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Abstract

This paper establishes some generalizations of Opial inequalities on time scales. Also, some
Opial-type inequalities with weight functions were established.
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1. Introduction
Inequality involving integrals of a function and its derivative was established by Opial in [1]. It has proved to be one of the most useful inequalities in
analysis. The result is as follows:
Theorem 1.1 If f(x) is absolutely continuous on [0, h] such that f(0) = f(h) = 0 and f(x) > 0 on (0, k), then

LHIFOOfGoldx <2 [ (f100)%dx. ()
2 is the best possible constant.

Olech [2] provided a modified version of the result in the following result:
Theorem 1.2 If f(x) is absolutely continuous on [0, h] with £(0) = 0, then

h h rh
Jo FOOf'Cdx <3 [ (F'(x))?dx. (1.2)
Time scale calculus was initiated in [3] in order to create a theory that can unify discrete and continuous analysis. A time scale is an arbitrary non-empty
closed subset of the real numbers. The three most popular examples of time scale calculus are differential calculus, difference calculus and quantum
calculus, thatis T=R, T = N, T = qNe = {q*: t € Ny}, where q > 1, referenced in [4]. Delta derivative f* for a function f defined on T as:
0] 2 = f'is the usual derivative if T = R; and
(i) 2 = Af is the usual forward difference operator if T = Z.
The summary of time scale calculus and its applications could be sourced from [5-9] and the references therein.
Table 1: NOTATIONS

SYMBOLS NAMES

Z Integers

R Real numbers

N Natural numbers

T Time scales

inf Infimum
sup Supremum

Crq rd-Continuous

T Forward jump operato

The aim of this work is to generalize some inequalities of Opial-type by using Hélder’s inequality for convex functions.

2. Opial-type inequalities

Theorem 2.1 Let T be a time scale with a, 8 € T and r € C.4([a, B]r, R™) be such that r(t) is nonincreasing on [@, 8]y and k > 0 and n > 1. If
y: [a, Bl — Ris delta differentiable with y(a) = 0,. Then

O @F ©rac < M2 [Ty oAt @1)
Proof:
Suppose that the function f(¢t) is defined by

_n
f&) = [Ty ()]"As, 22)
therefore

n

f(@ =0 andf*(t) =r<i(s)ly*(s)|" > 0. (23)

When n > 1, using indices n and n/n — 1 and by Halder’s inequality,
r@®l = f ly2(s)las = f T“**'(S)T“*'(S)IVA(S)IAS

-1

< (f (i)™ As) (5 r*’n(s)lyﬂ(s)w)ﬂs 24)
<O - @) T ),
yields
TI 1) K
T“”’(t)l)’(t)l'c S(t-a)y " fu). (2.5)

When n = 1, we have
©1 < [ E)las = [ras)rmas)ly 6)las
< i (t) [ e () YA (s)|As = (0 f (0),
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(2.6)
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Also, (2.5) holds when n = 1.

Combining (2.3) and (2.5) yields
ff EOIOINROI ffTW(S)IV(S)I"Tm(S)IVA(S)I"AS
5 Mooy ko
<[, s=—a)y 7 fus)fA(s)As (27
LU RPN

<@-a) 1 [
Bohner and Peterson [5] states that:
K e A
PP (o). (28)
Since f(a) =0

K(-1) win o \A

Erov©ryens <=@-o  [L(F7o) as

k(m=1)

=L@g-a) 1 (F7®).

K+1

Using Holder’s inequality with indices (k + 1) /x and n/(x + 1),
n_
fB) = Il s)as

(2.9)

<(fF 1As)ﬁ (ff (r%v(s)lyA(S)l”)T AS>M (2.10)

= B - (ff (=i o) As) :
Combining (2.9) and (2.10) implies,
L r @@y )1ras < T [Frs)ly (s)|*as.

Hence, proof is complete.
Remark 2.1 When T = R, (2.1) reduces to Yang [10]
b Kt b-a)® b ’ K
[ r O @Y O At < 2 roly (9] 7At. (211)
When r(t) = 1, (2.11) reduces to Yang [11]
b Kl b-a)€ b K
[ @y @1 ar < T2 21y (0] 7At. (212)
Remark 2.2 Beesack and Das [12] showed that (2.11) and (2.12) are not sharp for n > 1 but sharp forn = 1.
Remark 2.3 Setn = 1 in (2.12), we have Hua [13]

@Iy @1ae < 220 12 1y (0] At (213)
Some generalizations of Opial-type inequalities with weight functions were established.
Theorem 2.2 Let T be a time scale with 0,p € T and w(t) be a positive and rd—continuous function on [0, p] such that fo" wl™(t)At < o, n > 1. For
delta differentiable
x:10, p]lr = Rwith y(0) = 0. Then
I3 12® +x° @l ©|ac < (fy @ @at) (J; 0@l *O1*at)", (2.14)
where k > 1and 1/k + 1/n = 1 and with equality when x(t) = ¢ fot w'™(s)4s. Proof:
Consider y(t) = fot X2 (®)|AL. Then y2(t) = |x2 ()| and |x| < .
Using Holder’s inequality, we have
[ " + Ol ©lat < | " @1+ e @Dz e

p )
<[ oo +roros=[ vor=re

4 2 a4 2
= ( f IX"(t)IAt) = (w0 (oI ®))
N T I
s(f (w~(_r))) (f olr <t)|)
Hence, proof is complete.
3 Conclusion

The results of this paper were some generalizations of Opial-type inequalities. The concept of Hélder’s inequality on convex functions on time scales was introduced, which is
an essential tool used throughout the work.
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