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Abstract 
 

Mostly, research from the work of engineers, mathematicians, physicist, computer 

scientist, Astronomers and other scientist are equations, which are nonlinear in 

nature. Researchers made significant effort in solving equations of the form 𝑭(𝒙) =
𝟎, 𝒙 ∈ 𝑹𝒏, yet some of the methods developed do have deficiency. In this article, an 

improved version of a derivative free method for Solving Nonlinear Equations via a 

derivative free line search is presented. Interestingly, without computing any 

derivative, the proposed method never fail to converge throughout the numerical 

experiments and it satisfied the descent condition. Different initial starting points 

were used on a benchmark problems and the output is based on number of iterations 

and CPU time. The approach yield a method of solving systems of nonlinear 

equations that is capable of significantly reducing the CPU time and number of 

iteration, as compared to its counterparts. Thus, suitable and achieved the objective. 

The efficiency of the proposed scheme has been confirmed by the numerical results 

presented. 
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1.  Introduction 

Consider the global optimization problem of the form  

𝑚𝑖𝑛𝑓(𝑥), 𝑥 ∈ 𝑅𝑛.        (1) 

With condition that(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘),where 𝛼𝑘 is the line search and 𝑑𝑘 is the search direction. The search direction 𝑑𝑘 is generally 

required to satisfy the descent condition 𝛻(𝑥𝑘)𝑇𝑑𝑘 < 0.Supposed𝑓 be a norm function defined by a function  

𝑓(𝑥)  =
1

2
‖𝐹(𝑥)‖2        (2)  

where, || · || stands for the Euclidian norm. Then the unconstrained optimization problem, (1) is equivalent systems to nonlinear 

equations problem  

𝐹(𝑥)  =  0, 𝑥 ∈ 𝑅𝑛       (3) 

where 𝐹: 𝑅𝑛 → 𝑅𝑛is nonlinear mappingassumed to satisfy (i) There exists 𝑥∗ ∈ 𝑅𝑛such that 𝐹(𝑥∗) = 0, (ii) 𝐹is a continuously 

differentiable mapping in a neighborhood of 𝑥∗ (iii) the Jacobian matrix of 𝐹at 𝑥given by 𝐽(𝑥) = 𝐹′(𝑥)is symmetric. There are various 

methods for solving nonlinear equations (3) [1-6]. Among them is the Newton’s method, which plays an important role due to its rapid 

convergence rate and decreasing the function value of the sequence. However, the methods still suffers deficiency such as computation of 

the derivative 𝐹′and solution of some system of linear equations at each iteration. The iterative formula of a Newton method is given by 

𝑥𝑘+1  = 𝑥𝑘 + 𝑠𝑘  , 𝑠𝑘 = 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1, ⋯, 
where𝛼𝑘is a step length to be computed by a line search technique, 𝑥𝑘+1represents a new iterative point,𝑥𝑘 is the previous iteration, while 

𝑑𝑘is the search direction to becalculated by solving thelinear system of equations below,  

𝐹′(𝑥𝑘)𝑑𝑘 = −𝐹(𝑥𝑘),       (4) 

Where 𝐹′(𝑥𝑘) is the Jacobian matrix of 𝐹(𝑥𝑘)at 𝑥𝑘. 

The drawback of the technique (4) is the need to compute the Jacobian matrix 𝐹′(𝑥𝑘) at every iteration, whichincreases the difficulty in 

computation; this is due to the first-order derivative of the system. Sometimes the derivatives are not available or could not be obtained 

exactly especially for the large-scale problems [7, 8].Hence these requires the need for derivative free methods for solving such 

problems. There are many scholars [9-13] that discussed derivative-free methods, yet some problems persist. Therefore, motivated by 

[14] the purpose of this article is to improve the derivative free method with decent direction for solving system of nonlinear equations 

via derivative free line search[16, 17] and the approximations 𝐹𝑜(𝑥𝑘) ≈ 𝛾𝑘𝐼.Where 𝐼 is an identity matrix and 𝛾𝑘 is the new parameter 

introduced. The method [14] retained a norm descent property without computing the Jacobian matrix with less number of iterations and 

CPU time that is globally convergent. 
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The next section discussed the proposed method. Section 3reports some numerical results of the proposed method while sections 4 gives 

the conclusion. 

 

2. Derivation of the Method 

This section discussed the Derivation of the proposed method for solving system of nonlinear equations (3). The aim is to improve the 

computational performance of the existing method [14] by the concept of a derivative free line search method, and introducing the 

approximations 𝐹𝑜(𝑥𝑘) ≈ 𝛾𝑘𝐼, where 𝐼 is an identity matrix and 𝛾𝑘 is the new parameter. 

Recall, from Taylor’s expansion of the first order the approximation of 𝐹(𝑥𝑘+1), if follows that  

𝐹(𝑥𝑘+1) ≈ 𝐹(𝑥𝑘) + 𝐹𝑜(𝛿)(𝑥𝑘+1 − 𝑥𝑘)       (5) 

where the parameter 𝛿 fulfills the conditions 𝛿 ∈  [𝑥𝑘 , 𝑥𝑘+1],and that  

𝛿 =  𝑥𝑘 + 𝜆(𝑥𝑘+1 − 𝑥𝑘)            0 ≤ 𝜆 ≤ 1.      (6) 

Note that the distance between 𝑥𝑘 , and 𝑥𝑘+1 is small enough.By taking 𝜆 = 1 in (6), then 𝛿 = 𝑥𝑘+1. Also, if 𝜆 = 0, then 𝛿 =
𝑥𝑘 .Therefore we have 

𝐹𝑜(𝛿) ≈ 𝛾𝑘+1𝐼.         (7) 

Knowing this, the expression (5) becomes 

𝐹(𝑥𝑘+1) −  𝐹(𝑥𝑘) = 𝛾𝑘+1𝐼(𝑥𝑘+1 − 𝑥𝑘) = 𝛾𝑘+1(𝑥𝑘+1 − 𝑥𝑘).    (8) 

Now, (8) transformed to standard secant condition [3,4]. 

𝛾𝑘+1𝑠𝑘 = 𝑦𝑘 ,         (9) 

where, 𝑦𝑘 = 𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘) and 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 , 
In [1], Li and Fukushima used the term 

𝑔𝑘 =
𝐹(𝑥𝑘+𝛼𝑘𝐹(𝑥𝑘))−𝐹(𝑥𝑘)

𝛼𝑘
        (10) 

With the aid of (10), the scheme will maintain derivative free process and avoids computing exact gradient. It is clear that 

when‖𝐹(𝑥𝑘)‖is small, then the approximate gradient ∇𝑓(𝑥𝑘), is given by 

𝑔𝑘 ≈ ∇𝑓(𝑥𝑘). 
Consequently, 𝑔𝑘

𝑇 is obtainable. Thus, pre-multiplying both side of (9) by 𝑔𝑘
𝑇 , the relation allows us to compute theparameter 𝛾𝑘+1in the 

following way: 

𝛾𝑘+1𝑔𝑘
𝑇𝑠𝑘 = 𝑔𝑘

𝑇𝑦𝑘         (11) 

Taking the transpose of both side of (11) gives  

[𝛾𝑘+1𝑔𝑘
𝑇𝑠𝑘]𝑇 = [𝑔𝑘

𝑇𝑦𝑘]𝑇 

𝛾𝑘+1[𝑔𝑘
𝑇𝑠𝑘]𝑇 = [𝑔𝑘

𝑇𝑦𝑘]𝑇 

Where 𝛾𝑘+1 is a parameter. 

𝛾𝑘+1[𝑠𝑘
𝑇𝑔𝑘] = [𝑦𝑘

𝑇𝑔𝑘]        (12) 

Multiply both side of (12)by[𝑠𝑘
𝑇𝑔𝑘]−1 yields 

𝛾𝑘+1[𝑠𝑘
𝑇𝑔𝑘]−1[𝑠𝑘

𝑇𝑔𝑘] = [𝑠𝑘
𝑇𝑔𝑘]−1[𝑦𝑘

𝑇𝑔𝑘] 
𝛾𝑘+1 = [𝑠𝑘

𝑇𝑔𝑘]−1[𝑦𝑘
𝑇𝑔𝑘]        (13) 

Thus, direction is given by  

𝑑𝑘+1 = −𝛾𝑘+1 𝐹(𝑥𝑘),for𝑘 = 1,2,3, ⋯       (14) 

Finally, the general scheme is given by 

𝑥𝑘+1 = 𝑥𝑘  + 𝛼𝑘𝑑𝑘 .        (15) 

where𝑥𝑘+1 represents a new iterative point,𝑥𝑘 is the previous iteration, while 𝑑𝑘is the search direction to be obtain using (14). The basic 

requirement of the line search is to sufficiently decrease the function values i.e. ‖𝐹(𝑥𝑘 + 𝛼𝑘𝑑𝑘)‖  ≤  ‖𝐹(𝑥𝑘)‖.Therefore, to compute the 

line search 𝛼𝑘 in (15), the line search used in [16, 17]is the best choice, since it is derivative free in nature. This is given by 

𝛼𝑘 = 𝑚𝑎𝑥 {𝑠, 𝑟𝑠, 𝑟2𝑠, ⋯ }        (16) 

satisfying−𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≥ 𝜔𝛼𝑘‖𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)‖‖𝑑𝑘‖2 
 

Remark 

It is clear that the line search is well defined. 
 

Algorithm 1. 

Step 1: Given 𝛾0 = 1, 𝜖 = 10−4, 𝑥0, (𝑟, 𝑟𝜔) ∈ (0,1), set 𝑘 = 0 and 𝑑0 = −𝑔0. 
Step 2: Compute 𝐹(𝑥𝑘) and check the stopping conditions. If yes, then stop; otherwise continue with Step 3. 

Step 3: Compute search direction 𝑑𝑘+1 = 𝛾𝑘+1𝐹(𝑥𝑘) using (14) 

Step 4: Compute step the length 𝛼𝑘(using (16). 

Step 5: Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 

Step 6: Compute 𝐹(𝑥𝑘+1). 
Step 7: determine the parameter ,𝛾𝑘+1 from (13) 

Step 8: Repeat𝑘 = 𝑘 + 1, and go to Step 3. 
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3. Numerical Results 

This section gives the computational performance of the proposed method named 𝑀1and two other methods named 𝑀2[14] and 𝑀3[15] 

respectively. In the presentation, the proposed method [15] which is the improved version of [14], is compared with classical version of 

[14] and the method which was compared with [14] initially. To ascertain the efficiency of the result, all the three methods were tested 

using the same Benchmark test problems as indicated in the Appendix. The accuracy of the methods was confirmed using different initial 

points. The computational codes for all the methods was written in Matlab 7.9.0 (R2009b) [18], and run on a personal computer 2.00 

GHz CPU processor and 3 GB RAM memory. 

Table 1: Numerical Comparison of 𝑀1, 𝑀2 and 𝑀3 methods for problem 1 and 2. 

  

  𝑀1 𝑀2 𝑀3 
S/N Dim  ISP Iter Time Norm Iter Time Norm Iter Time Norm 

1 10 0.2 7 0.029974 5.78E-04 31 0.020822 8.12E-04 10 0.006045 6.84E-05 

  100   8 0.019030 7.31E-04 36 0.007647 8.42E-04 11 0.002768 8.49E-05 

  1000 

 

9 0.004687 9.24E-04 41 0.020315 8.73E-04 13 0.008038 4.14E-05 

  10000 

 

11 0.114284 4.67E-04 46 0.146886 9.04E-04 14 0.061264 5.14E-05 

  100000 

 

12 0.307812 5.91E-04 51 1.732412 9.37E-04 15 0.634616 6.39E-05 

  10 0.9 5 0.001026 7.42E-04 27 0.005472 8.78E-04 11 0.002501 3.99E-05 

  100 
 

6 0.001188 9.37E-04 32 0.007435 9.10E-04 12 0.002964 4.95E-05 

  1000 

 

8 0.003464 4.74E-04 37 0.018337 9.44E-04 13 0.006808 6.15E-05 

  10000 

 

9 0.023079 6.00E-04 42 0.139060 9.78E-04 14 0.057503 7.64E-05 

  100000 

 

10 0.228708 7.58E-04 48 1.593948 8.11E-04 15 0.603471 9.49E-05 

2 10 0.2 5 0.006740 3.86E-04 31 0.025203 * 10 0.013997 4.70E-05 

  100 
 

6 0.002321 1.47E-04 31 0.026398 * 11 0.003108 5.21E-05 

  1000 
 

6 0.003298 4.64E-04 31 0.064822 * 12 0.007429 6.43E-05 

  10000 

 

7 0.025496 1.76E-04 36 1.871130 * 13 0.051324 8.75E-05 

  100000 

 

7 0.255355 5.56E-04 35 140.6098 * 15 0.594499 4.67E-05 

  10 0.9 5 0.001098 4.58E-04 124 0.021183 9.94E-04 9 0.002826 4.95E-05 

  100 

 

6 0.001445 1.74E-04 139 0.027641 9.69E-04 10 0.002959 3.36E-05 

  1000 
 

6 0.003226 5.50E-04 154 0.057261 9.44E-04 11 0.006268 2.41E-05 

  10000 
 

7 0.027749 2.09E-04 168 0.394139 9.95E-04 11 0.040932 7.62E-05 

  100000 

 

7 0.257811 6.60E-04 183 5.132788 9.70E-04 12 0.468681 2.62E-05 

 

Table 2: Numerical Comparison of 𝑀1, 𝑀2 and 𝑀3 methods for problem 3 and 4. 

   
𝑀1 𝑀2 𝑀3 

S/N Dim  ISP Iter Time Norm Iter Time Norm Iter Time Norm 

3 10 0.2 5 0.007880 3.51E-04 39 0.260591 * 9 0.007014 9.11E-05 

  100 

 

6 0.001555 2.22E-04 37 0.033213 * 10 0.002861 9.56E-05 

  1000 

 

6 0.002903 7.03E-04 37 0.086759 * 11 0.006741 7.62E-05 

  10000 

 

7 0.023343 4.44E-04 37 2.112099 * 12 0.056222 7.99E-05 

  100000 

 

8 0.273506 2.81E-04 37 142.4925 * 13 0.633558 6.37E-05 

  10 0.9 4 0.000924 6.76E-04 25 0.004853 8.74E-04 5 0.001823 5.77E-05 

  100 
 

5 0.001744 4.27E-04 30 0.007191 9.06E-04 6 0.001918 8.15E-05 

  1000 
 

6 0.003145 2.70E-04 35 0.017076 9.39E-04 7 0.004520 2.47E-05 

  10000 

 

6 0.019402 8.55E-04 40 0.124208 9.72E-04 7 0.031964 7.82E-05 

  100000 

 

7 0.260632 5.41E-04 46 1.999564 8.06E-04 9 0.452263 1.06E-05 

4 10 0.2 5 0.006751 3.51E-04 39 0.052702 * 9 0.005365 9.11E-05 

  100 

 

6 0.001168 2.22E-04 37 0.028444 * 10 0.003112 9.56E-05 

  1000 
 

6 0.002344 7.03E-04 37 0.071258 * 11 0.005913 7.62E-05 

  10000 
 

7 0.019958 4.44E-04 37 1.873526 * 12 0.040622 7.99E-05 

  100000 

 

8 0.210191 2.81E-04 37 140.1881 * 13 0.467590 6.37E-05 

  10 0.9 4 0.000875 6.76E-04 25 0.004130 8.74E-04 5 0.582910 5.77E-05 

  100 

 

5 0.001102 4.27E-04 30 0.007141 9.06E-04 6 0.012311 8.15E-05 

  1000 

 

6 0.002571 2.70E-04 35 0.014490 9.39E-04 7 0.031729 2.47E-05 

  10000 
 

6 0.018040 8.55E-04 40 0.098346 9.72E-04 7 0.112399 7.82E-05 

  100000 
 

7 0.194157 5.41E-04 46 1.514717 8.06E-04 9 0.357280 1.06E-05 

According to the program, the iteration is terminated if the total number of iterations exceeds 1000 or ‖𝐹(𝑥𝑘)‖ ≤ 10−4. If the method 

fails, the symbol ” ∗ ” is used and represents failure due to; (i) Memory requirement (ii) Number of iterations exceed 1000. (iii) If 
‖𝐹(𝑥𝑘)‖ is not a number. 
 

For the both algorithms in [14,15], the following parameters 𝜔1 = 𝜔2 = 10−4, 𝑟 = 0.2 and  

𝜂𝑘 =
1

(𝑘+1)2are used. 
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Table 3: Numerical Comparison of 𝑴𝟏, 𝑴𝟐 and 𝑴𝟑 methods for problem 5 and 6. 
 

   

𝑀1 𝑀2 𝑀3 

S/N Dim  ISP Iter Time Norm Iter Time Norm Iter Time Norm 

5 10 0.2 2000 0.238044 0.1974 112 0.027648 9.94E-04 8 0.013481 7.55E-05 

  100 

 

2000 0.277768 0.6243 127 0.035844 9.69E-04 10 0.002987 4.72E-07 

  1000 

 

2000 0.729098 1.9741 142 0.064516 9.44E-04 10 0.010842 1.49E-06 

  10000 

 

2000 5.708984 6.2426 156 0.469077 9.95E-04 10 0.051874 4.72E-06 

  100000 

 

2000 68.898187 19.7408 171 6.504744 9.70E-04 10 0.464678 1.49E-05 

  10 0.9 2000 0.226144 0.1216 30 0.006853 9.13E-04 7 0.003896 2.49E-05 

  100 

 

2000 0.289621 0.3845 35 0.006963 9.47E-04 7 0.002062 7.86E-05 

  1000 

 

2000 0.810016 1.216 40 0.021452 9.81E-04 8 0.006757 8.99E-05 

  10000 

 

2000 5.595398 3.8452 46 0.140034 8.13E-04 10 0.046637 6.12E-05 

  100000 

 

2000 65.461812 12.1595 51 1.947417 8.43E-04 11 0.527849 1.09E-06 

6 10 0.2 8 0.045419 7.53E-04 28 0.016831 8.26E-04 10 0.059030 5.05E-05 

  100 

 

10 0.003527 4.06E-04 33 0.007480 8.29E-04 10 0.002714 6.48E-05 

  1000 

 

11 0.003839 5.17E-04 38 0.019901 8.56E-04 11 0.007156 5.92E-05 

  10000 

 

12 0.037682 6.55E-04 43 0.179768 8.87E-04 12 0.074682 7.03E-05 

  100000 

 

13 0.364561 8.28E-04 48 2.121760 9.19E-04 13 0.652322 8.70E-05 

  10 0.9 14 0.001905 4.29E-04 * 0.348713 1.1412 12 0.003284 6.58E-05 

  100 

 

16 0.002461 6.91E-04 * 0.419275 4.4653 13 0.003611 4.66E-05 

  1000 

 

19 0.007444 4.78E-04 * 1.136226 16.4158 14 0.010835 5.15E-05 

  10000 

 

21 0.070103 6.88E-04 * 9.293672 52.3308 15 0.071868 6.31E-05 

  100000 

 

23 0.829604 8.55E-04 * 96.63993 154.1355 16 0.814324 7.83E-05 
 

Tables 1 gives the numerical results of problems 1 and 2. Tables 2 gives the numerical results of problems 3 and 4 while Tables 3 gives 

the numerical results of problems 5 and 6. In all the Tables, the Columns for each methods is titled with “S/N”, “Dim”, “ISP”,“Iter”, 

”Time” and “Norm” which stands for the serial number of the problem, dimension of the problem, Initial Starting Point, total number of 

all iterations, the CPU time in solving the problems measured in seconds and residual at the stopping point (‖𝐹(𝑥𝑘)‖)respectively. 
 

From the Table, it is observed that all the three methodsi.e.𝑀1, 𝑀2 and 𝑀3attempt to solve the systems of nonlinear equations (3), it is 

worth noting that the proposed method effectively solved the problems where the other two methods fails. For instance, in problems 2, 3 

and 6, 𝑀2 fails where 𝑀1 successfully and effectively solved the problems with minimal number of iterations. The method 𝑀1 

considerably outperforms the 𝑀2 and 𝑀3 in almost all the tested problems, since it has the least number of iterations and CPU time as 

compared to the CPU time and the number of iterations for the method𝑀2 and 𝑀3 respectively.This is quite evident that the proposed 

method 𝑀1improved the computational performance of 𝑀2.Theefficiency and accuracy of the proposed algorithm was clear for it solves 

systems of nonlinear equations (3) where mostly the method 𝑀2 and 𝑀3 fails. This achievement is due to the derivative free line search 

used [16,17].  

 

 
Figure 1: Performance profile of 𝑀1, 𝑀2 and 𝑀3 methods with respect to the number of iterations.                 Figure 2: Performance profile of 𝑀1, 𝑀2 and 𝑀3 methods with respect to the CPU time. 

 

Figures 1, 2, and 3 gives the graphical representation of the numerical results of all the three methods. The analysis was done using the 

profile by Dolan and More [19]. The proposed method operates with less number of iteration and CPU time denoted by 𝑀1representedin 

pink color, while 𝑀2 and 𝑀3 performs below 𝑀1 with line represented in red color and blue color respectively. Obviously, the 

performance of the proposed method is better in terms of number of iterations, CPU time and residual function than the other two 

existing methods in comparison. Another merit of the proposed method is its ability to solve problems at shortest possible time. 

Generally, the results shows that the proposed method is an improvement of [14] with respect to matrix storage and computational time. 
 

4. Conclusion 

In this paper, an improved version of derivative-free decent method via acceleration parameter for solving systems of nonlinear equations 

is given. The aim of this research is to improve the computational performance and convergent rate of existing methods, thereby reducing 

the computational time at each iteration. The aim of this research has greatly achieved by doing away with a computation of the Jacobian 

inverse during the iteration process. It is a fully derivative-free iterative method, which retain the global convergence of the classical 

method under some appropriate conditions. The Numerical results reported using a set of large-scale test problems has shown that the 

proposed method is practically effective. The method is valid in terms of derivation, reliable in terms of number of iterations and accurate 

in terms of CPU time. Conclusively, the proposed method is recommended for solving large-scale system of nonlinear equations of the 

form 𝐹(𝑥) = 0, 𝑥 ∈ 𝑅𝑛 . 
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Appendix. 

The following test problems are used for the numerical experiments. The mapping 𝐹is taking as (𝑥) = (𝑓1(𝑥); 𝑓2(𝑥); ⋯ ; 𝑓𝑛(𝑥))𝑇; and 𝑥 =
 (𝑥1; 𝑥2;  ⋯ ; 𝑥𝑛)𝑇 .The test problems 1,2,3,4,5 are from [20] while problem 6 is from [21]. 
 

Problem 1. 

𝑓1(𝑥) = (𝑥1 − 𝑥2
2)(𝑥1 − sin(𝑥2)), 

𝑓2(𝑥) = (cos(𝑥2) − 𝑥1)(𝑥2 − cos (𝑥1)). 
Problem 2. 

𝑓1(𝑥) = −𝑥1 + 0.5𝑥2
2 − 1.5, 

𝑓2(𝑥) = −𝑥2 + 0.605 𝑒𝑥𝑝(1 − 𝑥1
2) + 0.395 

Problem 3. 

𝑓1(𝑥) = 𝑥1
2 − 2𝑥1 +

1

3
𝑥2

3 +
2

3
 

𝑓2(𝑥) = 𝑥1
3 − 𝑥1𝑥2 − 2𝑥1 + 0.5𝑥2

2 + 1.5 

Problem 4. 

𝑓1(𝑥) = 𝑥1, 

𝑓2(𝑥) =
10𝑥1

𝑥1 + 0.1
+ 2𝑥2

2. 

Problem 5. 

𝑓1(𝑥) = −13 + 𝑥1 + ((−𝑥2 + 5)𝑥2 − 2)𝑥2,  

𝑓2(𝑥) = −29 + 𝑥1 + ((𝑥2 + 1)𝑥2 − 14)𝑥2. 

Problem 6. 

𝐹1(𝑥) = 𝑥1(𝑥1
2 + 𝑥2

2) − 1, 

𝐹𝑖(𝑥) = 𝑥𝑖(𝑥𝑖−1
2 + 2𝑥𝑖

2 + 𝑥𝑖+1
2 ) − 1, 

𝐹𝑛(𝑥) = 𝑥𝑛(𝑥𝑛−1
2 + 𝑥𝑛

2). 
𝑖 = 2,3, ⋯ 𝑛 − 1. 
 

References 

[1] D. Li and M. Fukushima, (2000). A global and superlinear convergent Gauss-Newton based BFGS method for symmetric 

nonlinear equation, SIAM Journal on numerical Analysis, 37, 152-172. 

[2] Mustafa Mamat, M. K. Dauda, M. Y. Waziri, Fadhilah Ahmad, and FatmaSusilawati Mohamad (2016). Improved Quasi-

Newton method via PSB update for solving systems of nonlinear equations, AIP Conference Proceedings 1782, 030009; 

doi:10.1063/1.4966066. 

[3] Mustafa Mamat, FatmaSusilawati Mohamad, Abubakar S. Magaji and M.Y. Waziri (2019). Derivative Free Conjugate 

Gradient Method via Broyden’s Update for solving symmetric systems of nonlinear equations. Journal of Physics: Conference 

Series, 1366. 012099 IOP Publishing doi:10.1088/1742-6596/1366/1/012099 

[4] M. K. Dauda, Mustafa Mamat, Mohamad A. Mohamed, NorShamsidah Amir Hamzah. (2019). Hybrid conjugate gradient 

parameter for solving symmetric systems of nonlinear equations. Indonesian Journal of Electrical Engineering and Computer 

Science Vol. 16, No. 1, October, pp. 539~543 ISSN: 2502-4752, DOI: 10.11591/ijeecs.v16.i1.pp539-543. 

[5] Gongli Yuan∗, Xiwen Lu, (2008). A new backtracking inexact BFGS method for symmetric nonlinear equations”, Journal of 

computers and mathematics with applications, 55, 116-129. 

[6] Mahammad Kabir Dauda, Mustafa Mamat, Mohamad Afendee bin Mohamed and Mahammad Yusuf Waziri (2019). Improved 

Quasi-Newton method via SR1 update for solving symmetric systems of nonlinear equations. Malaysian Journal of 

Fundamental and Applied Sciences Vol. 15, No.1, 117-120. 

[7] M.K. Dauda, M. Mamat, M.Y. Waziri, F. Ahmad and F.S. Mohamad, (2016). Inexact CG-Method via SR1 Update for Solving 

Systems of Nonlinear Equations, Far East Journal of Mathematical Sciences, 100(11), 787-1804. 

[8] M. K. Dauda, Mustafa Mamat, Mohamad Afendee Mohamed, FatmaSusilawati Mohamad and M.Y. Waziri, (2017). Derived 

Conjugate Gradient Parameter for Solving Symmetric Systems of Nonlinear Equations, Far East Journal of Mathematical 

Sciences (FJMS), 102 (11)2599-2610. 

[9] M. Y. Waziri and J. Sabi’u, (2015). A derivative-free conjugate gradient method and its global convergence for solving 

symmetric nonlinear equations, Int. J. Math. Math. Sci., 8 pp, Article ID 961487. 

[10] M. Mamat, M. K. Dauda, M. A. bin Mohamed, M. Y. Waziri and F. S. Mohamad, H. Abdullah, (2018). Derivative free 

Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations, IOP Conf. Series: Materials Science 

and Engineering 332, doi:10.1088/1757-899X/332/1/012030. 

[11]  Li, Q. & Li, D.H., (2011). A Class of Derivative-free Methods for Large-Scale Nonlinear Monotone Equations, IMA Journal of 

Numerical Analysis, 31(4), pp. 1625-1635. 

[12]  Waziri M.Y, Leong W.J, Mamat M and Moyi, A.U. (2013). Two-Step Derivative-Free Diagonally Newton’s Method for 

Large-Scale Nonlinear Equations. World Applied Sciences Journal Vol 21, pp. 86-94.  

[13] Gaohang Yu, (2010). A Derivative-Free Method for Solving Large-Scale Nonlinear Systems of Equations. Journal of Industrial 

and Management Optimization. Volume 6, Number 1,pp. 149–160.  Doi:10.3934/Jimo.2010.6.149. 

[14] A.S. Halilu1, M.K. Dauda, M.Y. Waziri, M. Mamat (2019). Open Journal of Science and Technology A Derivative-Free 

Decent Method via Acceleration Parameter for Solving Systems of Nonlinear Equations2(3); 1-4. 
 

Journal of the Nigerian Association of Mathematical Physics Volume 57, (June - July 2020 Issue), 29 –34    



34 

 

Optimization of a Derivative-Free…                                    Dauda                                      J. of NAMP 
 

 

[15] A.S. Halilu and M. Waziri, (2018). An improved derivative-free method via double direction approach for solving systems of 

nonlinear equations, Journal of Ramanujan Mathematical Society, 33(1), 7589. 

[16] D. H. Li and M. Fukushima (2000). A Derivative-free line search and global convergence of Broyden- like methods for 

nonlinear equations, Optimization Methods and Software 13, 181-201. 

[17] Jamilu Sabi’u, Abdullah Shah, Mohammed Yusuf Waziri & Muhammad Kabir Dauda (2020). A New Hybrid Approach for 

Solving Large-scale Monotone Nonlinear Equations. J. Math. Fund. Sci., Vol. 52, No. 1, 17-26. DOI: 

10.5614/j.math.fund.sci.2020.52.1.2 

[18] Mathews J. H, Fink K. D. (1999).Numerical method using MATLAB. Prentice Hull, Upper saddle river, NJ 07458. 

[19] Elizabeth D. Dolan, Jorge J. Mor´e(2002). Benchmarking Optimization Software with Performance Profiles. Mathematical 

Programming 91, 201-213. 

[20] M. K. Dauda, Abubakar S Magaji, Habib Abdullah, Jamilu Sabi’u and Abubakar S. Halilu (2019). A New Search Direction via 

Hybrid Conjugate Gradient Coefficient for Solving Nonlinear System of Equations. Malaysian Journal of Computing and 

Applied Mathematics, Vol 2(1): 8-15. 

[21] Weijun Zhou & Dongmei Shen (2014). An Inexact PRP Conjugate Gradient Method for Symmetric Nonlinear Equations, 

Numerical Functional Analysis and Optimization, 35:3, 370-388, DOI: 10.1080/01630563.2013.871290. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Journal of the Nigerian Association of Mathematical Physics Volume 57, (June - July 2020 Issue), 29 –34 


