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Abstract 
 

This paper establishes some generalizations of Opial inequalities on time scales. Also, some 

Opial–type inequalities with weight functions were established. 
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1. Introduction 

Inequality involving integrals of a function and its derivative was established by Opial in [1]. It has proved to be one of the most useful inequalities in 

analysis. The result is as follows:  

Theorem 1.1 If 𝑓(𝑥) is absolutely continuous on [0, ℎ] such that 𝑓(0) = 𝑓(ℎ) = 0 and 𝑓(𝑥) > 0 on (0, ℎ), then  

∫
ℎ

0
|𝑓(𝑥)𝑓′(𝑥)|𝑑𝑥 ≤

ℎ

4
∫

ℎ

0
(𝑓′(𝑥))2𝑑𝑥.      (1.1) 

ℎ

4
 is the best possible constant. 

Olech [2] provided a modified version of the result in the following result:  

Theorem 1.2 If 𝑓(𝑥) is absolutely continuous on [0, ℎ] with 𝑓(0) = 0, then  

∫
ℎ

0
𝑓(𝑥)𝑓′(𝑥)𝑑𝑥 ≤

ℎ

2
∫

ℎ

0
(𝑓′(𝑥))2𝑑𝑥.      (1.2) 

Time scale calculus was initiated in [3] in order to create a theory that can unify discrete and continuous analysis. A  time scale is an arbitrary non-empty 
closed subset of the real numbers. The three most popular examples of time scale calculus are differential calculus, difference calculus and quantum 

calculus, that is 𝕋 = ℝ, 𝕋 = ℕ,  𝕋 = 𝑞ℕ0 = {𝑞𝑡: 𝑡 ∈ ℕ0}, where 𝑞 > 1, referenced in [4]. Delta derivative 𝑓Δ for a function 𝑓 defined on 𝕋 as: 

(i) 𝑓Δ = 𝑓′ is the usual derivative if 𝕋 = ℝ; and 

(ii) 𝑓Δ = Δ𝑓 is the usual forward difference operator if 𝕋 = ℤ. 
The summary of time scale calculus and its applications could be sourced from [5–9] and the references therein.   
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The aim of this work is to generalize some inequalities of Opial-type by using H�̈�lder’s inequality for convex functions.  

2. Opial–type inequalities 

Theorem 2.1 Let 𝕋 be a time scale with 𝛼, 𝛽 ∈ 𝕋 and 𝑟 ∈ 𝐶𝑟𝑑([𝛼, 𝛽]𝕋, ℝ+) be such that 𝑟(𝑡) is nonincreasing on [𝛼, 𝛽]𝕋 and 𝜅 > 0 and 𝜂 > 1. If 

𝑦: [𝛼, 𝛽]𝕋 → ℝ is delta differentiable with 𝛾(𝛼) = 0,. Then  

∫
𝛽

𝛼
𝑟(𝑡)|𝛾(𝑡)|𝜅|𝛾Δ(𝑡)|𝜂Δ𝑡 ≤

𝜂(𝛽−𝛼)𝜅

𝜅+𝜂
∫

𝛽

𝛼
𝑟(𝑡)|𝛾Δ(𝑡)|𝜅+𝜂Δ𝑡.    (2.1) 

Proof: 

Suppose that the function 𝑓(𝑡) is defined by  

𝑓(𝑡) = ∫
𝑡

𝛼
𝑟

𝜂

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|𝜂Δ𝑠,       (2.2) 

therefore  

𝑓(𝛼) = 0     𝑎𝑛𝑑𝑓Δ(𝑡) = 𝑟
𝜂

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|𝜂 > 0.     (2.3) 

When 𝜂 > 1, using indices 𝜂 and 𝜂/𝜂 − 1 and by H�̈�lder’s inequality,  

|𝛾(𝑡)| ≤ ∫
𝑡

𝛼
|𝛾Δ(𝑠)|Δ𝑠 = ∫

𝑡

𝛼
𝑟

−1

𝜅+𝜂(𝑠)𝑟
1

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|Δ𝑠

≤ (∫
𝑡

𝛼
(𝑟

−1

𝜅+𝜂(𝑠))

𝜂

𝜂−1

Δ𝑠)

𝜂−1

𝜂

(∫
𝑡

𝛼
𝑟

𝜂

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|𝜂)

1

𝜂

Δ𝑠

≤ 𝑟
−1

𝜅+𝜂(𝑡)(𝑡 − 𝛼)
𝜂−1

𝜂 𝑓
1

𝜂(𝑡),

     (2.4) 

 yields  

𝑟
−1

𝜅+𝜂(𝑡)|𝛾(𝑡)|𝜅 ≤ (𝑡 − 𝛼)
𝜅(𝜂−1)

𝜂 𝑓
𝜅

𝜂(𝑡).      (2.5) 

 When 𝜂 = 1, we have  

|𝛾(𝑡)| ≤ ∫
𝑡

𝛼
|𝛾Δ(𝑠)|Δ𝑠 = ∫

𝑡

𝛼
𝑟

−1

𝜅+1(𝑠)𝑟
1

𝜅+1(𝑠)|𝛾Δ(𝑠)|Δ𝑠

≤ 𝑟
−1

𝜅+1(𝑡) ∫
𝑡

𝑎
𝑟

1

𝜅+1(𝑠)|𝛾Δ(𝑠)|Δ𝑠 = 𝑟
−1

𝜅+1(𝑡)𝑓(𝑡),
     (2.6) 
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SYMBOLS NAMES 

ℤ Integers 

ℝ Real numbers 

ℕ Natural numbers 

𝕋 Time scales 

inf Infimum 

sup Supremum 

𝐶𝑟𝑑 rd-Continuous 

Σ Forward jump operato 
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Also, (2.5) holds when 𝜂 = 1. 
 

Combining (2.3) and (2.5) yields  

∫
𝛽

𝛼
𝑟(𝑠)|𝛾(𝑠)|𝜅|Δ(𝑠)|𝜂Δ𝑠 = ∫

𝛽

𝛼
𝑟

𝜅

𝜅+𝜂(𝑠)|𝛾(𝑠)|𝜅𝑟
𝜂

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|𝜂Δ𝑠

≤ ∫
𝛽

𝛼
(𝑠 − 𝑎)

𝜅(𝜂−1)

𝜂 𝑓
𝜅

𝜂(𝑠)𝑓Δ(𝑠)Δ𝑠

≤ (𝛽 − 𝛼)
𝜅(𝜂−1)

𝜂 ∫
𝛽

𝛼
𝑓

𝜅

𝜂(𝑠)𝑓Δ(𝑠)Δ𝑠.

   (2.7) 

 Bohner and Peterson [5] states that:  

𝑓
𝜅

𝜂(𝑠)𝑓Δ(𝑠) ≤
𝜂

𝜅+𝜂
(𝑓

𝜅+𝜂

𝜂 (𝑠))
Δ

.      (2.8) 

 Since 𝑓(𝑎) = 0 

∫
𝛽

𝛼
𝑟(𝑠)|𝛾(𝑠)|𝜅|𝛾Δ(𝑠)|𝜂Δ𝑠 ≤

𝜂

𝜅+𝜂
(𝛽 − 𝛼)

𝜅(𝜂−1)

𝜂 ∫
𝛽

𝛼
(𝑓

𝜅+𝜂

𝜂 (𝑠))
Δ

Δ𝑠

=
𝜂

𝜅+𝜂
(𝛽 − 𝛼)

𝜅(𝜂−1)

𝜂 (𝑓
𝜅+𝜂

𝑛 (𝛽)) .

   (2.9) 

Using H�̈�lder’s inequality with indices (𝜅 + 𝜂)/𝜅 and 𝜂/(𝜅 + 𝜂),  

𝑓(𝛽) = ∫
𝛽

𝛼
𝑟

𝜂

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|𝜂Δ𝑠

≤ (∫
𝛽

𝛼
1Δ𝑠)

𝜅

𝜅+𝜂
(∫

𝛽

𝛼
(𝑟

𝜂

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|𝜂)

𝜅+𝜂

𝜂

Δ𝑠)

𝜂

𝜅+𝜂

= (𝛽 − 𝛼)
𝜅

𝜅+𝜂 (∫
𝛽

𝛼
(𝑟

𝜂

𝜅+𝜂(𝑠)|𝛾Δ(𝑠)|𝜂)

𝜅+𝜂

𝜂

Δ𝑠)

𝜂

𝜅+𝜂

.

    (2.10) 

Combining (2.9) and (2.10) implies,  

∫
𝛽

𝛼
𝑟(𝑠)|𝛾(𝑠)|𝜅|𝛾Δ(𝑠)|𝜂Δ𝑠 ≤

𝜂(𝛽−𝛼)𝜅

𝜅+𝜂
∫

𝛽

𝛼
𝑟(𝑠)|𝛾Δ(𝑠)|𝜅+𝜂Δ𝑠.     

Hence, proof is complete.  

Remark 2.1 When 𝕋 = ℝ, (2.1) reduces to Yang [10]  

∫
𝑏

𝑎
𝑟(𝑡)|𝛾(𝑡)|𝜅|𝛾 ′(𝑡)|𝜂Δ𝑡 ≤

𝜂(𝑏−𝑎)𝜅

𝜅+𝜂
∫

𝑏

𝑎
𝑟(𝑡)|𝛾 ′(𝑡)|𝜅+𝜂Δ𝑡.    (2.11) 

When 𝑟(𝑡) = 1, (2.11) reduces to Yang [11]  

∫
𝑏

𝑎
|𝛾(𝑡)|𝜅|𝛾 ′(𝑡)|𝜂Δ𝑡 ≤

𝜂(𝑏−𝑎)𝜅

𝜅+𝜂
∫

𝑏

𝑎
|𝛾 ′(𝑡)|𝜅+𝜂Δ𝑡.    (2.12) 

Remark 2.2 Beesack and Das [12] showed that (2.11) and (2.12) are not sharp for 𝜂 > 1 but sharp for 𝜂 = 1.  

Remark 2.3 Set 𝜂 = 1 in (2.12), we have Hua [13]  

∫
𝑏

𝑎
|𝛾(𝑡)|𝜅|𝛾 ′(𝑡)|Δ𝑡 ≤

𝜂(𝑏−𝑎)𝜅

𝜅+1
∫

𝑏

𝑎
|𝛾 ′(𝑡)|𝜅+1Δ𝑡.    (2.13) 

 Some generalizations of Opial–type inequalities with weight functions were established.  

Theorem 2.2 Let 𝕋 be a time scale with 0, 𝜌 ∈ 𝕋 and 𝜔(𝑡) be a positive and rd–continuous function on [0, 𝜌]𝕋 such that ∫
𝜌

0
𝜔1−𝜂(𝑡)𝛥𝑡 < ∞, 𝜂 > 1. For 

delta differentiable 

𝜒: [0, 𝜌]𝕋 → ℝ with 𝜒(0) = 0. Then  

∫
𝜌

0
|𝜒(𝑡) + 𝜒𝜎(𝑡)||𝜒Δ(𝑡)|Δ𝑡 ≤                 (∫

𝜌

0
𝜔1−𝜂(𝑡)Δ𝑡)

2

𝜂(∫
𝜌

0
𝜔(𝑡)|𝜒Δ(𝑡)|𝜅Δ𝑡)

2

𝜅,  (2.14) 

where 𝜅 > 1and 1/𝜅 + 1/𝜂 = 1 and with equality when 𝜒(𝑡) = 𝑐 ∫
𝑡

0
𝜔1−𝜂(𝑠)𝛥𝑠. Proof: 

Consider 𝛾(𝑡) = ∫
𝑡

0
|𝜒Δ(𝑡)|Δ𝑡. Then 𝛾Δ(𝑡) = |𝜒Δ(𝑡)| and |𝜒| ≤ 𝛾. 

Using H�̈�lder’s inequality, we have  

∫
𝜌

0

|𝜒(𝑡) + 𝜒𝜎(𝑡)||𝜒Δ(𝑡)|Δ𝑡 ≤ ∫
𝜌

0

(|𝜒(𝑡)| + |𝜒𝜎(𝑡)|)𝜒Δ(𝑡)Δ𝑡

≤ ∫
𝜌

0

(𝛾(𝑡) + 𝛾𝜎(𝑡))𝛾Δ(𝑡)Δ𝑡 = ∫
𝜌

0

(𝛾2(𝑡))Δ = 𝛾2(𝜌)

= (∫
𝜌

0

|𝜒Δ(𝑡)|Δ𝑡)

2

= (𝜔
−1

𝜅 (𝑡)𝜔
1

𝜅(𝑡)|𝜒Δ(𝑡)|)
2

≤ (∫
𝜌

0

(𝜔
−1

𝜅 (𝑡))
𝜂

)

2

𝜂

(∫
𝜌

0

𝜔|𝜒Δ(𝑡)|𝜅)

2

𝜅

 

Hence, proof is complete.  
 

3. Conclusion 

The results of this paper were some generalizations of Opial-type inequalities. The concept of H�̈�lder’s inequality on convex functions on time scales was introduced, which is 

an essential tool used throughout the work.  
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