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Abstract 
 

In this paper, we enlarge a reliable modification of the Adomian decomposition 

approach offered in literature for solving first order fractional Fredholm Integro-

differential equations. In an effort to verify the applicability and the advantages of 

our method, we do not forget some illustrative examples. 
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1. INTRODUCTION 

An application of fractional derivatives was first given in 1823 through [1] who applied the fractional calculus in solving an integral 

equation that arises inside the method of the Tautochrone problem. The fractional integro-differential equations have attracted much 

greater interest of mathematicians and physicists, which presents an efficiency for the description of many realistic dynamical arising in 

engineering and scientific disciplines including, physics, electrochemistry, economy, biology, chemistry, electromagnetic and 

viscoelasticity e.t.c.  

The idea of ADM emerged in a pioneering paper by Adomian [2]. Researchers who made significant contributions within the 

developments of ADM are [3-5], amongst others. The modification of the Adomian approach was first delivered by [4]. In current years, 

many authors paid attention on the development of numerical, analytical techniques as well as semi-analytical approach for fractional 

differential and integro-differential equations. As an example, we can keep in mind the following works. In [6], Yang and Hou 

implemented the Laplace decomposition technique to remedy the fractional integro-differential equations. Also in [7] they implemented 

some iterative methods for solving fuzzy Volterra-Fredholm integral equations, Ma and Huang in [8] used the hybrid collocation 

technique to take a look at integro-differential equations of fractional order, Mittal and Nigam [9] applied the Adomian decomposition 

method to find approximate solutions for fractional integro-differential equations and Zurigat [10] carried out HAM for system of 

fractional integro-differential equations. Furthermore, the properties of fractional differential equations were studied by some of the 

above authors.  

The principle objective of the existing paper is to have a look at the behavior of the solutions that can be formally obtained from 

nonlinear first order fractional integro-differential equations of Fredholm type via semi-analytical approximated approach called the 

improved decomposition method by using a reduced form of the Adomian polynomial in the decomposition of the nonlinear part.  

Considering the above equation owing to the basic principles of ADM 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔                                                                                                                           … (1)  
Where in L is an invertible operator that is taken as the highest order differential operator, 

R is the rest of the linear operator, N represents the nonlinear terms and g is the specified analytic function. Applying the inverse operator 

𝐿−1 on both sides of equation (1) yields 

𝑢 = φ + 𝐿−1[𝑔] − 𝐿−1[𝑅𝑢] − 𝐿−1[𝑁𝑢]                                                                                       … (2) 

where φ is determined by the usage of the given initial values. This approach decomposes the results 𝑢(𝑥)  right into a hastily convergent 

series of solution components, after which decomposes the analytic nonlinearity Nu into the series of the Adomian polynomials [5]. 

𝑢(𝑥) = ∑ 𝑢𝑛

∞

𝑛=0

                                                                                                                                    … (3) 

𝑁𝑢(𝑥) = ∑ 𝐴𝑛                                                 

∞

𝑛=0

                                                                                 … (4) 

Where 𝐴𝑛 = 𝐴𝑛(𝑢0 , 𝑢1 ,𝑢2 ,…𝑢𝑛)  are the Adomian polynomials, define as follows:  
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𝐴𝑛(𝑡) =
1

𝑘!

𝑑𝑘

𝑑𝜃𝑘 [𝑁 (∑ 𝜃𝑖𝑣𝑖

𝑘

𝑖=0

)]

𝜃=0

.                                                                                               … (5) 

Then the same old Adomian recursion scheme is given in [5] as follows 

𝑢0(𝑥) = φ + 𝐿−1[𝑔], 
𝑢𝑛+1(𝑥) = −𝐿−1[𝑅𝑢𝑛 + 𝐴𝑛]                                                                                                          … (6) 
Rach in [11] proposed a new modification of the Adomian decomposition method for resolution of higher-order inhomogeneous 

nonlinear differential equations. This new modified decomposition approach gives a huge benefit for computing the Taylor’s expansion 

systematically. 
 

2. PREMINARIES 

The mathematical definitions of fractional integrals and fractional derivatives are the problem of several different processes. The 

maximum frequently used definition of the fractional calculus involves the Riemann-Liouville fractional derivative and the Caputo 

derivative ([12 13]). 

Definition 1 

Fraction Calculus involves differentiation and integration of arbitrary order (all real numbers and complex values). e.g. 

𝐷2.5, 𝐷𝜋, 𝐷𝑖+1, 𝐷
1

2 
     , 𝐽1.5, 𝐽𝜋, 𝐽𝑖+2, 𝐽

1

2 
   

e.t.c 

Definition 2 

Gamma function is defined as 

Γ(𝑧) = ∫ 𝑡𝑧−1
∞

0

𝑒−𝑡𝑑𝑡 

This integral converges when real part of z is positive (𝑅𝑒(𝑧) ≤ 0). 
Γ(𝑧 + 1) = 𝑧Γ(𝑧) 

When z is a positive integer 

Γ(𝑧) = (𝑧 − 1)! 
Definition 3 

Beta function is defined as 

B(𝑣, 𝑚) = ∫ (1 − 𝑢)𝑣−1𝑢𝑚−1
1

0

𝑑𝑢 =
Γ(𝑣)Γ(𝑚)

Γ(𝑣 + 𝑚)
= B(v, m), where v, m ∈  R+ 

Definition 4 

Riemann – Liouville fractional integral is defined as 

𝐽∝𝑓(𝑥) =
1

Γ(∝)
∫

𝑓(𝑥)

(𝑥 − 𝑡)1−∝ 𝑑𝑡 ,   ∝> 0, 𝑥 > 0
𝑥

0

 

𝐽∝ denotes the fractional integral of order ∝ 

Definition 5 

Riemann – Liouville fractional derivative denoted 𝐷∝ is defined as 

𝐷∝𝐽∝𝑓(𝑥) = 𝑓(𝑥) 

Definition 6 

Riemann-Liouville fractional derivative defined as 

𝐷∝𝑓(𝑥) =
1

Γ(𝑚−∝)
∫ (𝑥 − 𝑠)𝑚−∝−1𝑓𝑚(𝑠)𝑑𝑠 .   

𝑥

0

 

m is positive integer with the property that 𝑚 − 1 < ∝ 𝑚. 

Definition 7 

The Caputo Factional Derivative is defined as 

𝐷∝𝑓(𝑥) =
1

Γ(𝑚−∝)
∫ (𝑥 − 𝑠)𝑚−∝−1𝑓𝑚(𝑠)𝑑𝑠 .   

𝑥

0

 

Where 𝑚  is a positive integer with the property that 𝑚 − 1 < ∝< 𝑚.  

For example if 0 <∝< 1 the caputo fractional derivative is 

𝐷∝𝑓(𝑥) =
1

Γ(𝑚−∝)
∫ (𝑥 − 𝑠)−∝𝑓1(𝑠)𝑑𝑠 .   

𝑥

0

 

Hence, we have the following properties: 

1. 𝐽∝𝐽𝑣𝑓 = 𝐽∝+𝑣𝑓, ∝, 𝑣 > 0, 𝑓 ∈ 𝐶𝜇, 𝜇 > 0  

2. 𝐽∝𝑥𝛾 =
Γ(𝛾+1)

Γ(∝+𝛾+1)
𝑥∝+𝛾  , ∝> 0 , 𝛾 > −1 , 𝑥 > 0 

3. 𝐽∝𝐷∝𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓𝑘(0)
𝑥𝑘

𝑘!
  ,𝑚−1

𝑘=0   𝑥 > 0 , 𝑚 − 1 < ∝≤ 𝑚 

4. 𝐷∝𝐽∝ 𝑓(𝑥) = 𝑓(𝑥), 𝑥 > 0 , 𝑚 − 1 < ∝≤ 𝑚   
5. 𝐷∝𝐶 = 0, 𝑤ℎ𝑒𝑟𝑒 𝐶 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

6. 𝐷∝𝑥𝛽 =
Γ(𝛽+1)

Γ(𝛽−∝+1)
𝑥𝛽−∝ , 𝛽𝜖𝑁0  ,   𝛽 ≥∝ 
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Where ∝  is an integer and 𝑁0 are natural numbers 

7. The n-fold integral formula 

∫ ∫ …
𝑥2

𝑎

𝑥1

𝑎

  ∫ 𝑢(𝑥𝑛

𝑥𝑛

𝑎

)𝑑𝑥𝑛 … 𝑑𝑥2𝑑𝑥1 =
1

(𝑛 − 1)!
∫ (𝑥 − 𝑡)𝑛−1𝑢(𝑡)

𝑥

𝑎

𝑑𝑡   

Definition 8 
In this work, we will define the absolute error as: 

Absolute Error= |𝑢(𝑥) − 𝑢𝑛(𝑥)|: 0 ≤ 𝑥 ≤ 1. 
Where 𝑢(𝑥) is the exact solution and 𝑢𝑛(𝑥)  will be the approximate solution from the method. 
 

3. METHODOLOGY 
We consider the following nonlinear fractional first order Fredholm integro-differential equation:  

 𝐷∝ 𝑢(𝑥) = 𝑔(𝑥) +  𝜆 ∫ 𝑘(𝑥, 𝑡)𝐹(𝑢(𝑡))
1

𝑎

𝑑𝑡                                                                                … (7)   

With initial conditions 

𝑢(0) = 𝐶0 

The main idea of the new method is replacing the forcing terms 𝑔(𝑥) which is either an exponential or trigonometric function by a series 

of infinite components. According to [11], the forcing terms was expressed in series, that is 𝑔(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥) + 𝑔3(𝑥) + ⋯ owing 

to this expression and the introduction of the reduced Adomian polynomials in place of the original Adomian polynomials and from the 

properties of fractional integral and derivative we know that 

𝐽∝𝐷∝𝑢(𝑥) = 𝑢(𝑥) − ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
  ,

𝑚−1

𝑘=0

 

Where 𝐷∝ is the operator that defines fractional derivative and 

∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
= 𝑐0 𝑚−1

𝑘=0 , this implies 

 

𝐽∝𝐷∝𝑢(𝑥) = 𝑢(𝑥) − 𝑐0 
 

This was obtained from the given initial conditions 

 

And also we define the nonlinear terms as: 

𝑁𝑢(𝑥) = ∑ 𝑋𝑛

∞

𝑛=0

                                                                                                                                … (8) 

𝑋𝑛 = 𝑋𝑛(𝑢0 , 𝑢1, … 𝑢𝑛) Are called the reduced Adomian polynomials defined as follows, which we tend to substitute for the  𝐴𝑛 . 

𝑋𝑛(𝑡) =  {
𝑁(𝑋0), 𝑛 = 0 

  𝑢𝑛𝑁 ′[𝑢0], 𝑛 ≥ 1
                                                                                                            … (9) 

Where the first few terms of 𝑋𝑛(𝑡) are: 

𝑋0 =  𝐹(𝑢0) 

 𝑋1 = 𝑢1𝐹′(𝑢0),                                                                                    
 𝑋2 = 𝑢2𝐹′(𝑢0),                                                 
𝑋3 = 𝑢3𝐹′(𝑢0)    
… 

 𝑋𝑛 = 𝑢𝑛𝑁 ′[𝑢0]                                                                                                                                    … (10) 

Now, applying the integral operator  𝐽∝ to both sides of Eq. (7) we obtain 

𝑢(𝑥) = ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
+𝐽∝[ 𝑔1(𝑥)  + 𝑔2 + 𝑔3(𝑥), … ] +

𝑟−1

𝑘=0

𝐽∝ ( 𝜆 ∫ 𝑘(𝑥, 𝑡)𝐹(𝑢(𝑡))
1

𝑎

𝑑𝑡)    … (11) 

The method defines the solution 𝑢(𝑥) by the series (3), and the nonlinear function 𝐹(𝑢(𝑡)) is decomposed using the proposed reduced 

form of Adomian polynomials (9).  

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
 +𝐽∝[𝑔1(𝑥)  + 𝑔2+, … ]+ 𝐽∝ ( 𝜆 ∫ 𝑘(𝑥, 𝑡) ∑ 𝑋𝑛

∞

𝑛=0

1

0

𝑑𝑡)             

𝑚−1

𝑘=0

… (12) 

 

Where ∑ 𝑢𝑘(0)
𝑥𝑘

𝑘!
= 𝑐0 𝑚−1

𝑘=0   

 

The components 𝑢0,  𝑢1,  𝑢2, … are determined recursively by the following scheme:  

𝑢0(𝑥) = 𝐶0 

This will be obtained from the given initial condition(s) 

And the other terms are obtained from the decomposition of the forcing terms and the reduced polynomials as shown below: 
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𝑢𝑛+1(𝑥) =  𝐽∝(𝑔1(𝑥) + 𝑔2(𝑥) + 𝑔3(𝑥) + ⋯ )+ 𝐽∝ ( 𝜆 ∫ 𝑘(𝑥, 𝑡) ∑ 𝑋𝑛

∞

𝑛=0

1

𝑎

𝑑𝑡) , 𝑛 ≥ 0   … (13) 

𝑢1(𝑥) = 𝐽∝[  𝑔1(𝑥)] + 𝐽∝𝜆 ∫ 𝑘(𝑥, 𝑡)𝑋0(𝑡)
1

𝑎

𝑑𝑡                                                           

𝑢2(𝑥) = 𝐽∝[  𝑔2(𝑥)]  + 𝐽∝𝜆 ∫ 𝑘(𝑥, 𝑡)𝑋1(𝑡)
1

𝑎

𝑑𝑡 

𝑢3(𝑥) = 𝐽∝[  𝑔3(𝑥)] + 𝐽∝𝜆 ∫ 𝑘(𝑥, 𝑡)𝑋2(𝑡)
1

𝑎

𝑑𝑡                                                                  

𝑢4(𝑥) = 𝐽∝𝜆 ∫ 𝑘(𝑥, 𝑡)𝑋3(𝑡)
1

𝑎

𝑑𝑡                                                                                                       … (14) 

 

4 Numerical Examples: 

EXAMPLE 1: Consider the following equation 

𝐷∝𝑢(𝑥) = 1 −
𝑥

4
+ ∫ 𝑥𝑡𝑢2(𝑡)

1

0

𝑑𝑡, 𝑢(0) = 0 ,    0 <∝≤ 1                                              … (15) 

Applying 𝐽∝ to both sides of Eq. (15) gives 

𝑢(𝑥) =  0 + 𝐽∝ (1 −
𝑥

4
) + 𝐽∝ (∫ 𝑥𝑡𝑋𝑛(𝑡)

1

0

𝑑𝑡) , 𝑛 ≥ 0                                                                  

For ∝= 1 

𝑢0(𝑥) = 𝐽∝(1) = 𝑥 

𝑢1(𝑥) = −𝐽∝ (
𝑥

4
) + 𝐽∝ (∫ 𝑥𝑡𝑋0(𝑡)

1

0

𝑑𝑡) = −
𝑥2

8
+

𝑥2

8
= 0 

 𝑢2(𝑥) = 𝐽∝ (∫ 𝑥𝑡𝑋1

1

0

𝑑𝑡) = 0 

𝑢3(𝑥) = 0 

𝑢4(𝑥) = 0 

𝑢5(𝑥) = 0 

… 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + 𝑢4(𝑥) + 𝑢5(𝑥) + ⋯ = 𝑥 

For ∝= 0.9 

𝑢0(𝑥) = 𝐽0.9(1) =  

𝑢1(𝑥) = −𝐽0.9 (
𝑥

4
) + 𝐽0.9 (∫ 𝑥𝑡𝑋0(𝑡)

1

0
𝑑𝑡) =  

 𝑢2(𝑥) = 𝐽0.9 (∫ 𝑥𝑡𝑋1
1

0
𝑑𝑡) =  

𝑢3(𝑥) =  

… 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + ⋯ =  

For ∝= 0.8 

𝑢0(𝑥) = 𝐽0.8(1) =  

𝑢1(𝑥) = −𝐽0.8 (
𝑥

4
) + 𝐽0.8 (∫ 𝑥𝑡𝑋0(𝑡)

1

0
𝑑𝑡) =  

 𝑢2(𝑥) = 𝐽0.8 (∫ 𝑥𝑡𝑋1
1

0
𝑑𝑡) =  

𝑢3(𝑥) =  

… 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + ⋯ =  

For ∝= 0.7 

𝑢0(𝑥) = 𝐽0.7(1) =  

𝑢1(𝑥) = −𝐽0.7 (
𝑥

4
) + 𝐽0.7 (∫ 𝑥𝑡𝑋0(𝑡)

1

0
𝑑𝑡) =  

 𝑢2(𝑥) = 𝐽0.7 (∫ 𝑥𝑡𝑋1
1

0
𝑑𝑡) =  

𝑢3(𝑥) =  

… 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + ⋯ =  
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For ∝= 0.5 

𝑢0(𝑥) = 𝐽0.5(1) =  

𝑢1(𝑥) = −𝐽0.5 (
𝑥

4
) + 𝐽∝ (∫ 𝑥𝑡𝑋0(𝑡)

1

0
𝑑𝑡) =  

 𝑢2(𝑥) = 𝐽0.5 (∫ 𝑥𝑡𝑋1
1

0
𝑑𝑡) =  

𝑢3(𝑥) =  

… 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + ⋯ =  
 

TABLE 1: The numerical results for three iterations for various values 0 <∝≤ 1 
X EXACT 

(∝=1) 

APPROX. 

SOLTN (∝=1) 

APPROX. SOLTN 

(∝=0.5) 

APPROX. SOLTN 

(∝=0.7) 

APPROX. SOLTN 

(∝=0.8) 

APPROX. SOLTN 

(∝=0.9) 

0 0 0 0 0 0 0 

0.1 0.1 0.1 0.363482053 0.221548657 0.171065497 0.131204655 

0.2 0.2 0.2 0.523455995 0.363091828 0.299409437 0.245410106 
0.3 0.3 0.3 0.652630706 0.486489302 0.41629928 0.354314077 

0.4 0.4 0.4 0.766907489 0.600192423 0.526759096 0.460092062 

0.5 0.5 0.5 0.872314658 0.707710013 0.632970975 0.563732239 

0.6 0.6 0.6 0.971879648 0.810920556 0.736140992 0.665798441 

0.7 0.7 0.7 1.067363374 0.910973972 0.83702654 0.766653878 

0.8 0.8 0.8 1.159888935 1.008636242 0.936143191 0.866551191 
0.9 0.9 0.9 1.250219687 1.104448355 1.033862095 0.965675739 

1 1 1 1.338899273 1.19880921 1.130461683 1.064168974 

These charts reveal that the depicted numerical results are in good agreement with the exact solution as ∝ gets close to 1 and our 

approximate result for ∝=1 coincides with the exact solution . 

Fig 1: shows the numerical results for three iterations for various values 0 <∝≤ 1. 

 
The comparison shows that as ∝→ 1, the approximate solution tends to x , which is the exact solution of the equation in the case ∝=1. 

EXAMPLE 2: Consider the following equation 

𝐷∝𝑢(𝑥) = 2𝑒𝑥 −
1

24
𝑒𝑥 +

1

24
∫ 𝑒𝑥−4𝑡𝑢2(𝑡)

1

0

𝑑𝑡, 𝑢(0) = 1 , 0 <∝≤ 1                          … (16) 

Applying 𝐽∝ to both sides of Eq. (16) gives 

𝑢(𝑥) =  1 + 𝐽∝ (2𝑒𝑥 −
1

24
𝑒𝑥) + 𝐽∝ (

1

24
∫ 𝑒𝑥−4𝑡𝑢2(𝑡)

1

0

𝑑𝑡)                                                         

Taking ∝= 1, we can rewrite the above Eq. as 

𝑢(𝑥) = 1 + +𝐽∝ (
1

24
∫ 𝑒𝑥−4𝑡𝑢2(𝑡)

1

0
𝑑𝑡) 

Using the recursive relation, we take 

𝑢0(𝑥) = 1 

𝑢1(𝑥) = 1.9583𝑥 + 𝐽∝ (
1

24
∫ 𝑒𝑥−4𝑡(𝑢0

2)
1

0
𝑑𝑡) =  

𝑢2(𝑥) = 1.9792𝑥2 + 𝐽∝ (
1

24
∫ 𝑒𝑥−4𝑡(2𝑢0𝑢1)

1

0
𝑑𝑡) =  

𝑢3(𝑥) =  

𝑢4(𝑥) =  

𝑢5(𝑥) =  

… 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + 𝑢4(𝑥) + 𝑢5(𝑥) … =  
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For  ∝= 0.9, we obtain the following results 

𝑢(𝑥) = 1 +  

+𝐽0.9 (
1

24
∫ 𝑒𝑥−4𝑡𝑢2(𝑡)

1

0

𝑑𝑡) 

𝑢0(𝑥) = 1 

𝑢1(𝑥) =

 

 

𝑢2(𝑥) =  

𝑢3(𝑥) =  

𝑢4(𝑥) =  

𝑢5(𝑥) =  

… 
𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + 𝑢4(𝑥) + 𝑢5(𝑥) … =  

For  ∝= 0.5, we obtain the following results 

𝑢0(𝑥) = 1 

𝑢1(𝑥) =  

𝑢2(𝑥) =  

𝑢3(𝑥) =  

𝑢4(𝑥) =  

𝑢5(𝑥) =  

… 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + 𝑢4(𝑥) + 𝑢5(𝑥) … =
 

TABLE 2: the numerical results for three iterations for various values 0 <∝≤ 1 

X EXACT (∝=1) APPROX. SOLTN (∝=1) APPROX. SOLTN (∝=0.9) APPROX. SOLTN (∝=0.5) 

0 1 1 1 1 

0.1 1.221402667 1.219698864 1.289481727 1.817576684 

0.2 1.491818667 1.488231674 1.603447198 2.327880818 

0.3 1.822048 1.816379387 1.974190174 2.873639268 

0.4 2.225130667 2.217161011 2.418937502 3.499449997 

0.5 2.716666667 2.706153438 2.955654773 4.235869426 

0.6 3.315136 3.301811277 3.604648521 5.111822404 

0.7 4.042218667 4.025786696 4.38923011 6.157752537 

0.8 4.923114667 4.903249254 5.336154693 7.406841788 

0.9 5.986864 5.963205739 6.475982554 8.895630136 

1 7.266666667 7.23882 7.843407074 10.6644009 

 

Journal of the Nigerian Association of Mathematical Physics Volume 57, (June - July 2020 Issue), 21 –28    



27 
 

On the Semi-Analytical Approach…         Okai, Kwami, Adamu, Monsuru and Abubakar         J. of NAMP 
 

 

These charts reveal that the depicted numerical results are in good agreement with the exact solution as ∝ gets close to 1 

and our approximate results for ∝=1 coincides with the exact solution  

Fig 2: shows the numerical results for three iterations for various values 0 <∝≤ 1. 

 

 

The comparison shows that as ∝→ 1, the approximate solution tends to 𝑒2𝑥 , which is the exact solution of the equation in 

the case ∝=1. 

 

5. Conclusion 

In this paper, we have developed a reliable amendment of the Adomian decomposition approach provided in [11] for 

solving first order fractional Fredholm Integro-differential equation. The exceptional advantage of this new method is that, 

we used a reduced form of the Adomian polynomials which has proved to be very effective. The results obtained from 

numerical examples display that the existing method can supply a greater correct approximation. 
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