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Abstract 
 

In the present work, the authors are focusing on the best possible upper bound to the 

second Hankel determinants )()()(
2

342
 aaa  and Teoplitz )2(

2
T , )3(

2
T  and )2(

3
T  

for the functions belonging to class of Bazilevic functions defined by Salagean and 

Ruscheweyh operators normalized in the open unit disk. 
 

 

1. Introduction 

Bieberbach [1] conjecture asserts that if f  defined by 
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is analytic and univalent in the unit disk and normalized with 0)0( f  and ,1)0( f  then  na
n
 . This conjecture is renowned in 

geometric function theory and much investigation has been devoted to establish it’s validity. This problem posed an open challenge for 

many researchers in the field of study such as starlike function and convex function defined by  
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respectively. 

In the univalent theory, many researchers has been devoted time to find estimate on bounds of Hankel matrices because of it is usefulness 

and application in different branches [2]. Nooman and Thomas [3] introduced and studied the qth  Hankel determinant is defined as  
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This determinant was studied by many authors among are: Babalola [4], Ehrenborg [5],  Hamzat [6] , Hayami and Owa [7] and many 

others. The sharp bounds on )2(
2

H  were obtained by several authors for detail see [8,9,10,11,12]. Its observed that the well-known 

Fekete and Szego functional is 2

232
)1( aaH  . Fekete and Szego then further generalized the estimate  2

23
aa   where   is real. 

The closer relation from the Hankel determinants are the Toeplitz determinants. A Teoplitz determinant can be thought as an  “upside-

down”  Hankel determinant [14], in that Hankel determinant have constant entries along the reverse diagonal, whereas Toeplitz  matrices 

have constant entries along the diagonal. Application of Toeplitz determinants to wider areas of pure and Applied  Mathematics can be 

found in [14]. The symmetric Toeplitz determinants )(kT
q
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and in particular 
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There is a long standing history in line with problem of finding best possible bounds  
kk

aa 
1

 for some function Sf   as in [15]. 

From (1) we have that 
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Expand binomially we have 
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Applying Salagean differential operator  on  (7) yields 
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Remark 1: If 1  in (8) we obtain  Salagean  differential operator [16]. 

Again, applying Ruscheweyh operator [17] on (8) yields  
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Remark 2: If 1  in (9) we get Ruscheweyh operator [17]. 

Denote by  AADR
n

:  the operator given by the Hadamard product (the convolution product) of the Salagean operator 
fD

n  and the 

Ruscheweyh operator 
fR

n : 
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For any Uz   and each non-negative integer n we obtain 
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Remark 3: If 1  in (10) we have operator defined by Andrei [18]. 

Definition 1: Let )(


n
Tf  , then  
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.1,  Nn  

 In the first part of our main results we will be dealing with Hankel coefficient estimates for the functions in the earlier defined class. The 

second part dealing with Teoplitz  determinant. 

 

2. Lemmas 

Lemma 1: [19] If Pp   then 2
k

c  for each k . 

Lemma 2: [19] Let the function Pp   be given by the power series .....1)(
2

21
 zczczp then 
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3   Results 

Theorem 1: Let  )(
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Proof: Let )(


n
Tf  , then 
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Where  
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Equating the like terms in (14), we have 
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From (16), (17) and (18), we have 
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Upon simplification and using Lemma 1  that 2)()()(
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  bbb we have  
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Substituting for 
2

c  and  
3

c  from Lemma 4 and letting cc 
1

 















 








2

)1)(4(

4

)4(

2

)4(

44

1
222223

2

342

zxcxccxccc
Acaaa

  









 





4

)4(

2

)4(

44

222224
cxcxccB            (21) 

where 

)!2()!()!1()3()1(

)!1()!2(!

2

22










nn

n
A

nn

n , 

)!1()!1()2(

)!1()!1(

22

222










n

n
B

n

n . 

Since  2
1
 cc  by using Lemma 2,we may assume without restriction ]2,0[c . Then using the inequality, with x  we obtain  
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Then, 

It is clear that, 
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For optimum value of ),(cG  consider 0)(  cG  from (25), we get  
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Substituting the value of  
2

c  from (27) in (26), it can be shown that 
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Therefore, by second derivative test )(cG  has the maximum value at c, where 
2

c  is given by (27). Substituting the obtained value of 
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in the expression (19), which gives the maximum value of )(cG  as  
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4. Teoplitz Determinant 

Theorem 2: Let  )(
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Proof: By (16), (17) and (18), we noticed that 
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Substituting for 
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c  from Lemma 4 and setting cc 
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Substituting the value of  
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c  from (39) in (38), it can be shown that 
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Therefore, by second derivative test )(cG  has the maximum value at c, where 
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Proof: Following the method of proof Theorem 2 and using Lemma 2.2 to express 
2

c  and 
3

c  in terms of
1

c , the desired shall be 

obtained. 

Theorem 4: Let  )(


n
Tf  . Then 

 
42

2

1

2

33

2

2
161)(1)()(21   aaa                (43) 

where 

)8(2
432

421











,   
2411

  ,  
4322

84  
 

)!1()!()!1()2()1(16

)!1(!

2322

323

1










nn

n
n

n

 

222

222

2322

323

1
)!1()!1()2(2

)!1()!1(

)!1()!()!1()2()1(16

)!1(!




















n

n

nn

n

n

n

n

n

 

222

222

3
)!()!1()2(4

)!1()!(











n

n

n

n

 

222

222

3
)!1()!1()2(4

)!1()!1(











n

n

n

n

. 

Proof: Similarly, following the method of proof Theorem 2 and using Lemma 2 to express 
2

c  and 
3

c  in terms 
1

c  the desired results 

shall be obtained. 
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