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Abstract

In the present work, the authors are focusing on the best possible upper bound to the
second Hankel determinants ‘az(a)aA(a)_ asz(a)‘and Teoplitz T,(2), T,(3) and T1,(2)

for the functions belonging to class of Bazilevic functions defined by Salagean and
Ruscheweyh operators normalized in the open unit disk.

1. Introduction
Bieberbach [1] conjecture asserts that if f defined by

f(z):u-iakzk 1)

k=2

is analytic and univalent in the unit disk and normalized with ¢ () =0 and f/(0) =1, then ‘an‘g n . This conjecture is renowned in

geometric function theory and much investigation has been devoted to establish it’s validity. This problem posed an open challenge for
many researchers in the field of study such as starlike function and convex function defined by

Re[m] o @)
f(z)

Re[l+

zf "(Z)J>O ©)
t'(2)

respectively.

In the univalent theory, many researchers has been devoted time to find estimate on bounds of Hankel matrices because of it is usefulness
and application in different branches [2]. Nooman and Thomas [3] introduced and studied the gqth Hankel determinant is defined as

ak ak+1 ak+qfl

a,, a 2, (k.ge N =123.) 4)

k+1 k+2

a a a

k+gq-1
This determinant was studied by many authors among are: Babalola [4], Ehrenborg [5], Hamzat [6] , Hayami and Owa [7] and many
others. The sharp bounds on H ,(2) were obtained by several authors for detail see [8,9,10,11,12]. Its observed that the well-known

Fekete and Szego functional is H, |- ‘aa _ aj" Fekete and Szego then further generalized the estimate ‘aa — ua?| Where g is real.

k+q k+2(q-1)

The closer relation from the Hankel determinants are the Toeplitz determinants. A Teoplitz determinant can be thought as an “upside-
down” Hankel determinant [14], in that Hankel determinant have constant entries along the reverse diagonal, whereas Toeplitz matrices
have constant entries along the diagonal. Application of Toeplitz determinants to wider areas of pure and Applied Mathematics can be
found in [14]. The symmetric Toeplitz determinants T, (k)

a a a

k k+1 k+q-1

ak+1 ak+2 a

T (k) =

k+q

a a a

k+qg-1 k+q k+2(q-1)

and in particular
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2

a,|, a, a, &, (5)

@)= ne -
2 a 2()_84 T,(2)=la, a, a

3 2

a a a

) 2

There is a long standing history in line with problem of finding best possible bounds Ham‘ _ ‘ak H for some function f ¢ s asin [15].

From (1) we have that

f(z)“:(z+iakzq ' (6)
N )

Expand binomially we have

f(2)" = z”+iak(a)z”*“- 7

Applying Salaéean differential operator on (7) yields

D" f(2)" :a"z”+i(a+k—1)"ak(a)z“*k’1 ®)
k=2

Remark 1: If @ =1 in (8) we obtain Salagean differential operator [16].

Again, applying Ruscheweyh operator [17] on (8) yields

(ta-D o Grark=2l C)]

n!(a —1)! i N(a+k-2)

R"f(2)" =

Remark 2: If ¢ =1 in (9) we get Ruscheweyh operator [17].

Denote by DR ": A —» A the operator given by the Hadamard product (the convolution product) of the Salagean operator p" ¢ « and the

Ruscheweyh operator R" f “ :

DR"f(z)* = (D" *R") f(2)"

Forany z e U and each non-negative integer n we obtain

v S(a+k-D"(n+a+k-2)
nl(a —1)! = ni(a +k - 2)!

Remark 3: If o =1 in (10) we have operator defined by Andrei [18].

Definition 1: Let ¢ ¢ T, () then

Re[n!(al)! DR"f(z)“j>O (11

a"(n+a-1)12"

a"(n+a -1

DR " f (2)" = a, (a)b, (a)z""* (10)

neN,a >1.

In the first part of our main results we will be dealing with Hankel coefficient estimates for the functions in the earlier defined class. The
second part dealing with Teoplitz determinant.

2. Lemmas

Lemma 1: [19]If p € P then ‘Ck‘g o> foreach K .
Lemma 2: [19] Let the function p e p be given by the power series p(z) =1+ ¢,z +¢,2* +..... then

2c, =c¢’ +x(4-c})

X|Sl and

for some X,

4c, = cf + 2(4—cf)c1x—01(4—(:12)xz + 2(4—cf)(1—‘x‘2)z

for some X, Z‘gl
3 Results
Theorem 1: Let ¢« T, () Then
az(a)aA(a)—asz(a)‘sitz+yt+% 12)
_ A-B 3A-4B
Where t=u’ A= , 7= ll
A-B 8 4
_ a®al(a +2)\(n+a -1 R R T R (13)
(@ +1)" (@ +3)" (@ - (n+a)(n+a+2) @+ 2)™ (@ -1 (n+a+ )

Proof: Let < T, () then
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n!(oi -1)IDR f(zw) - p(2)" (14)
a (n+a-1)z

Where

p(z) =1+cz+c,2° +¢,2° + ... (15)

Equating the like terms in (14), we have

a,(a) - a"al(n+a -1)lc, (16)
(a +1)"(a -1 (n+a)lb,(a)

a,(a) - a(a+)(n+a-1lc, (17)
(@ +2)" (@ -1 (n+a+1)b, ()

a,(a) = a"(a+2)M(n+a-1)c, . (18)

(a +3)" (e —D)!(n+a+2)b,(a)
From (16), (17) and (18), we have

a,(a)a,(a) - a} (@)| =

[ a'atnsa-1e, T a'(@+2p+a-dic, 1 [  a'@+dnea-te, 1 19
L(a+l)"(a—1)!(n+a)!b2(a) L(a+3)"(a—1)!(n+a+2)!b4(a)J [(a+2)"(a—l)!(n+a+1)!b3(a)
Upon simplification and using Lemma 1 that b,(a) = b, (a) = b, (o) < 2 W€ have

a®al(a +2)!(n+ a - 1)1 c,c, a®™(a@+ ) (n+a -1 c? (20)

s T ) (@) (@D (nta)l(n+at2) Aa+2) (@-D (ntatl)

274 3

Substituting for ¢, and C, from Lemma 4 and letting ¢, = ¢

1 e c(4—cz)x7c(4—cz)x2+(4—CZ)(1—‘X‘2)21|

a,a, —a’ :7ACILT+ ; . " |
_Eri+xcz(4—cz)+xz(4—cz)27 (21)
41 4 2 4 J
where a®al(a + 2 (n+a -1’ v @M@+ (nra -’
(@ +1)" (@ +3)"(a =)’ (n+a)(n+a+2) T (@+2)™ @ -1 (n+a+l)

Since ‘c‘ - \Cl\ < 2 by using Lemma 2,we may assume without restriction ¢ < [0,2]. Then using the inequality, with , - ‘X‘ we obtain

‘az(a)aA(a)-aj(a)‘g

_ . (22
%(A- B)' +%(A— B)cz(4—cz)er%Acz(ét—cz)p2 +%B(4—Cz)2p2 +§A(4—Cz)(l—p2) =F@.p)- (22
Then,
Itis clear that, oF 0 which show that (¢, ) is an increasing function on the close interval [0,1]. This implies that maximum occurs at
op
p =1
Therefore max g (c, p) = F(c,1) = G(c). Now
F(cd) = G(c) = —(A—B)c' + ~(A—B)c*(4—c?)+ —Ac’(4—c’)+ —B(a—c?)?-  (23)
16 8 16 16
Thus,
G(c):ﬂc4+ycz+% (24)
where A-B 3A-4B ,
A= , 7=
8 4
Thus
G'(c) = 4ac’ + 25 (25)
and
G"(c)=124c% +2y < 0. (26)
For optimum value of G (c), consider g'(c) = 0 from (25), we get
o2 AB-3A . (27)
A-B

Substituting the value of ¢ from (27) in (26), it can be shown that
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ey~ S[A—Bl+ L[3A - 48] (28)
G"(c) = 2[A B] 2[3A 48]

Therefore, by second derivative test g (c) has the maximum value at ¢, where ¢ 2 is given by (27). Substituting the obtained value of ¢ z
in the expression (19), which gives the maximum value of G (c) as

2 2 B
a,(a)a,(a)-a’ (a)‘ <At
which complete the proof.

4, Teoplitz Determinant
Theorem 2: Let < ¢ T, (a)- Then

ag(a)—aj(a)‘sg[Alzﬂz+11ﬂ+11] (29)

where , _ a"(e+D(n+a-Dt ., o aaln+a-DY ,; _op?_5A?
Y@+ 2)" (@ -1 (n+a+1) Y@+ ) (@ -1+ a)

5 [al@+2)(n+a+1r ] (30)
2 | (@+D)"(n+a)(a+1)
Proof: By (16), (17) and (18), we noticed that

p =

a® @+ (n+a-1Yc] ~ a®a’ (n+a-1)1%c! (31)
(@+2)"(@-DPM+a+1)"bi(a) (a+1)"(a - (n+a)’bl(a)
For b,(a) <2 and b,(a) <2 We have

aj(a)-a;(a) =

a™(a@+ )P (n+a-1)ck aal’ (n+a-1)%c (32)

al(a)-al(a) = _
Aa+2) " (@ -DPM+a+D)?  4(a+1D)"(a -1 (n+a)?

Substituting for ¢, from Lemma 4 and setting ¢, = ¢ yields
a? (@ +) (n+a -1 ., a®(a+) (n+a -1
16 (ar +2)"" (@ - )V (n+ a +1)1° 8(a+2)""(a -1’ (n+a+1)°
a®(a +)? (n+a -1
(Zn ) (2 ) 2)(2(4_62)_ 2n 2 2
6(a+2) (e - (n+a+1) 4(a+1)" (a -1 (n+ a)!
Since ‘c‘ - \01\ < 2 by using Lemma 2, we may assume without restriction ¢ < [0,2]. Then using the inequality, with , - ‘X‘ we obtain

al(a)-al(a)= c2(4-ch)x+

a®a? (n+a -1 o2 (33)

‘a;(a)—aj(a)‘i a "(azn+1)! (n:a—l)! : B a ”(ozzn+l)! (n:a—l)! 202(4—02)p+
16(x +2)" (-1 (n+a +1)! 8(a+2) (¢ - (n+a+1)
2n |2 _ |2 2n |2 _ |2
a (a2+1). (nz+a 1! 2p2(4—cz)+ o 025. (n+oc2 n 2‘32 ) (34)
16(ax +2)" (@ =" (N + a +1)! 4(a +1)" (@ =1 (n + a)!
Then,
oF _ a (@ + )P (n+a-1)1° a4 a’ @+ (n+a -1 b4 ct)- (35)
op  8(a+2)"(a -1 (n+a+1)* 8(a +2) " (@ -’ (n+a+1)°
Itis clear that, oF _ which show that (¢, p) is an increasing function on the close interval [0,1]. This implies that maximum occurs at
op
p =1
Therefore max r (¢, p) = F(c.1) = G (c). Now
Thus
al(a) - a}(a)) < %Afc" + é[zsf ~5AZk? + g[zsf ~5A2]=G(c)" (36)
Thus
G'(c) = L A%t + 1287 —5A7k 37)
2 4
and
G"(c) = %Afcz + %[2 B -5A7] (38)
For optimum value of G (c), consider g’(c) = o from (37), we get
. 5 [al@+2)"(m+a+ ] (39)

STy @D () (a1
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Substituting the value of ¢ ? from (39) in (38), it can be shown that

3
G"(c)=—
2

AZp + %[2 BI—5A%] (40)

Therefore, by second derivative test G (c) has the maximum value at ¢, where ¢ % is given by (22). Substituting the obtained value of

¢’ inthe

expression (19), which gives the maximum value of G (c) as

al(a) - al(a)| < %[Afﬁz N ETN

which complete the proof.

Theorem

‘af(a)—a

3:Let ¢ eT,(a)- Then

Ha)| <MLL+ MLt Mt 4B, (41)

, =

-5 7A - B
Where MI:?Al,M _ 14 1, M3:4A1+81

a’(n+2)1(n+a - 1) a® (@ +1) (n+a -1 . (42)

LT M@ +3) (@D (4 a+ )P

T aa+ ) (@ - (n+a 4 1)

Proof: Following the method of proof Theorem 2 and using Lemma 2.2 to express ¢, and C, in terms ofc,, the desired shall be
obtained.
Theorem4: Let ¢« . T, (a)- Then
i+ 222 (a)(a,(a) ~1) - a2 (@)] <1+ 0" + 0,7 4164, (43)
where A=A, -A 0, =2+ 2, ~ A, 0,=44,+ A, 82,
2(4, + A, - 84,)
aPa’ (n+a -1
B 16 (ax +1)*" (@ + 2) (@ =) (n+ a)* (N + & +1)!
A a®al? (n+a -1 - a®(a + 1)1 (n+a -1
1se + DM@+ 2) @ -0+ a)P (n+a + 1) 2(a +2)2" (@ 1) (0 + a + 1)1

a® (@) (n+a -1

3_4(oz

[24

+2)" (@ -1 (n+ )’

M+ ) (n+a -

3

T e+ 2) (@ -DE(n+a+ 1)

Proof: Similarly, following the method of proof Theorem 2 and using Lemma 2 to express ¢, and ¢, interms c, the desired results

shall be obtained.
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