    (1.3) 

 

Our main result is the following: 

2. Statement of results 

Theorem 1  
In addition to the basic assumptions imposed on 𝑎 and functions 𝑓 and 𝑝 appearing in (1.1), we further suppose that the system (1.3) with 

𝑓(0,0) = 0 and 𝑓′𝑥(𝑥, 𝑦), 𝑓′𝑦(𝑥, 𝑦) is continuous for all 𝑥, 𝑦. We assume that there exist positive constants 𝐿, 𝑀, 𝐷1, 𝜈, 𝑏 and 𝑐, (𝑎𝑏 −

𝑐 > 0), 𝑎 > 1, 𝑎2 < 𝑏 such that the following conditions hold:   

(i)  
𝑓(𝑥,𝑦)

𝑦
≥ 𝑏, for all 𝑥, 𝑦 ≠ 0 

(ii)  
𝑓(𝑥,𝑦)

𝑥
≥ 𝜈, for all 𝑥 ≠ 0, 𝑦 

(iii) 𝑓′𝑥(𝑥, 0) ≤ 𝑐, 𝑓′𝑦(𝑥, 0) ≤ 0, 𝑓′𝑧(𝑥, 0) ≤ 0 for all 𝑥.  

(iv) 𝑦 ∫
𝑦

0
𝑓′𝑥(𝑥, 𝜎)𝑑𝜎 ≤ 0 

(v) |𝑓′𝑥(𝑥, 𝑦)| ≤ 𝐿, |𝑓′𝑦(𝑥, 𝑦)| ≤ 𝑀, for all x, y  

(vi) 𝑝(𝑡, 𝑥, 𝑦, 𝑧) satisfies 

𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞) ≡ 𝑟(𝑡, 𝑥1, 𝑦1, 𝑧1 + 𝑞) − 𝑟(𝑡, 𝑥1, 𝑦1, 𝑧2 + 𝑞) ≤ 𝜌(𝑡){|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| + |𝑧1 − 𝑧2|}, 
for arbitrary t and 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1 , 𝑧2 ∈ ℝ holds and 𝜌(𝑡) satisfy  

∫
∞

−∞

𝜌𝑚(𝑡)𝑑𝑡 < ∞, 

for some constant 𝑚 in the range 1 ≤ 𝑚 ≤ 2.  

Furthermore, suppose that 𝛾 satisfies 

𝛾 < 𝑚𝑖𝑛{
𝛼𝛽𝜈

2(𝐿 + 𝑀)
;

(𝑏 − 𝛿𝑐)(1 − 𝛽)

2(𝑎 + 1)(𝐿 + 𝑀)(1 − 𝛽) + [𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝐿
; 

(𝑎𝛿 − 1)(1 − 𝛽)

2(1 + 𝛿)(𝐿 + 𝑀)(1 − 𝛽) + [𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝑚
}. 

Then, there exists a constant 𝐷1 and the solutions of (1.1) satisfying  

{𝑥2(𝑡) + 𝑥′2(𝑡) + 𝑥′′2(𝑡)}
1

2 ≤ 𝐷1,      𝑓𝑜𝑟    − ∞ < 𝑡 < ∞,     (2.1) 

and having the properties that 

i)  If 𝑞(𝑡) and 𝑟(𝑡, 𝑥, 𝑦, 𝑧) are uniformly almost periodic in 𝑡, for {𝑥2(𝑡) + 𝑦2(𝑡) + 𝑧2(𝑡)}
1

2 ≤ 𝐷1 , then the solutions of (1.1) are 

almost periodic in 𝑡. 

ii)  If 𝑞(𝑡) and 𝑟(𝑡, 𝑥, 𝑦, 𝑧) are periodic in 𝑡, with period 𝜔, for {𝑥2(𝑡) + 𝑦2(𝑡) + 𝑧2(𝑡)}
1

2 ≤ 𝐷1, then the solutions of (1.1) periodic 

with period 𝜔.  
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3. Some preliminary results 

Our tool in the proof of Theorem 1 is the following scalar function given by  

𝑉(𝑥𝑡 , 𝑦𝑡, 𝑧𝑡) = 𝑉1(𝑥𝑡 , 𝑦𝑡, 𝑧𝑡) + 𝑉2(𝑥𝑡, 𝑦𝑡, 𝑧𝑡)      (3.1) 

 where 𝑉1 and 𝑉2 are defined by  

2𝑉1 = 2 ∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 + 𝑎𝑦2 + 2𝛿 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 + 𝛿𝑧2 

+2𝑦𝑧 + 2𝛿𝑦𝑓(𝑥, 0) − 𝛼𝛽𝑦2 
 and  

2𝑉2 = 𝛼𝛽𝑏𝑥2 + 2𝑎 ∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 + 𝑎2𝑦2 + 2 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 + 𝑧2 

+2𝑎𝛼𝛽𝑥𝑦 + 2𝑎𝑦𝑧 + 2𝑦𝑓(𝑥, 0) + 2𝛼𝛽𝑥𝑧 

+2𝜆1 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑦2(𝜃)𝑑𝜃𝑑𝑠 

+2𝜆2 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑧2(𝜃)𝑑𝜃𝑑𝑠, 

with  
1

𝑎
< 𝛿 <

𝑏

𝑐
 

 and  

𝛼 < 𝑚𝑖𝑛{
𝑎𝑏−𝑐

𝛽[𝑎+𝜈−1(
𝑓(𝑥,𝑦)

𝑦
−𝑏)2]

,
𝑏

𝛽
,

𝑎𝛿−1

𝛿𝛽
,

𝑏(1+𝛿)

𝛽
}      (3.2) 

 where 𝜆1 and 𝜆2 are positive constants which will be determined later. 

 

Lemma 3.1  Clearly 𝑉(0,0,0) = 0 and there exists finite constants𝐷2 > 0 and 𝐷3 > 0 such that  

𝐷2(𝑥2 + 𝑦2 + 𝑧2) ≤ 𝑉(𝑥𝑡 , 𝑦𝑡, 𝑧𝑡) ≤ 𝐷3(𝑥2 + 𝑦2 + 𝑧2).     (3.3) 

 

Proof: (3.1) can be re-arranged as follows 

2𝑉1 = [2 ∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 −
𝛿

𝑏
𝑓2(𝑥, 0)] + 𝛿𝑏[𝑦 +

𝑓(𝑥, 0)

𝑏
]2 

+𝑎𝑦2 − 𝛿−1𝑦2 − 𝛼𝛽𝑦2 + 𝛿(𝑧 + 𝛿−1𝑦)2 + 𝛿[2 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 − 𝑏𝑦2]. 

The term  

2 ∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 −
𝛿

𝑏
𝑓2(𝑥, 0), 

by the hypothesis of the Theorem 1 and fact that 𝑓2(0,0) = 0, we have that the term  

2 ∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 −
𝛿

𝑏
𝑓2(𝑥, 0) = 2[∫

𝑥

0

𝑓(𝜗, 0)𝑑𝜗 −
𝛿

𝑏
∫

𝑥

0

𝑓(𝜗, 0)
𝑑𝑓(𝜗, 0)

𝑑𝜗
𝑑𝜗 −

𝛿

𝑏
𝑓2(0,0)] 

= 2[∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 −
𝛿

𝑏
∫

𝑥

0

𝑓(𝜗, 0)𝑓′
𝜗

(𝜗, 0)𝑑𝜗] 

= 2 ∫
𝑥

0

(1 −
𝛿

𝑏
𝑓′

𝜗
(𝜗, 0))𝑓(𝜗, 0)𝑑𝜗 ≥ (1 −

𝛿

𝑏
𝑐)𝜈𝑥2. 

 Also the term,  

(𝑎𝑦2 − 𝛿−1𝑦2 − 𝛼𝛽𝑦2) = (𝑎 − 𝛿−1 − 𝛼𝛽)𝑦2 ≥ 0 

since 𝛿 and 𝛼 satisfy (3.2) 

and the term, 

𝛿[2 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 − 𝑏𝑦2] 

by the hypothesis of the Theorem 1, we have that  

𝛿[2 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 − 𝑏𝑦2] = 𝛿[
𝑓(𝑥, 𝑦)

𝑦
− 𝑏]𝑦2 ≥ 0. 

Combining all the estimates for 2𝑉1, we have that  

2𝑉1 ≥ (1 −
𝛿

𝑏
𝑐)𝜈𝑥2 + (𝑎 − 𝛿−1 − 𝛼𝛽)𝑦2 + 𝛿(𝑧 + 𝛿−1𝑦)2 + 𝛿𝑏[𝑦 +

𝑓(𝑥, 0)

𝑏
]2. 

Similarly, 𝑉2 can be arranged as follows:  

2𝑉2 = 𝛼𝛽(𝑏 − 𝛼𝛽)𝑥2 + 𝑎[2 ∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 − 𝛽−1𝑓2(𝑥, 0)] 

+𝛽[𝑎−
1

2𝑦 + 𝛽−1𝑎
1

2𝑓(𝑥, 0)]2 + [2 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 − 𝛽𝑎−1𝑦2] 

+(𝛼𝛽𝑥 + 𝑎𝑦 + 𝑧)2 
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+2𝜆1 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑦2(𝜃)𝑑𝜃𝑑𝑠 

+2𝜆2 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑧2(𝜃)𝑑𝜃𝑑𝑠, 

 the term  

2𝑎[∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 − 𝛽−1𝑓2(𝑥, 0)], 

by the hypothesis of the Theorem 1, the above term becomes  

= 2𝑎[∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 − 𝛽−1 ∫
𝑥

0

𝑓(𝜗, 0)
𝑑𝑓(𝜗, 0)

𝑑𝜗
𝑑𝜗 −

𝛿

𝑏
𝑓2(0,0)] 

= 2𝑎[∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 − 𝛽−1 ∫
𝑥

0

𝑓(𝜗, 0)𝑓′
𝜗

(𝜗, 0)𝑑𝜗] 

= 2𝑎 ∫
𝑥

0

(1 − 𝛽−1𝑓′
𝜗

(𝜗, 0))𝑓(𝜗, 0)𝑑𝜗 ≥ 𝑎(1 −
𝑐

𝛽
)𝜈𝑥2. 

Also the term  

2 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 − 𝛽𝑎−1𝑦2, 

 using the hypothesis of the Theorem 1, the above term becomes  

= [𝑦2
𝑓(𝑥, 𝑦)

𝑦
− 𝛽𝑎−1𝑦2] ≥ (𝑏 − 𝛽𝑎−1)𝑦2. 

Thus,  

2𝑉2 ≥ [𝛼𝛽(𝑏 − 𝛼𝛽) + 𝑎(1 −
𝑐

𝛽
)𝜈]𝑥2 + (𝑏 − 𝛽𝑎−1)𝑦2 

+(𝛼𝛽𝑥 + 𝑎𝑦 + 𝑧)2 

+2𝜆1 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑦2(𝜃)𝑑𝜃𝑑𝑠 

+2𝜆2 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑧2(𝜃)𝑑𝜃𝑑𝑠. 

Combining the estimates 𝑉1 and 𝑉2 for 𝑉 in (3.1) , we have  

𝑉 ≥ [(1 − 𝛿𝑏−1𝑐)𝜈 + 𝛼𝛽(𝑏 − 𝛼𝛽) + 𝑎(1 −
𝑐

𝛽
)𝜈]𝑥2 

+[(𝑎 − 𝛿−1 − 𝛼𝛽) + (𝑏 − 𝛽𝑎−1)]𝑦2 + 𝛿(𝑧 + 𝛿−1𝑦)2 

+(𝛼𝛽𝑥 + 𝑎𝑦 + 𝑧)2 

+2𝜆1 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑦2(𝜃)𝑑𝜃𝑑𝑠 

+2𝜆2 ∫
0

−𝜏(𝑡)

∫
𝑡

𝑡+𝑠

𝑧2(𝜃)𝑑𝜃𝑑𝑠, 

 if we choose 𝛽 = 𝑎𝑏, the constants (1 − 𝛿𝑏−1𝑐)𝜈, 𝛼𝛽(𝑏 − 𝛼𝛽), 𝑎(1 −
𝑐

𝛽
), (𝑎 − 𝛿−1 − 𝛼𝛽) and (𝑏 − 𝛽𝑎−1) are positive by the 

inequalities in (3.2) and the integrals 2𝜆1 ∫
0

−𝜏(𝑡)
∫

𝑡

𝑡+𝑠
𝑦2(𝜃)𝑑𝜃𝑑𝑠 and 2𝜆2 ∫

0

−𝜏(𝑡)
∫

𝑡

𝑡+𝑠
𝑧2(𝜃)𝑑𝜃𝑑𝑠 are non-negative. 

So that  

𝑉(𝑥𝑡 , 𝑦𝑡, 𝑧𝑡) ≥ 𝜉1(𝑥2 + 𝑦2) + 𝛿(𝑧 + 𝛿−1𝑦)2 + (𝛼𝛽𝑥 + 𝑎𝑦 + 𝑧)2 + 𝜆1𝑟2(𝑡)𝑦2 + 𝜆2𝑟2(𝑡)𝑧2, 

 where 𝜉1 = min{(1 − 𝛿−1𝑏𝑐)𝜈 + 𝛼𝛽(𝑏 − 𝛼𝛽) + 𝑎(1 −
𝑐

𝛽
)𝜈, (𝑎 − 𝛿−1 − 𝛼𝛽) + (𝑏 − 𝛽𝑎−1)}. 

Thus, it is evident from the terms contained in the above inequality that there exists a constant 𝐷2 > 0 small enough such that  

𝑉(𝑥𝑡 , 𝑦𝑡, 𝑧𝑡) ≥ 𝐷2(𝑥2 + 𝑦2 + 𝑧2). 
To prove the right side of inequality (3.3), the hypotheses (i) - (iii) of Theorem 1 and using the fact that  

2|𝑥||𝑦| ≤ 𝑥2 + 𝑦2 

yields from 𝑉, term by term  
|2𝑥𝑦| ≤ 2|𝑥||𝑦| ≤ 𝑥2 + 𝑦2 

|2𝑦𝑧| ≤ 2|𝑦||𝑧| ≤ 𝑦2 + 𝑧2 

|2𝑥𝑧| ≤ 2|𝑥||𝑧| ≤ 𝑥2 + 𝑧2 

2 ∫
𝑥

0

𝑓(𝜗, 0)𝑑𝜗 ≤ 𝜈𝑥2 

2 ∫
𝑦

0

𝑓(𝑥, 𝜎)𝑑𝜎 ≤ 𝑏𝑦2 

2𝑦𝑓(𝑥, 0) ≤ 𝜈|𝑥||𝑦| ≤ 𝜈(𝑥2 + 𝑦2) 
and  

2𝜆1 ∫
0

−𝑟(𝑡)

∫
𝑡

𝑡+𝑠

𝑦2(𝜃)𝑑𝜃𝑑𝑠 = 𝜆1𝑟2(𝑡)𝑦2 

≤ 𝜆1𝛾2𝑦2. 
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2𝜆2 ∫
0

−𝑟(𝑡)

∫
𝑡

𝑡+𝑠

𝑧2(𝜃)𝑑𝜃𝑑𝑠 = 𝜆2𝑟2(𝑡)𝑧2 

≤ 𝜆2𝛾2𝑧2. 
𝑉(𝑥𝑡, 𝑦𝑡 , 𝑧𝑡) = 2𝑉1 + 2𝑉2 ≤ ((2 + 𝑎 + 𝛿)𝜈 + (𝑎 + 𝑏 + 1)𝛼𝛽)𝑥2 

+(1 + 𝑎(𝑎 + 2) + 𝑏(1 + 𝛿) + 𝜈(1 + 𝛿) + 𝛼𝛽(𝑎 − 1) + 𝜆1𝛾2)𝑦2 

+(2 + 𝑎 + 𝛿 + 𝛼𝛽 + 𝜆2𝛾2)𝑧2. 
≤ 𝜉2(𝑥2 + 𝑦2 + 𝑧2), 

where 𝜉2 = max{(2 + 𝑎 + 𝛿)𝜈 + (𝑎 + 𝑏 + 1)𝛼𝛽, 1 + 𝑎(𝑎 + 2) + 𝑏(1 + 𝛿) + 𝜈(1 + 𝛿) + 𝛼𝛽(𝑎 − 1) + 𝜆1𝛾2, 2 + 𝑎 + 𝛿 + 𝛼𝛽 + 𝜆2𝛾2}.  

If we choose a positive constant 𝐷3, then we have  

𝑉(𝑥𝑡 , 𝑦𝑡, 𝑧𝑡) ≤ 𝐷3(𝑥2 + 𝑦2 + 𝑧2). 
Thus, (3.3) of lemma 3.1 is established where 𝐷2, 𝐷3 are finite constants. 

Now, differentiating (3.1) along the system (??) after simplification we get  
𝑑

𝑑𝑡
𝑉(𝑥, 𝑦, 𝑧) = −𝑈1 + 𝑈2 + 𝑈3 + 𝑈4,       (3.4) 

where  

𝑈1 =
1

2
𝛼𝛽𝑥𝑓(𝑥, 𝑦) − (1 + 𝛿)𝑦 ∫

𝑦

0

𝑓′
𝑥

(𝑥, 𝜎)𝑑𝜎 − (1 + 𝛿)𝑦2𝑓′
𝑥

(𝑥, 0) + (𝑎𝛿 − 1)𝑧2 

−(1 + 𝛿)𝑧2𝑓′
𝑧
(𝑥, 0) + 𝑦2

𝑓(𝑥, 𝑦)

𝑦
+ 𝑦2𝑓′

𝑦
(𝑥, 0) − 𝑎𝛼𝛽𝑦2 

+𝑎𝑦2
𝑓(𝑥, 𝑦)

𝑦
+ 𝛼𝛽[

𝑓(𝑥, 𝑦)

𝑦
− 𝑏]𝑥𝑦. 

 Using the hypothesis of Theorem 1, we have that  

𝑈1 ≥
1

2
𝛼𝛽𝜈𝑥2 + [𝑎𝑏 + 𝑏 − 𝑎𝛼𝛽 − (1 + 𝛿)]𝑦2 + (𝑎𝛿 − 1)𝑧2 

+𝛼𝛽[
𝑓(𝑥, 𝑦)

𝑦
− 𝑏]𝑥𝑦. 

It follows that  

𝑈1 ≥
1

4
𝛼𝛽𝜈𝑥2 + [𝑎𝑏 + 𝑏 − 𝑎𝛼𝛽 − (1 + 𝛿)]𝑦2 + (𝑎𝛿 − 1)𝑧2 

+[𝑎𝑏 − 𝑐 − 𝛼𝛽(𝑎 +
1

𝜈
(
𝑓(𝑥, 𝑦)

𝑦
− 𝑏)2)]𝑦2 

+
1

4
𝛼𝛽𝜈[𝑥 +

2

𝜈
(
𝑓(𝑥, 𝑦)

𝑦
− 𝑏)𝑦]2. 

 If we choose  

𝛼 < 𝑚𝑖𝑛{
𝑎𝑏 − 𝑐

𝛽[𝑎 + 𝜈−1(
𝑓(𝑥,𝑦)

𝑦
− 𝑏)2]

,
𝑏

𝛽
,
𝑎𝛿 − 1

𝛿𝛽
,
𝑏(1 + 𝛿)

𝛽
}, 

𝑈1 ≥
1

4
𝛼𝛽𝜈𝑥2 + (𝑏 − 𝛿𝑐)𝑦2 + (𝑎𝛿 − 1)𝑧2. 

Now,  

𝑈2 = (𝛼𝛽𝑥 + (𝑎 + 1)𝑦 + (1 + 𝛿)𝑧) ∫
𝑡

𝑡−𝜏(𝑡)

𝑓′
𝑥

(𝑥(𝑠), 𝑦(𝑠))𝑦(𝑠)𝑑𝑠 

+(𝛼𝛽𝑥 + (𝑎 + 1)𝑦 + (1 + 𝛿)𝑧) ∫
𝑡

𝑡−𝜏(𝑡)

𝑓′
𝑦

(𝑥(𝑠), 𝑦(𝑠))𝑧(𝑠)𝑑𝑠 

+𝜆1𝜏(𝑡)𝑦2 + 𝜆2𝜏(𝑡)𝑧2 − 𝜆1(1 − 𝜏′(𝑡)) ∫
𝑡

𝑡−𝜏(𝑡)

𝑦2(𝑠)𝑑𝑠 

−𝜆2(1 − 𝜏′(𝑡)) ∫
𝑡

𝑡−𝜏(𝑡)

𝑧2(𝑠)𝑑𝑠. 

From (v) of Theorem 1, |𝑓′
𝑥

(𝑥, 𝑦)| ≤ 𝐿, |𝑓′
𝑦

(𝑥, 𝑦)| ≤ 𝑀 and using 2𝑢𝑣 ≤ 𝑢2 + 𝑣2, we have that  

(𝛼𝛽𝑥 + (𝑎 + 1)𝑦 + (1 + 𝛿)𝑧) ∫
𝑡

𝑡−𝜏(𝑡)

𝑓′
𝑥

(𝑥(𝑠), 𝑦(𝑠))𝑦(𝑠)𝑑𝑠 

≤ 𝛼𝛽
𝐿

2
𝜏(𝑡)𝑥2 + 𝛼𝛽

𝐿

2
∫

𝑡

𝑡−𝜏(𝑡)

𝑦2(𝑠)𝑑𝑠 

+
(𝑎 + 1)

2
𝐿𝜏(𝑡)𝑦2 +

(𝑎 + 1)

2
𝐿 ∫

𝑡

𝑡−𝜏(𝑡)

𝑦2(𝑠)𝑑𝑠 

+
(1 + 𝛿)

2
𝐿𝜏(𝑡)𝑧2 +

(1 + 𝛿)

2
𝐿 ∫

𝑡

𝑡−𝜏(𝑡)

𝑦2(𝑠)𝑑𝑠 

 and  

(𝛼𝛽𝑥 + (𝑎 + 1)𝑦 + (1 + 𝛿)𝑧) ∫
𝑡

𝑡−𝜏(𝑡)

𝑓′
𝑦

(𝑥(𝑠), 𝑦(𝑠))𝑧(𝑠)𝑑𝑠 

≤
𝛼𝛽

2
𝑀𝜏(𝑡)𝑥2 +

𝛼𝛽

2
𝑀 ∫

𝑡

𝑡−𝜏(𝑡)

𝑧2(𝑠)𝑑𝑠 
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+
(𝑎 + 1)

2
𝑀𝜏(𝑡)𝑦2 +

(𝑎 + 1)

2
𝑀 ∫

𝑡

𝑡−𝜏(𝑡)

𝑧2(𝑠)𝑑𝑠 

+
(1 + 𝛿)

2
𝑀𝜏(𝑡)𝑧2 +

(1 + 𝛿)

2
𝑀 ∫

𝑡

𝑡−𝜏(𝑡)

𝑧2(𝑠)𝑑𝑠. 

Thus,  

𝑈2 ≥
1

2
{𝛼𝛽(𝐿 + 𝑀)𝜏(𝑡)𝑥2 + ((𝑎 + 1)𝐿 + (𝑎 + 1)𝑀 + 𝜆1)𝜏(𝑡)𝑦2 

+((1 + 𝛿)𝐿 + (1 + 𝛿)𝑀 + 𝜆1)𝜏(𝑡)𝑧2} 

+
1

2
{𝛼𝛽𝐿 + (1 + 𝛿)𝐿 − 2𝜆1(1 − 𝜏′(𝑡))} × ∫

𝑡

𝑡−𝜏(𝑡)

𝑦2(𝑠)𝑑𝑠 

+
1

2
{𝛼𝛽𝑀 + (1 + 𝛿)𝑀 − 2𝜆2(1 − 𝜏′(𝑡))} × ∫

𝑡

𝑡−𝜏(𝑡)
𝑧2(𝑠)𝑑𝑠. 

We use 0 ≤ 𝜏(𝑡) ≤ 𝛾, 𝜏′(𝑡) ≤ 𝛽 from the assumption and choose  

𝜆1 =
[𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝐿

2(1 − 𝛽)
> 0 

and  

𝛿 =
[𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝑀

2(1 − 𝛽)
> 0 

we have,  

𝑈2 ≥
1

2
𝛼𝛽(𝐿 + 𝑀)𝛾𝑥2 

+
1

2
𝛾{(𝑎 + 1)𝐿 + (𝑎 + 1)𝑀 +

[𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝐿

2(1 − 𝛽)
}𝑦2 

+
1

2
𝛾{(1 + 𝛿)𝐿 + (1 + 𝛿)𝑀 +

[𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝑀

2(1 − 𝛽)
}𝑧2. 

 Combining the estimates for 𝑈1 and 𝑈2 only in 
𝑑

𝑑𝑡
𝑉(𝑥, 𝑦, 𝑧) in (3.4), we obtain  

𝑑

𝑑𝑡
𝑉(𝑥, 𝑦, 𝑧) ≤ −

1

4
𝛼𝛽{𝜈 − 2𝛾(𝐿 + 𝑀)}𝑥2 

−
1

2
{(𝑏 − 𝛿𝑐) − 2𝛾[(𝑎 + 1)𝐿 + (𝑎 + 1)𝑀 +

(𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)𝐿)

2(1 − 𝛽)
]}𝑦2 

−
1

2
{(𝑎𝛿 − 1) − 2𝛾[(1 + 𝛿)𝐿 + (1 + 𝛿)𝑀 +

(𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)𝑀)

2(1 − 𝛽)
]}𝑧2. 

 Choosing  

𝛾 < 𝑚𝑖𝑛{
𝛼𝛽𝜈

2(𝐿 + 𝑀)
;

(𝑏 − 𝛿𝑐)(1 − 𝛽)

2(𝑎 + 1)(𝐿 + 𝑀)(1 − 𝛽) + [𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝐿
; 

(𝑎𝛿 − 1)(1 − 𝛽)

2(1 + 𝛿)(𝐿 + 𝑀)(1 − 𝛽) + [𝛼𝛽 + (𝑎 + 1) + (1 + 𝛿)]𝑚
}, 

we have that 
𝑑

𝑑𝑡
𝑉(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) ≤ −𝛿1(𝑥2 + 𝑦2 + 𝑧2), 

for some 𝛿1 > 0. 

Thus, in view of (3.3) of Lemma 3.1 and the immediate above inequality, the conditions of Lemma 2 are immediate provided 𝛾 is 

satisfied and 𝛿, 𝛼 satisfy inequalities (3.2) respectively. 

Also,  

𝑈3 = [(1 + 𝛿)𝑥𝑓′
𝑥

(𝑥, 0) + (1 + 𝛿)𝑦
𝑓(𝑥, 𝑦)

𝑦
− 𝑎𝑦2 + (1 + 2𝑎)𝑧]𝑞(𝑡) 

By the hypothesis of Theorem 1, we have  
𝑈3 ≥ [(1 + 𝛿)𝑐|𝑥| + (1 + 𝛿𝑏 − 𝑎2)|𝑦| + (1 + 2𝑎)|𝑧|]𝑞(𝑡) 

and finally  
𝑈4 ≥ [𝛼𝛽|𝑥| + (1 + 𝑎)|𝑦| + (1 + 𝛿)|𝑧|]𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞). 

Now, combining all the estimates 𝑈1, 𝑈2, 𝑈3 and 𝑈4 to obtain 
𝑑

𝑑𝑡
𝑉(𝑥, 𝑦, 𝑧) in (3.4), yields  

𝑑

𝑑𝑡
𝑉(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) ≤ −𝛿1(𝑥2 + 𝑦2 + 𝑧2) + [(1 + 𝛿)𝑐|𝑥| + ((1 + 𝛿)𝑏 − 𝑎2)|𝑦| + (1 + 2𝑎)|𝑧|]𝑞(𝑡) 

+[𝛼𝛽|𝑥| + (1 + 𝑎)|𝑦| + (1 + 𝛿)|𝑧|]𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞). 
It follows that  
𝑑

𝑑𝑡
𝑉(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) ≤ −𝛿1(𝑥2 + 𝑦2 + 𝑧2) + 𝛿2(𝑥2 + 𝑦2 + 𝑧2)

1

2 

+𝛿3(𝑥2 + 𝑦2 + 𝑧2)
1

2|𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞)|. 

 where 𝛿2 = max√3𝑑1{(1 + 𝛿)𝑐, (1 + 𝛿)𝑏 − 𝑎2, (1 + 2𝑎)} and 𝛿3 = max√3{𝛼𝛽, (1 + 𝑎), (1 + 𝛿)}. 

It follows that  
𝑑

𝑑𝑡
𝑉(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) ≤ −𝛿1(𝑥2 + 𝑦2 + 𝑧2) + 𝛿4(𝑥2 + 𝑦2 + 𝑧2)

1

2[𝑟(𝑡, 𝑥, 𝑦 + 𝑞) + 1], 
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where 𝛿4 = 𝑚𝑎𝑥{𝛿2, 𝛿3}. 

So that since  

|𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞)| ≤ 𝛿4𝜌(𝑡)[(𝑥2 + 𝑦2 + 𝑧2)
1

2 + 1]. 
Following the argument used in [8] it can further verified that 
𝑑

𝑑𝑡
𝑉(𝑥𝑡, 𝑦𝑡, 𝑧𝑡) ≤ −𝛿5(𝑥2 + 𝑦2 + 𝑧2) + 𝛿6(𝑥2 + 𝑦2 + 𝑧2)

1

2|𝜑|,     (3.5) 

where 𝛿5, 𝛿6 are finite constants and 𝜑 = 𝑟(𝑡, 𝑥1, 𝑦1 + 𝑧1 + 𝑞) − 𝑟(𝑡, 𝑥2, 𝑦2 + 𝑧2 + 𝑞). 

 

4. Proof of Theorem 1 

Consider the function  
Ψ(𝑡) = 𝑉((𝑥(𝑡 − 휁) − 𝑥(𝑡)), (𝑦(𝑡 − 휁) − 𝑦(𝑡)), (𝑧(𝑡 − 휁) − 𝑧(𝑡))) 

where V is the function defined in (3.1) with 𝑥, 𝑦, 𝑧 replaced by (𝑥(𝑡 + 휁) − 𝑥(𝑡)), (𝑦(𝑡 + 휁) − 𝑦(𝑡)) and (𝑧(𝑡 + 휁) − 𝑧(𝑡)) 

respectively. Then, by Lemma 3.1 we have positive constants 𝐷4 and 𝐷5 such that  

𝐷4𝑆(𝑡) ≤ Ψ(𝑡) ≤ 𝐷5𝑆(𝑡),         (4.1) 

where  
𝑆(𝑡) = {|𝑥(𝑡 + 휁) − 𝑥(𝑡)|2 + |𝑦(𝑡 + 휁) − 𝑦(𝑡)|2 + |𝑧(𝑡 + 휁) − 𝑧(𝑡)|2}. 

Differentiating Ψ along the system (1.3), we get as in (3.5), 

Ψ̇(𝑡) ≤ −𝛿7{|𝑥(𝑡 + 휁) − 𝑥(𝑡)|2 + |𝑦(𝑡 + 휁) − 𝑦(𝑡)|2 + |𝑧(𝑡 + 휁) − 𝑧(𝑡)|2} 

+𝛿8{|𝑥(𝑡 + 휁) − 𝑥(𝑡)|2 + |𝑦(𝑡 + 휁) − 𝑦(𝑡)|2| + |𝑧(𝑡 + 휁) − 𝑧(𝑡)|2}
1

2|𝜑|,     (4.2) 

where 𝜑 = 𝑟((𝑡 + 휁), 𝑥(𝑡), 𝑦(𝑡) + 𝑧(𝑡) + 𝑞(𝑡 + 휁) − 𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞) with 𝛿7 and 𝛿8 being finite constants. 

Inequality (4.2) can be arranged as  

Ψ̇(𝑡) ≤ −𝛿7{|𝑥(𝑡 + 휁) − 𝑥(𝑡)|2 + |𝑦(𝑡 + 휁) − 𝑦(𝑡)|2 + |𝑧(𝑡 + 휁) − 𝑧(𝑡)|2} 

+𝛿9{|𝑥(𝑡 + 휁) − 𝑥(𝑡)|2 + |𝑦(𝑡 + 휁) − 𝑦(𝑡)|2 + |𝑧(𝑡 + 휁) − 𝑧(𝑡)|2}
1

2|𝜑| 

+𝛿10{|𝑥(𝑡 + 휁) − 𝑥(𝑡)|2 + |𝑦(𝑡 + 휁) − 𝑦(𝑡)|2 + |𝑧(𝑡 + 휁) − 𝑧(𝑡)|2}
1

2 

× |𝑟((𝑡 + 휁), 𝑥(𝑡), 𝑦(𝑡) + 𝑧(𝑡) + 𝑞(𝑡 + 휁) − 𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞)|.      (4.3) 

Since the perturbation 𝑟 is uniformly almost periodic in t. Then, given arbitrary 휀 > 0, we can find 휁 > 0 such that |𝑞(𝑡 + 휁) − 𝑞(𝑡)| ≤
ℓ휀2,  

|𝑟((𝑡 + 휁), 𝑥(𝑡), 𝑦(𝑡) + 𝑧(𝑡) + 𝑞(𝑡 + 휁) − 𝑟(𝑡, 𝑥, 𝑦, 𝑧 + 𝑞(𝑡))| ≤ ℓ휀2,    (4.4) 

where ℓ is a constant whose value will be determined later. Thus, (4.3) becomes  

Ψ̇(𝑡) ≤ −𝛿7𝑆(𝑡) + 𝛿9𝑆
1

2(𝑡)|𝜑| + 𝛿10𝑆
1

2(𝑡)ℓ휀2.       (4.5) 

 In view of (2.1) of Theorem 1, we have that  

{|𝑥(𝑡 + 휁) − 𝑥(𝑡)|2 + |𝑦(𝑡 + 휁) − 𝑦(𝑡)|2 + |𝑧(𝑡 + 휁) − 𝑧(𝑡)|2}
1

2 ≤ 𝐷1 

Inequality (4.5) becomes,  

Ψ̇(𝑡) + 𝛿7𝑆(𝑡) ≤ 𝛿9𝑆
1

2|𝜑| + 𝛿10𝐷1ℓ휀2.        (4.6) 

Let 𝑚 be any constant such that 1 ≤ 𝑚 ≤ 2 and set 𝑘 = 1 −
1

2
𝑚, so that 0 ≤ 𝑘 ≤

1

2
. 

Then, (4.6) becomes 

Ψ̇(𝑡) + 𝛿7𝑆(𝑡) ≤ 𝛿9𝑆𝑚Ψ∗ + 𝛿10𝐷1ℓ휀2        (4.7) 

 and Ψ∗ = 𝑆(
1

2
−𝑘)(|𝜑| − 𝛿7𝛿9

−1𝑆
1

2(𝑡)). 

We consider two cases 

1) |𝜑| ≤ 𝛿7𝛿9
−1𝑆

1

2 and 

2) |𝜑| > 𝛿7𝛿9
−1𝑆

1

2 

separately, we find that in either case, there exists some constants 𝛿11 > 0 such that Ψ∗ ≤ 𝛿11|𝜑|2(1−𝑘). Thus, the inequality (4.7) 

becomes  
𝑑Ψ

𝑑𝑡
+ 𝛿7𝑆 ≤ 𝛿12𝑆𝑘𝜌2(1−𝑘)𝑆(1−𝑘)Ψ(𝑡) + 𝛿10𝐷1ℓ휀2 

where 𝛿12 ≥ 2𝛿9𝛿11. Using (4.1) on Ψ, we get  
𝑑Ψ

𝑑𝑡
+ ((𝛿13 − 𝛿14)𝜌𝑚(𝑡))Ψ(𝑡) ≤ 𝛿10𝐷1ℓ휀2       (4.8) 

where 𝛿13, 𝛿14 as positive constants. 

On integrating   (4.8)  from 𝑡𝑜 to 𝑡(𝑡 ≥ 𝑡𝑜), we obtain  

Ψ(𝑡) ≤ 𝛿15Ψ(𝑡𝑜)exp{−𝛿13(𝑡 − 𝑡𝑜)} + 𝛿14 ∫
𝑡

𝑡𝑜

𝜌𝑚(𝑠)𝑑(𝑠)} 

+𝛿16ℓ휀2,          (4.9) 

where 𝛿15 =
𝛿9

𝛿7
 and 𝛿16 =

𝛿15𝛿10𝐷1

𝛿13
.  

If  

∫
𝑡

𝑡𝑜

𝜌𝑚(𝑠)𝑑(𝑠) < 𝛿13𝛿14
−1(𝑡 − 𝑡𝑜), 
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then, the exponential index remains negative for all (𝑡 − 𝑡𝑜) ≥ 0. As 𝑡 = (𝑡 − 𝑡𝑜) → ∞ and that Ψ(𝑡𝑜) is finite in (4.9), we have that  

Ψ(𝑡) ≤ 𝛿16ℓ휀2    𝑓𝑜𝑟    𝑎𝑛𝑦    𝑡. 
Since Ψ(𝑡) satisfies (4.1),  

Ψ(𝑡) ≤ 𝐷4
−1𝛿16ℓ휀2. 

Also by definition of Ψ(𝑡) in (4.1), we have that  

|𝑥(𝑡 + 휁) − 𝑥(𝑡)| + |𝑦(𝑡 + 휁) − 𝑦(𝑡)| + |𝑧(𝑡 + 휁) − 𝑧(𝑡)| ≤ (
3ℓ𝛿16

𝐷4
)

1

2휀.     (4.10) 

choose ℓ =
𝐷4

3𝛿16
, inequality (4.10) implies  

|𝑥(𝑡 + 휁) − 𝑥(𝑡)| + |𝑦(𝑡 + 휁) − 𝑦(𝑡)| + |𝑧(𝑡 + 휁) − 𝑧(𝑡)| ≤ 휀,     (4.11) 

where 휁 is chosen to satisfy (4.4) is relatively dense and hence (4.11) implies that the solutions (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) or equivalently 

𝑥(𝑡), 𝑥′(𝑡), 𝑥′′(𝑡) of (1.1) are uniformly almost periodic in t. 

To show that the solutions are also periodic, we assume that  

𝑞(𝑡 + 𝜔) = 𝑞(𝑡) 

𝑟(𝑡 + 𝜔, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) + 𝑞(𝑡)) = 𝑟(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) + 𝑞(𝑡)), 

for (𝑥2 + 𝑦2 + 𝑧2)
1

2 ≤ 𝐷1, for some constants 𝐷1 > 0. 

Since the perturbation 𝑟(𝑡, 𝑥, 𝑦, 𝑧) has period 𝜔 in t, we replace 휁 in the definition of Ψ(𝑡) with 𝜔. The terms in the left hand side of (4.4) 

is identically zero, thus we may have inequality (4.11) as  

|𝑥(𝑡 + 𝜔) − 𝑥(𝑡)| + |𝑦(𝑡 + 𝜔) − 𝑦(𝑡)| + |𝑧(𝑡 + 𝜔) − 𝑧(𝑡)| ≤ 0. 
Thus,  

|𝑥(𝑡 + 𝜔) − 𝑥(𝑡)| + |𝑦(𝑡 + 𝜔) − 𝑦(𝑡)| + |𝑧(𝑡 + 𝜔) − 𝑧(𝑡)| = 0. 
which implies that  

𝑥(𝑡 + 𝜔) = 𝑥(𝑡),      𝑦(𝑡 + 𝜔) = 𝑦(𝑡)    𝑎𝑛𝑑    𝑧(𝑡 + 𝜔) = 𝑧(𝑡). 
That is, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) or equivalently 𝑥(𝑡), 𝑥′(𝑡), 𝑥′′(𝑡) of (1.1) are periodic in t with period 𝜔. 

Example 1 We consider third-order nonlinear delay differential equation  

𝑥′′′ + 2𝑥′′ + [3𝑥(𝑡 − 𝜏(𝑡)) + 12𝑥′2(𝑡 − 𝜏(𝑡))] =
1

1+𝑡2+𝑥2+𝑥′2+𝑥′′2     (4.12) 

with equivalent system of (4.12) as:  

𝑥′ = 𝑦 

𝑦′ = 𝑧 − (2 +
4

|𝑠𝑖𝑛𝑡| + 1
) 

𝑧′ = −2𝑧 − (3𝑥 + 12𝑦2) − 2(2 +
4

|𝑠𝑖𝑛𝑡| + 1
) +

1

1 + 𝑡2 + 𝑥2 + 𝑦2 + 𝑧2
 

+ ∫
𝑡

𝑡−𝜏(𝑡)
3𝑑𝑠 + ∫

𝑡

𝑡−𝜏(𝑡)
24𝑦(𝑠)𝑑𝑠,        (4.13) 

 where 𝑞(𝑡) = (2 +
4

|𝑠𝑖𝑛𝑡|+1
) is the perturbation. 

Comparing (1.3) with (4.13), it is easy to see that  

(2 +
4

|𝑠𝑖𝑛𝑡| + 1
) = 𝑞(𝑡) ≤ 𝑑1 = 4 

The function 𝑓(𝑥, 𝑦) = (3𝑥 + 12𝑦2), it is clear from the equation that  
𝑓(𝑥, 𝑦)

𝑦
≥ 12 = 𝑏 > 0,    𝑦 ≠ 0 

Also,  
𝑓(𝑥, 𝑦)

𝑥
≥ 3 = 𝜈 > 0,    𝑥 ≠ 0 

𝑓′𝑥(𝑥, 0) ≤ 3 = 𝑐,    𝑐 > 0 

|𝑓′𝑥(𝑥, 𝑦)| ≤ 3 = 𝐿 

|𝑓′𝑦(𝑥, 𝑦)| ≤ 24 = 𝑀 

1

2
> 𝛿 >

12

3
,    𝑤𝑒  𝑐ℎ𝑜𝑜𝑠𝑒, 𝛿 = 1 

Since  

0 < 𝛽 < 1,    𝑤𝑒  𝑐ℎ𝑜𝑜𝑠𝑒, 𝛽 =
1

2
, 

we have  

𝛼 < 𝑚𝑖𝑛{0.84,24,2,48} 

 thus, we take 𝛼 = 0.64. 

It follows that  

𝛾 < 𝑚𝑖𝑛{0.018,0.046,0.003} 

hence, we can choose 𝜏(𝑡) = 0.001. 

Thus, all the conditions of Theorem 1 hold. That is, the solutions of (4.12) having the properties that are almost periodic and periodic in 𝑡. 

The plot of 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) of equation (4.13) which are almost periodic solutions characterizing the system (4.13) is shown in Fig. 1, 

Fig.2 and Fig.3 respectively below while in Fig. 4, Fig. 5 and Fig. 6 shows the periodic behaviour of solutions of 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) of 

equation (4.13) with period 𝜔 = 0.80401 in 𝑡.  
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Fig. 1 The almost periodic graph of 𝑥(𝑡) after a force function with 𝜏(𝑡) = 0.001      Fig. 2 The almost periodic graph of 𝑦(𝑡) after a force function with 𝜏(𝑡) = 0.001 

 

   
Fig. 3 The almost periodic graph of 𝑧(𝑡) after a force function with 𝜏(𝑡) = 0.001                    Fig. 4 The periodic graph of 𝑥(𝑡) after a force function with 𝜔 = 0.80401 and 𝜏(𝑡) = 0.001 

 

     
Fig. 5 The periodic graph of 𝑦(𝑡) after a force function with 𝜔 = 0.80401 and 𝜏(𝑡) = 0.001   Fig. 6 The periodic graph of 𝑧(𝑡) after a force function with 𝜔 = 0.80401 and 𝜏(𝑡) = 0.001 

 

Conclusion 

Analysis of nonlinear delay diffrential equations show that Lyapunov’s theory in periodic properties of solutions is rarely scarce. The 

Lyapunov’s method allow us to predict and describe the periodic behaviour of solutions of nonlinear delay differential equations when 

the forcing term p is periodic or almost periodic in t. The solutions of the third order nonlinear delay differential equation (1.1) are 

periodic or almost periodic uniformly in in 𝑥, 𝑥′ and 𝑥′′ according to Lyapunov’s theory if the conditions of Theorm 1 hold. 
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