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Abstract 
 

Smaller 𝑳∞- model for the cover of the classifying space up to homotopy is imminent. 

This model retains all the information of the larger models found in literature. We 

give immediate consequences of 𝑳∞ - structure transferred interacting with one of the 

grading and study structural properties of koszul spaces deciding the model. The 

induce morphisms of homology groups are isomorphic for all  𝒏. 
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1. Introduction 

Let 𝑉 denote a graded vector space. It comes with 𝐿∞-structure corresponding precisely to a square zero coderivation of degree – 1 on the 

cofree cocommutative coalgebra ⋀(𝑠⋁) completely determined by its corestriction𝜋𝛿: ⋀(𝑠⋁) → 𝑠⋁. Write𝛿 = ∑ 𝛿𝑟𝑟≥0 ,where 𝛿𝑟 lowers 

word length by 𝑟, i.e. for any 𝑛 ≥ 0 we have restriction  𝛿𝑟: ⋀
𝑛(𝑠⋁) → ⋀𝑛−𝑟(𝑠⋁). In particular, 𝛿𝑟: ⋀(𝑠⋁)

𝑟+1 → 𝑠⋁. If 𝛿 has a degree-1, 

then the family of maps 𝛿𝑟 correspond to the operation 𝑙𝑟 for an 𝐿∞-algebra, by setting 

𝑆𝑙𝑟(𝑣1, … , 𝑣𝑟) = (−1)∑𝑖|𝑥𝑟−𝑖| + 𝑟

𝑖

𝛿𝑟−1(𝑠𝑣1 ∧ …𝑣1𝑠𝑣𝑟) 

The condition 𝛿2 = 0 corresponds to the generalized Jacobi identities. Taking the graded dual determines dg algebra, and if V is of a 

finite type and concentrated in positive degrees, then the opposite is true. A differential d on the free graded commutative algebra 

⋀((𝑠⋁)𝑛) determines an 𝐿∞-structure on𝑉. The differential is determined by restriction to (𝑠⋁)𝑣. Similarly, we write𝑑𝑛: (𝑠⋁)
𝑣 →

⋀𝑛((𝑠⋁)𝑣) for the restriction, and the 𝑛n-array operation can be read from this. Furthermore, an  𝐿∞-morphism is just a dg algebra 

morphism. This gives a convenient way of packaging the data of an 𝐿∞-algebra with easy access to structural properties. For example, a 

minimal   𝐿∞-structure on a positively graded vector space of finite type is given by a free graded commutative algebra equipped with a 

differential with nonlinear part. 

Next, let (𝑊, 𝑑𝑤) and (𝑉, 𝑑𝑣) be chain complex, and  

ℎ ↺ 𝑊
𝑓
⇄
𝑔
𝑉          (a contraction)      (1) 

If 𝑊 is an 𝐿∞-algebra, then there is an induced 𝐿∞-structure on  𝑉. This is the Homotopy Transfer Theorem for 𝐿∞-algebras stated in [1] 

without proof was later shown in [2]. A version with explicit formulae for resulting structure appeared in [3 and 4]. The latter also 

contains details on how to extend the maps occurring to  𝐿∞-morphisms. 
Example 1.1: Given a contraction (1) and  𝐿∞-structure {𝑙𝑛} on  𝑊. Consider a rooted trees with each leaf labeled by 𝑔, each vertex by 𝑙𝑛 where 𝑛 + 1 is 

the valence of the vertex, each internal edge by ℎ, and the root by 𝑓. Such a tree with 𝑛 leaves may be taken as recipe for building a map 𝑉⊗𝑛⟶𝑉, by 

using from leaves to root, each leaf taking an input from one of the 𝑛 copies of 𝑉 in the source. We can form a signed sum over all such rooted trees with 

𝑛 leaves and labels as described, to get a map   𝑙𝑛: 𝑉
⊗𝑛⟶ 𝑉, which may depict as 

 

 

 

 

 

 
 

 

 

 

Figure 1.1 (a) Composed Rooted Tree       (b)  Rooted Tree after contraction 
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If we denote the root of each tree by ℎ instead of  𝑓, we get a recipe for building maps 

𝑉⊗𝑛⟶𝑊, and forming the signed sum over all rooted trees with 𝑛 leafs and this decoration,  

we get a map  

𝑔𝑛: 𝑉
⊗𝑛⟶𝑊 

 

The bundle theory, foliation theory, and delooping theory, classifying spaces of topological groups and groupoids were the major focus 

of research in the 1960s – 1980s. Since then, Many different constructions of classifying spaces of topological groups and groupoids have 

been introduced, for example, the construction in [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] etc. Some of them have 

even been generalized to any internal category of topological spaces. For topological groups, most of the constructions give rise to 

homotopy equivalence spaces. The homotopy theory of mapping space and in particular, spaces of self-equivalences is well developed in 

[12, 15, and 22]. Thus, the model in [15, 22] does not address   𝜋0(auto 𝑋). 
It is well known the maps 

𝜋0(𝑎𝑢𝑡𝑋ℚ) ⟶ 𝑎𝑢𝑡𝐻∗(𝑋:ℚ) 

𝜋0(𝑎𝑢𝑡𝑋ℚ) ⟶ 𝑎𝑢𝑡𝜋∗Ω(𝑋)⨂ℚ 

given by sending a homotopy class to the induced map on respectively cohomotopy and homotopy structure. The surjectivity of the first 

of these maps has been studied in [14] for a formal space, and the second map in [21] for a conformal space, where 𝜋0(𝑎𝑢𝑡𝑜𝑋ℚ) is a 

linear algebraic group if 𝑋 is either a finite CW – complex or has finite Postnikov tower (see. [23]). There exist general models for 

mapping spaces expressed in term of the so called Maurr-Cartan elements of simplicial dg Lie algebra (see, [21 and 24]). The first of 

these is particularly useful to investigates   𝑎𝑢𝑡𝑋ℚ, while the Lie model of derivations given in [15 and 22] is finite for theoretical 

purpose but it is very large. 

Let ℓ denote Quillen model for a relatively small formal space, let 𝐴 = 𝐻∗(𝑋;ℚ) implies Quillen construction on the cohomology. For a 

space which is not formal, the Quillen model is quasi-isomorphic to the homotopy Lie algebra 𝐿 of the space, 𝑓: ℓ → 𝐿. One can now 

extend this using contractive mapping to obtain more information in a distinct way. 
 

1.2 Proof Plan  

Homotopy Lie algebra of a simply connected space  𝑋,  is the graded abelian group  𝜋∗(Ω𝑋)⊗ℚ, equipped with the samelson bracket. 

To obtain more information is by Homotopy Transferred Theorem for 𝐿∞ − algebras, we have the following steps.  
 

STEP 1.  The 𝑑𝑔 Lie structure on 𝐷𝑒𝑟ℓ  is transfer along the contraction to 𝑆𝐴⊗𝑘 𝐿 and further to homology  𝐻∗(𝑠𝐴⊗𝑘 𝐿). With this 

transferred structure, the homology computes 𝜋∗(aut X, 1𝑥) ⊗ ℚ not only as a graded abelian group, but as a graded Lie algebra, the 

homotopy Lie algebra of the 1-connected space 𝐵, 𝑎𝑢𝑡𝑋(1). Furthermore, the 𝐿∞ −algebra  𝐻∗(𝑆𝐴 ⊗𝑘 𝐿) completely determines the 

rational homotopy type  𝐵, aut X(1). This was noticed in [5 and 25]. 
 

STEP 2.   Since Quillen models are too large, taking the derivation  of the Lie algebra of the model would not help. In this case, we apply 

several properties of Koszul spaces to produce a much smaller   𝐿∞ − algebra, retaining all the information of the larger model.  
 

1.3 𝑳∞ − 𝐚𝐥𝐠𝐞𝐛𝐫𝐚𝒔: Contraction is one of the key ingredient in studying the structure of  𝐿∞ − algebras. We found the correct 

notion in [1 and 22], and a modern treatment in [3]. We follow the sign conventions from the latter. 
 

Definition 1.2: Let 𝑉 be a graded vector space. An 𝐿∞ − structure on 𝑉 is a family maps ℓ𝑛: 𝑉
⊗𝑛 → 𝑉1  ,    𝑛 ≥ 1 of degree𝑛 − 2, 

satisfying anti-symmetry 

ℓ𝑛(… , 𝑥, 𝑦, … ) = −(−1)
|𝑥||𝑦|ℓ𝑛(… , 𝑥, 𝑦, … ), ∀𝑛 ≥ 1, 

The generalized Jacobi identities, 

∑∑𝑠𝑔𝑛(𝜎)(−1)ℓ𝑛+1−𝑝

𝑛

𝜎

𝑛

𝑝=1

(ℓ𝑝(𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑝), 𝑥𝜎(𝑝+1), … , 𝑥𝜎(𝑛))) = 0, 

where we sum over all (𝑝, 𝑛 − 𝑝) – un-shuffled, i.e. 

𝜎−1(1) < ⋯ < 𝜎−1(𝑝)and 𝜎−1(𝑝 + 1) < ⋯ < 𝜎−1(𝑛) 
The sign is given by 

𝜖 = 𝑝(𝑛 − 𝑝) +∑|𝑥𝑖||𝑥𝑗|

𝑖<𝑗

, 𝜎−1(𝑖) > 𝜎−1(𝑗) 

The generalized Jacobi identities for 𝑛 ≤ 3 are ℓ1
2(𝑥) = 0 

ℓ2(ℓ1(𝑥), 𝑦) + (−1)
|𝑥|ℓ2(𝑥, ℓ1(𝑦)) 

= ℓ1(ℓ2(𝑥, 𝑦)), ℓ2(ℓ2(𝑥, 𝑦), 𝑧) 

+(−1)|𝑦||𝑧|+1ℓ2(ℓ2(𝑥, 𝑧), 𝑦) − ℓ2(𝑥, ℓ2(𝑦, 𝑧)) 

= −(ℓ1ℓ3 + ℓ3ℓ1)(𝑥 ⊗ 𝑦⊗ 𝑧)       (2) 
 

From (2) we see that ℓ1 is a differential, and a derivation with respect to ℓ2. For our 𝐿∞ − structure on a graded vector space𝑉, the chain 

complex (𝑉, ℓ1) is called the underlying complex. We see from (2) that if either ℓ1 or ℓ2 are zero, then ℓ2 is a Lie bracket, but in general 

(2) just states that Jacobi relation holds up to chain homotopy in 𝑉⨂3 given by - ℓ3(note that we have abused notation slightly so the 

differential on  𝑉⨂3 induced by  ℓ1, is also denoted by ℓ1). We shall say that ℓ𝑛 for𝑛 > 2, is a higher operation. An  𝐿∞ − structure with 

trivial higher operations is just a 𝑑𝑔 Lie structure. 

Definition 1.3: An 𝐿∞ −𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑔: (𝑉, ℓ) → (𝑊, ℓ) is a family of graded alternating maps {𝑔𝑛: 𝑉
⨂3 → (𝑊, ℓ)}𝑛 of degree −1 , such 

that for every 𝑛 ≥ 1, 𝑔𝑛 satisfies 
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∑∑𝑠𝑔𝑛(𝜎)(−1)𝜖𝑔𝑛+1−𝑝

𝑛

𝜎

𝑛

𝑝=1

(ℓ𝑝(𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑝), 𝑥𝜎(𝑝+1), … , 𝑥𝜎(𝑛))) 

=∑∑𝑠𝑔𝑛(𝜏)(−1)𝑛ℓ𝑘

𝑛

𝑟

𝑛

𝑘≥1

(𝑔𝑖1(𝑥𝑟(1), 𝑥𝑟(2), … , 𝑥𝑟(𝑖1)),… , 𝑔𝑖𝑘(𝑥𝑟(𝑖𝑘−1+1), , … , 𝑥𝑟(𝑖𝑘))), 

where 𝜎 is a (𝑝, 𝑛 − 𝑝) - unshuffles as above, and 𝜏 is an (𝑖1, . . , 𝑖𝑘) – unshuffles, i.e. 

𝜏−1(𝑖𝑗 + 1) < ⋯ < 𝜏
−1(𝑖𝑗+1), ∀𝑗 ∈ {0,… , 𝑘 − 1} 

satisfying the extra condition that 

𝜏−1(1) < 𝜏−1(𝑖𝑗 + 1) < ⋯ < 𝜏
−1(𝑖1 + 𝑖1…+ 𝑖𝑘+1 + 1) 

The signs are given by 

𝜖 = 𝑝(𝑛 − 𝑝) +∑|𝑥𝑖||𝑥𝑗|

𝑖<𝑗

, 𝜎−1(𝑖) > 𝜎−1(𝑗) 

𝜂 =∑(𝑘 − 𝑗)(𝑖𝑗 − 1)

𝑘

𝑗=1

+∑|𝑥𝑖||𝑥𝑗|

𝑖<𝑗

+∑(𝑖𝑗 − 1)

𝑘

𝑗=2

∑|𝑥𝑟(𝑚)|

𝑘

𝑗=2

, 𝜏−1(𝑖) > 𝜎−1(𝑗) 

For   𝑛 = 1, the condition implies that   𝑔1 is a chain map. For  𝑛 = 2, it is 

−𝑔2(ℓ1(𝑥1), 𝑥2) − (−1)
|𝑥1||𝑥2|+1𝑔2(ℓ1(𝑥2), 𝑥1) + 𝑔1(ℓ2(𝑥1, 𝑥2)) 

= ℓ2(𝑔1(𝑥1), 𝑔1(𝑥2)) + (−1)
|𝑥1||𝑥2|+1ℓ2(𝑔1(𝑥2), 𝑔1(𝑥1)) + ℓ2(𝑔2(𝑥1, 𝑥2)), 

 

On re-arranging, we have  

𝑔2(ℓ1(𝑥1), 𝑥2) + (−1)
|𝑥1|𝑔2(𝑥1, ℓ1(𝑥2)) + ℓ1(𝑔2(𝑥1, 𝑥2)) 

= 𝑔2(ℓ1(𝑥1, 𝑥2)) − ℓ2(𝑔1(𝑥1), 𝑔1(𝑥2)) 
 

It is obvious that  𝑔2 is a chain homotopy between 𝑔1ℓ2 and ℓ2(𝑔1⊗𝑔1), so 𝑔1 respects the binary operations up to homotopy. 

Similarly the higher maps {𝑔𝑛}𝑛≥3 can be thought of as homotopies between homotopies, and so on. 
 

Definition 1.4:  𝐿∞ quasi-isomorphism is an   𝐿∞-morphism {𝑔𝑛}𝑛, such that 𝑔1 is a quasi-isomorphism of chain complexes. There is an 

equivalent definition of 𝐿∞ − algebras, which the following theorem expresses. 

Theorem 1.5 (Homotopy Transfer Theorem [4]): Let (𝐿, {ℓ𝑛}) be an 𝐿∞-algebras. Let (𝑉, 𝑑𝑣) be a chain complex. Given a contraction 

ℎ ↺ 𝐿
𝑓
⇄
𝑔
 𝑉 

where the collection of maps (ℓ𝑛) defines an𝐿∞ − structure on 𝑉, the collection of {𝑔𝑛} defines an extension of 𝑔 to an 𝐿∞ quasi-

isomorphism(𝑉, {ℓ𝑛}) → (𝐿, {ℓ𝑛}). There is an extension of 𝑓 to an  𝐿∞ quasi-isomorphism in [4]. 
 

Let denote   ℓ2 by [−1−] for now and let   𝑥, 𝑦 ∈ 𝑉. For binary and ternary transferred operations, we get 

ℓ2(𝑥, 𝑦) = 𝑓([𝑔(𝑥), 𝑔(𝑦)]) 
ℓ3(𝑥, 𝑦, 𝑧) = 𝑓𝑜(−[ℎ[𝑔(𝑥), 𝑔(𝑦)], 𝑔(𝑧)]) 

+(−1)|𝑥|[𝑔(𝑥), ℎ[𝑔(𝑦), 𝑔(𝑧)]] 

+(−1)|𝑦||𝑧|[ℎ[𝑔(𝑥), 𝑔(𝑧), 𝑔(𝑦)]] 

+ℓ3[𝑔(𝑥), 𝑔(𝑦), 𝑔(𝑧)]          (3) 
 

1.3 Preliminary Results 

We shall need the following,  
 

Proposition 1.6 ([17]). There is always a minimal Sullivan model for a simply connected space. The minimal is unique up to 

isomorphism. 

Proposition 1.7 ( [17]). There is always a minimal quillen model for a simply connected space. The minimal model is unique up to 

isomorphism. 

Lemma 1.8 ([3], section 10.4). Let 𝐿 and 𝐿′ be 𝑑𝑔 Lie algebras, and consider them as 𝐿∞ − algebra with trivial higher operations. Then 

there exists  𝐿∞ − quasi-isomorphism 𝐿
~
→ 𝐿′ if and only if  𝐿 and 𝐿′ are quasi isomorphism as 𝑑𝑔 Lie algebras. 

Remark 1.9. From Theorem 1.8, it is clear, a 𝑑𝑔 Lie algebras  𝐿 is formal if and only if there exist  𝐿∞ − quasi-isomorphism   𝐻∗(𝐿)
~
→ 𝐿′, where 𝐿 and 𝐻∗(𝐿) are considered 𝐿∞ −algebras with trivial higher operations. Now, we may always choose contraction 

𝑘 ↺ 𝐿
𝑞
⇄
𝑖
𝐻∗(𝐿)        (4) 

onto homology in accordance with the following result. 

Lemma 1.10   For any chain complex 𝑉 (over a field) we may choose a contraction 

ℎ ↺ 𝑉
𝑝
⇄
𝑖
𝐻∗(𝑉) 

where we consider the graded vector space 𝐻∗(𝑉) is a chain complex with zero differential. 
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Proof. Consider the short exact sequences 

 

                𝐵𝑛−1 

 

 

  

     𝐵𝑛     𝑍𝑛  𝐻𝑛(𝑉)      0 

 

 
 

Since we are working over a field, these are split exact, and we may choose splitting as already indicated. It is easy to check that the data 

𝜎𝜌𝑟 ↺ 𝑉

𝑞𝑟
⇄
𝑗𝑤
𝐻∗(𝑉) 

is a contraction of 𝑉 onto homology. 

Therefore, theorem 1.5 for  𝐿∞ −algebras then produces a minimal  𝐿∞ − structure on 𝐻∗(𝐿) with 𝐿2 − operation the standard bracket 

induced on the homotopy, and  𝐿∞-Quasi-isomorphism 

𝐻∗(𝑉)
~
→ 𝐿 

 

Lemma 1.11 ([5]). Let 𝑋 be a simple connected space such that 𝐻∗(𝑋; ℚ) is of finite type. The following are equivalent: 

I. 𝑋 is both formal and coformal 

II. 𝑋 is formal and the cohomology algebra 𝐻∗(𝑋; ℚ) is a Koszul graded commutative algebra. 

III. 𝑋 is coformal and the homotopy Lie algebra 𝜋∗(Ω𝑋)⨂ℚ is a Koszul graded Lie algebra  
 

Lemma 1.12 ([5]).   Let 𝑋 be a Koszul space with homotopy Lie algebra 𝐿 and cohomology 𝐴. The Koszul dual graded commutative 

algebra 𝐿′ is isomorphic to 𝐴, and the Koszul dual graded algebra 𝐴′is isomorphic to 𝐿.  

 

Corollary 1.13 ([5]). Let 𝑋 be a Koszul space with homotopy Lie algebra 𝐿 and cohomology algebra 𝐴. Then 

I. ℓ(𝐴𝑣) is the minimal Quillen model for 𝑋 

II. There is a surjective quasi-isomorphismℓ(𝐴𝑣)
~
→ 𝐿 corresponding to a twisting morphism   𝑘: 𝐴𝑣 → 𝐿 

 

The existence of this explicit surjective quasi-isomophism is the special feature of Koszul spaces upon which this paper is build. 
 

Lemma 1.14 ([15], Corollary VII. 4(4)).  Let 𝑋 be a simply connected space homotopy equivalent to a finite CW-complex. If ℓ is a 

Quillen model for 𝑋, then 1-connected cover of the map induced by inclusion of monoids 𝐵 𝑎𝑢𝑡∗(𝑋)〈1〉 ⟶ 𝐵 𝑎𝑢𝑡 (𝑋)〈1〉 is modeled by 

the map of 𝑑𝑔 Lie algebras (𝐷𝑒𝑟 ℓ)+⟶ (𝐷𝑒𝑟 ℓ ∕∕ 𝑎𝑑ℓ)+, given by inclusion of the derivation. 
 

The rest of this paper is organized as follows: In Section 2, we set up contractions and isomorphisms needed. In Section 3, we specialize 

to the case of interest; koszul algebras. In Section 4, we record how several gradings interact with the maps set-up, and give immediate 

consequences of  𝐿∞ − structure transferred with one of the gradings. Finally, we study in Section 5, the induced    𝐿∞ − structure on   

𝐻(𝑆𝐴⊗𝑘 𝐿)∗ for the configuration spaces. 
 

2. 𝑳∞ −Transferred Structure 

We are now more determined to reduce the study of 𝐷𝑒𝑟 ℓ(𝑐) to the study of a twisted version of the complex 𝐴𝑣⊗ 𝐿 by basic 

perturbation theory, and application of a standard isomorphism. Little novelty exists. Therefore, we skipped some of the proofs. 

Lemma 2.1  Let 𝐴 be a 𝑑𝑔 commutative algebra. Let 𝐿 be a 𝑑𝑔 Lie algebra. Let the chain complex 𝐴⊗ 𝐿 be equipped with a graded Lie 

bracket making a 𝑑𝑔 Lie algebra. Then the bracket is given by [𝑎 ⊗ 𝑥, 𝑏 ⊗ 𝑦] = (−1)|𝑏||𝑥|𝑎𝑏 ⊗ [𝑥, 𝑦] for 𝑎, 𝑏 ∈ 𝐴 and 𝑥, 𝑦 ∈ 𝐿 

For any Maurer-Cartan element in this 𝑑𝑔 Lie algebra 𝜏 ∈ 𝑀𝐶(𝐴⊗ 𝐿), we have the twisted differential 𝑑𝐴⊗𝐿
𝜏 = 𝑑𝐴⊗𝐿 + a𝑑𝜏, we write 

𝐴⊗𝜏 𝐿 for the resulting 𝑑𝑔 Lie algebra (in this way 𝐴⊗ 𝐿 equals 𝐴⊗𝜏 𝐿 – the 𝑑𝑔 Lie algebra twisted by the Maurer-Cartan element 0). 

Let the following be a contraction of 𝑑𝑔 Lie algebras 

ℎ ↺ 𝑀
𝑓
⇄
𝑔
𝐿        (5) 

where 𝐿 and 𝑀 are 𝑑𝑔 Lie algebras, 𝑓 is a quasi-isomorphism of 𝑑𝑔 Lie algebras, 𝑔 is a chain map and ℎ a chain homotopy such that 

𝑓𝑔 = 𝐼𝐿 and 𝑑ℎ + ℎ𝑑 = 𝑔𝑓 − 𝐼𝐿. Imposing a strong assumption ℎ𝑔 = 0, ℎ2 = 0 and  𝑓𝑔 = 0, one can now see that 𝑔 and ℎ are general 

not Lie maps. 

Theorem 2.2   Given a graded commutative algebra 𝐴, a contraction (5) of a 𝑑𝑔 Lie algebras and Maurer-Cartan element 𝜏 ∈
𝑀𝐶(𝐴⊗ 𝐿) such that 𝐴 is nilpotent. Then, there is an induced contraction of chain complexes 

ℎ′ ↺ 𝐴⊗𝜏 𝑀
1⊗ 𝑓
⇄
𝑔′

𝐴⊗(1⊗𝑓)(𝜏) 𝐿 

where 

I.  1⊗ 𝑓 is a quasi-isomorphism of chain complexes 

II.  𝑔′ is given by the recursive formula 𝑔′ = 1⊗ 𝑔 + (1⊗ ℎ)𝑎𝑑𝜏𝑔
′ 
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III ℎ′ is given by the recursive formula ℎ′ = 1⊗ ℎ + ℎ′𝑎𝑑𝜏(1⊗ ℎ) 
 

Proof.  The contraction (5) induces a contraction 

↺ 𝐴⊗𝑀
1⊗ 𝑓
⇄

1⊗ 𝑔
(𝐴⊗ 𝐿, 1⊗ 𝑑𝜏 + ℓ

′), 

where the maps are defined by the recursive formulae 

𝑓′ = 1⊗ 𝑓 + 𝑓′𝑎𝑑𝜏(1 ⊗ ℎ) 
𝑔′ = 1⊗ 𝑔 + (1⊗ ℎ)𝑎𝑑𝜏𝑔

′ 

ℎ′ = 1⊗ ℎ + ℎ′𝑎𝑑𝜏(1⊗ ℎ) 
𝑡′ = 𝑓′𝑎𝑑𝜏(1⊗ 𝑔) 
since 𝑓 is a morphism of Lie algebras, we have for any 𝑎 ⊗𝑚 ∈ 𝐴⊗𝑀 

(1 ⊗ 𝑓)𝑎𝑑𝜏(1⊗ ℎ)(𝑎 ⊗𝑚) = 𝑎𝑑𝜏(1⊗𝑓)𝜏𝑎 ⊗ 𝑓ℎ(𝑥) 

𝑓ℎ = 0, we 𝜁′ = 1⊗ 𝑓 

Furthermore, for any 𝑎 ⊗ ℓ ∈ 𝐴⊗ 𝐿, we get  

𝑡′(𝑎 ⊗ ℓ) = (1⊗ 𝑓)𝑎𝑑𝜏(1⊗ 𝑔)(𝑎 ⊗ ℓ) 
= 𝑎𝑑(1⊗𝑓)𝜏(𝑎 ⊗ ℓ), 

Hence  

𝑡′ = 𝑎𝑑(1⊗𝑓)𝜏 
 

These formulae converges because 𝐴 is nilpotent. For most of our applications, 𝐴 will be a finite dimensional Koszul algebra and thus 

nilpotent, see [1] for a discussion of weaker assumptions which may be adapted to our situation. 
 

Preposition 2.3   Let 𝐶 be a 𝑑𝑔 coalgebra. Let  𝐿 be a 𝑑𝑔 Lie algebra. Let  𝐻𝑜𝑚(𝐶, 𝐿) denote the convolution 𝑑𝑔 Lie algebra. Then, the 

map 𝜑: 𝐶𝑣⊗ 𝐿 → 𝐻𝑜𝑚(𝐶, 𝐿) given by 𝜑(1 ⊗ 𝑓)(𝐶) = (−1)|𝑐||𝑥|𝑓(𝑐)𝑥, is a map of 𝑑𝑔 Lie algebras with respect to the structure of 

Definition 2.1 on the left hand side, natural in 𝐶 and 𝐿. If 𝐶 and 𝐿 are of finite type and either 𝐶𝑣 and 𝐿 are either both bounded above or 

both bounded below, then 𝜑 is an isomorphism (i.e. either 𝐶 or 𝐿 is finite, the other need just be of finite type for 𝜑 to be an 

isomorphism). 

For any Maurer-Cantan element 𝜏 ∈ 𝑀𝐶(𝐶𝑣⊗ 𝐿), the same formula defines a map 𝜑: 𝐶𝑣⊗𝜏 𝐿 → 𝐻𝑜𝑚(𝐶, 𝐿)
𝜑(𝜏) with the same 

properties. The converse to 𝜑 is given by sending a map 𝑓: 𝐶 → 𝐿 to the expression ∑ (−1)|𝑐𝑖|(|𝑓|+|𝑐𝑖|)𝐶𝑖
∗

𝑖 ⊗𝑓(𝑐𝑖) where we have chosen 

basis {𝑐𝑖} for 𝐶, and {𝐶𝑖
∗} for the dual basis of 𝐶𝑣. Note that this is a finite sum if either 𝐶 is finite dimensional or if 𝐶𝑣 and 𝐿 are both 

bounded above or below. 
 

Remark 2.4   We will need Proposition 2.3 to relate  𝑠𝐴 ⊗ 𝐿 ≈ 𝐻𝑜𝑚(𝑠−1𝐶, 𝐿) in which case the signs work out as follows.  

For 𝑠𝑎 ⊗ 𝑥 ∈ 𝑠𝐴⊗ 𝐿, 𝜑(𝑠𝑎 ⊗ 𝑥)(𝑠−1𝑐) = (−1)|𝑐𝑖|(|𝑓|+|𝑐𝑖|)𝑎(𝑐)𝑥 

For 𝑓 ∈ 𝐻𝑜𝑚(𝑠−1𝐶, 𝐿),𝜑−1(𝑓) = ∑ (−1)|𝑓||𝑠𝑐𝑖
∗|+1𝑠𝑐𝑖𝑖 ⊗𝑓(𝑠−1𝑐𝑖) 

Theorem 2.5   Let (𝐿, [−,−], 𝑑𝐿) be a  𝑑𝑔 Lie algebra, and (𝐶, 𝐷𝑐 , 𝑑𝑐) a coaugmented 𝑑𝑔 coalgebra, then for any twisting morphism 

𝜏𝜖𝑇𝑊(𝐶, 𝐿), restriction to generators, give a natural isomorphism of chair complexes 𝑐∗: 𝐷𝑒𝑟𝑓(𝐿(𝐶), 𝐿)
≃
→𝐻𝑜𝑚(𝐶

̅, 𝐿) of degree −1, 

where 𝑓 corresponds to 𝜏 under the bijection of {32}. 

Proof.   It is not difficult to see that restriction gives an isomorphism of graded vector spaces. We must show that 𝑖∗ is a chain map of 

degree −1, i.e.  

𝑖∗(𝜕(𝜃)) = 𝜕𝜏(𝑖∗(𝜃))       (6) 

For any 𝑓-derivation  𝜃, observe first that 𝑖 is a twisting morphism. i.e. it satisfies 

0 = 𝜕(𝑙) +
1

2
[𝑙, 𝑙] = 𝑑𝐿(𝑐)𝑖 + 𝑖𝑑𝑐 +

1

2
[𝑙, 𝑙]     (7) 

We expand the left hand side of (6) using (7), this yields the following 

𝑖∗(𝜕(𝜃)) = 𝑖∗(𝑑𝐿𝜃 − (−1)
|𝜃|𝜃𝑑ℓ(𝑐)) 

= (−1)|𝜃|−1𝑑𝐿𝜃𝑙 + 𝑑ℓ(𝑐)𝑖 

= (−1)|𝜃|−1𝑑𝐿𝜃𝑙 + 𝜃 (−𝑙𝑑𝑐 −
1

2
[𝑙, 𝑙]) 

By definition of the bracket in the convolution Lie algebra, and the fact that 𝜃 is an 𝑓- derivation, we get 

𝑖∗(𝜕(𝜃)) = (−1)|𝜃|−1𝑑𝐿𝜃𝑙 − 𝜃𝑙𝑑𝑐 − 𝜃
1

2
[−,−]𝐿(𝑙 ⊗ 𝑙)Δ𝑐 

= 𝑑𝐿𝑖
∗(𝜃) − (−1)|𝜃|𝑖∗(𝜃)𝑑𝑐 −

1

2
[−,−]𝐿(𝜃 ⊗ 𝑓 + 𝑓 ⊗ 𝜃)(𝑙 ⊗ 𝑙)Δ𝑐 

= −Δ𝑐𝜕(𝑖∗(𝜃)) −
1

2
((−1)|𝜃|[𝑖∗(𝜃), 𝜏]) + [𝜏, 𝑖∗(𝜃)] 

= −Δ𝜕(𝑖∗(𝜃) − [𝜏, 𝑖∗(𝜃)]) 

This is precisely,  −𝜕𝜏(𝑖∗(𝜃)), and we are done. 

A map 𝑑𝑔 Lie algebras 𝑓: 𝐿 → 𝑀 induces a chain map𝑓∗: 𝐷𝑒𝑟𝐿 → 𝐷𝑒𝑟𝑓(𝑀, 𝐿). Composing with 𝑎𝑑 gives a natural chain map 𝐷𝑒𝑟𝐿 →

𝐷𝑒𝑟𝑓(𝑀, 𝐿), and we may consider the mapping cone 𝐷𝑒𝑟𝑓(𝑀, 𝐿)//(𝑓
∗𝑜𝑎𝑑)(𝐿), which we just write 𝐷𝑒𝑟𝑓(𝑀, 𝐿)//(𝐿) for short. 
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Corollary 2.6   Let 𝜏 be a twisting morphism in 𝑇𝑊(𝐶, 𝐿). Restriction to generators gives a natural isomorphism of chain complexes  

𝐷𝑒𝑟𝑓(𝑀, 𝐿)//𝐿
≃
→𝑠𝐻𝑜𝑚(𝐶, 𝐿)

𝜏 

Proof. The isomorphism of theorem 2.5 extends to a natural isomorphism of graded vector spaces ∅:𝐷𝑒𝑟𝑓(𝑀, 𝐿)//𝐿
≃
→𝑠𝐻𝑜𝑚(𝐶, 𝐿)

𝜏 where 

∅(𝑠𝑥) for 𝑥 ∈ 𝐿, is the (suspension of the ) linear map which annihilates 𝑐̅ and on the counit is given by ∅(𝑠𝑥)(1) = 𝑥. We check that 

this extension is still a chain map. On one hand 

−𝜕𝜏∅(𝑠𝑥)(1) = (𝜕∅(𝑠𝑥)) + [𝜏, ∅(𝑠𝑥)](1) 

= 𝑑𝐿∅(𝑠𝑥)(1) − (−1)
|∅(𝑠𝑥)|∅(𝑠𝑥)𝑑𝑐(1) + [𝜏(1), ∅(𝑠𝑥)(1)] 

= 𝑑𝐿(𝑥) 

𝜕𝜏∅(𝑠𝑥)(𝑐) = (𝜕∅(𝑠𝑥)) + [𝜏, ∅(𝑠𝑥)](𝑐) 

= −(−1)|∅(𝑠𝑥)|∅(𝑠𝑥)𝑑𝑐(𝑐) + (−1)
|𝑐||𝑥|[𝜏(𝑐), ∅(𝑠𝑥)(1)] 

= (−1)|𝑐||𝑥|[𝜏(𝑐), 𝑥]  for 𝑐 ∈ 𝐶̅. 
On the other hand, 

∅(𝜕∅(𝑠𝑥))(1) = ∅(𝑎𝑑𝑥 ± 𝑠𝑑𝐿(𝑥))(1) 

= −𝑑𝐿(𝑥) 

∅(𝜕(𝑠𝑥))(𝑐) = ∅(𝑎𝑑𝑥𝑓 − 𝑠𝑑𝐿(𝑥))(𝑐) 

= ∅(𝑎𝑑𝑥𝑓)(𝑐) 

= (−1)|𝑥|[𝑥, 𝑓(𝑠−1𝑐)] 

= (−1)|𝑥|+(|𝑐|+1)|𝑥|+1[𝜏(𝑐), 𝑥] 

= (−1)|𝑐||𝑥|+1[𝜏(𝑐), 𝑥] 
 

The formula we have given is for 𝑎 map to  𝐻𝑜𝑚(𝐶, 𝐿)𝜏, and as such, has degree −1. Thus, the calculation shows that ∅ is a chain map. 
 

Illustration I. Let 𝐶 be a coaugumented 𝑑𝑔 co-comummutative coalgebra and let  𝐿 be a 𝑑𝑔 Lie algebra, such that 𝐶 or 𝐿 is finite, or 𝐶𝑣 

and 𝐿 are both bounded above or both bounded below. Write 𝐴 ≔ 𝐶𝑣. We observe that 

 

I. 𝐷𝑒𝑟 ℓ(𝐶) = 𝐷𝑒𝑟𝑖𝑑(ℓ(𝐶), ℓ(𝐶)) 

II. 𝐷𝑒𝑟 ℓ(𝐶)
𝑟
→
𝑠𝐻𝑜𝑚(𝐶̅, ℓ(𝐶))

𝑙
→ 𝑠�̅� ⊗𝜑−1 ℓ(𝐶) 

III. 
𝐷𝑒𝑟

ℓ(𝐶)

ℓ(𝐶)
𝑟
→
𝑠𝐻𝑜𝑚(𝐶̅,ℓ(𝐶))

𝑙𝜑−1

→
𝑠�̅�⊗𝜑−1(𝑙)ℓ(𝐶)

 

IV. 

𝑠�̅�⨂𝜑−1(𝑙)ℓ(𝑐)
|⨂𝑓
→  𝑠�̅�⨂𝜑−1(𝜏)ℓ

≃↓ ↓≃
𝐷𝑒𝑟ℓ(𝑐)

𝑓∗
→ 𝐷𝑒𝑟𝑓(ℓ(𝑐), 𝐿)

 

V. 

𝑠�̅�⨂𝜑−1(𝑙)ℓ(𝑐)
|⨂𝑓
→  𝑠�̅�⨂𝜑−1(𝜏)ℓ

≃↓ ↓≃
𝐷𝑒𝑟ℓ(𝑐)//ℓ(𝑐)

𝑓∗
→ 𝐷𝑒𝑟𝑓(ℓ(𝑐), 𝐿)//𝐿

 

From I, the identity on 𝐿(𝐶) correspond to 𝑖 ∈ 𝑇𝑤 (𝐶, 𝐿(𝐶)) the universal twisting isomorphism (see [11], Appendix B). By Proposition 

2.3, 2.5 and 2.6 respectively, we get natural isomorphisms stated in II and III combining these natural isomorphisms with the maps of 

theorem 2.2, we get the commutative diagram of complexes in IV and V which naturally ensures that  (|⨂𝑓)(𝜑−1(𝑙))  =   𝜑−1(𝜏). We 

will suppress the natural isomorphism 𝜇 in the notation from now on. Under the correspondence expressed by these diagrams (IV and V), 

the contraction produced in Theorem 2.2 is the same as [26]. In particular, the positive parts of the diagram IV and V above provide 

contractions of the schlessinger-stasheff classifying dg Lie algebra for dg Lie algebra fibrations with kernels is quasi-isomorphic to ℓ(𝐶). 
There is no need to treat the case �̅� (modeling B Aut (𝑋)〈1〉, (see [15], Corollary VII 4 (4)) separately from the case with 𝐴.  We may 

think of 𝑠�̅�⨂𝑘𝐿 as a sub-complex of  𝑠�̅�⨂𝑘𝐿, at least until we reach homology. Thus we proceed with the only one case. 
 

Remark 2.7   Theorem 2.2 illustrates the need for A to be nilpotent, and this assumption on A is carried throughout this paper unless 

otherwise we state a completely different techniques. Our application of theorem 2.2 will be for 𝑀 = 𝐿(𝐶) and the corresponding koszul 

morphism in the  [3, 5, 10, and 19]. Nilpotency of A may be replaced by nilpotency of L as follows. It was shown in [15 and 16] that Der 

𝑀𝑥  is a Lie model for B Aut 𝑋〈1〉 simply connected to a space 𝑋, when 𝑀𝑥 is the minimal Sullivan model for X. For a koszul space 𝑋, 

dualizing the bar construction ℓ(𝐿)𝑣 give the minimal Sullivan model for X. The injective quasi-isomorphism 𝐿′ → ℓ(𝐿) (see [10]) gives 

rise to a contraction.  

ℎ ↺ ℓ(𝐿)𝑣
𝑓
⇄
𝑔
  𝐴. 

If L is nilpotent, then for any Maurer-Cartan element 𝜏 ∈ 𝑀𝑐(ℓ(𝐿)𝑣⨂𝐿), we get an induced contraction  

ℎ ↺ ℓ(𝐿)𝑣⨂𝜏𝐿 ⇄ 𝐴 ⨂(1⨂𝑓)(𝜏)𝐿       (8) 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 57, (June - July 2020 Issue), 1 –12    



7 
 

𝑔2 𝑔1 𝑔2 

On the Existence of…                                       Onuche, Panle and Mike                              J. of NAMP 
 
 

 

The formulae in Theorem 2.2, converges because L is nilpotent.  As analogous to the above, we have any isomorphism of dg Lie algebras  

𝐷𝑒𝑟ℓ(𝐿)𝑣  ≃  ℓ(𝐿)𝑣⨂𝜏𝐿. The  𝐿∞- structure transferred to 𝑠𝐴 ⨂(1⨂𝑓)(𝜏)𝐿  along (8) will be  𝐿∞-isomorphic to the one we produce 

below, because there are quasi-isomorphism such that  
𝐷𝑒𝑟ℓ(𝑐) →̌ 𝐷𝑒𝑟ℓ(𝐿)𝑣

~ ↘  ↙ ~
𝑠𝐴⨂𝑘𝐿

 

Commutes (see [22 and 27]).Thus, everything goes through the case where L and not A is nilpotent. 

 

3.  Contraction for Koszul Algebras 

We now specialised the results of Section 2 to the case of koszul algebras, our primary interest 

Theorem 3.1   Let C be a koszul algebra of finite type, with koszul dual graded Lie algebra  𝐿𝑖. Then, the surjective quasi-isomorphism 

𝑓: ℓ(𝑐) → 𝐿 associated to the twisting morphism k, give rise to a contraction 

ℎ ↺ ℓ(𝐿)𝑣
𝑓
⇄
𝑔
  𝐴 

where we may choose h and g to have the following properties 

I. The image of g is contained in the diagonal  𝐷ℓ = {𝑥 ∈ ℓ(𝑐)|ℓ𝑤(𝑥) =  ℓ𝑏(𝑥)} 
II. ℎ pressure the total weight  

III. the contraction satisfies the annihilation conditions: 𝑓ℎ = 0, ℎ𝑔 = 0 𝑎𝑛𝑑 ℎ2 = 0 

 

Proof.  For I, we note that ℓ is given by projection to 𝐷, as the quotient map, is trivially a chain map. It is a section of 𝑓, and it has the 

desired property. For II, consider the bounded below chain complex  

 

 

 

The maps 𝑓 and 𝑔 then give rise to chain maps 

 

 

 

 

 

 

 

 

which we also denote 𝑓 and 𝑔. We now have a chain complex of vector spaces (projective modules) 𝐷∗ and a diagram. 

 

 

 

 

 

 

 

 

where both 𝑔𝑓 𝑎𝑛𝑑 ↿ are lifts of 𝑓 along the surjection quasi-isomorphism 𝑓. Thus, we have the standard proof of the fact that 𝑔𝑓 𝑎𝑛𝑑 ↿ 
is homotopy. We proceed by constructing a homotopy. 

 

First, note that 𝑔𝑓 − 1 factors through  𝑘𝑒𝑟𝑓, so we may construct a homotopy 

ℎ: 𝐷∗  ⟶ 𝑘𝑒𝑟𝑓 ∩ 𝐷∗. That is, a family of maps ℎ𝑖: 𝐷𝑖  ⟶ 𝑘𝑒𝑟𝑓 ∩ 𝐷𝑖+1 such that 

𝑑ℎ𝑖 + ℎ𝑖−1𝑑 = 𝑔𝑖𝑓𝑖 −↿𝑖        (9) 

It suffices to show that ℎ𝑖 preserves the total weight and the annihilation conditions are satisfied. 

Now, set ℎ−2   =    ℎ−1   =    0, since  𝐷𝑖 = 0 for  𝑖 < 0. Clearly, these maps preserve the total weight and satisfy the annihilation 

condition. Now for 𝑛 ≥ 0, suppose that we have constructed ℎ𝑖 with the desired property for all 𝑖 < 𝑛. Consider the map 𝑔𝑛𝑓𝑛 −↿𝑛−
ℎ𝑛−1𝑑 ∶ 𝑘𝑒𝑟𝑓 ∩ 𝐷∗. If we apply the differential and use the fact 𝑔𝑓−↿ is a chain map together with the equation (8), we get  

𝑑 (𝑔𝑛𝑓𝑛 −↿𝑛− ℎ𝑛−1𝑑) = (𝑔𝑛𝑓𝑛 −↿𝑛)𝑑 − 𝑑ℎ𝑛−1𝑑   
= (𝑔𝑛𝑓𝑛 −↿𝑛)𝑑 −  (𝑔𝑛𝑓𝑛 − 𝑙 − ℎ𝑛−2𝑑)𝑑 

= 0. 
Thus, 𝑔𝑛𝑓𝑛 −↿𝑛− ℎ𝑛−1𝑑 factors through the cycles Z(𝑘𝑒𝑟𝑓 ∩ 𝐷𝑛) which is exactly the boundaries 𝐵(𝑘𝑒𝑟𝑓 ∩ 𝐷𝑛). Since 𝑓 is a quasi-

isomorphism. Then we get a diagram 
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0 0 L 0 … 

𝑓2 𝑓1 𝑓2 

𝐷2 𝐷1 𝐷0 0 … 

L 

𝐷∗ 

𝑔𝑓 

𝐷∗ 



8 
 

On the Existence of…                                       Onuche, Panle and Mike                              J. of NAMP 
 

 

 

 

 

 

 

 

 

 

 

 

with a lift as indicated because 𝐷𝑛 is vector space (thus projective) and the differential is surjective from 𝑘𝑒𝑟𝑓 onto boundaries. Such a 

lift is just a choice of the pre-images 𝑑−1(𝑑 (𝑔𝑛𝑓𝑛 −↿𝑛− ℎ𝑛−1𝑑)(𝑥𝑗) for a linear basis {𝑥𝑗} of 𝐷𝑛. The maps 𝑑 (𝑔𝑛𝑓𝑛 −↿𝑛− ℎ𝑛−1𝑑  

preserve the total weight by part I and the assumption on  ℎ𝑛−1. Since d preserves the total weight, we can always choose pre-images 

such that ℎ𝑛 preserves total weight. Clearly, we have 

 𝑓𝑛+1ℎ𝑛  = 0 and  ℎ𝑛𝑔𝑛 is zero for 𝑛 > 0. Now  ℎ0𝑔0 is a lift of  (𝑔0𝑓0 −↿0− ℎ𝑛−1𝑑) 𝑔0  =   (𝑔0𝑓0 −↿0) 𝑔0 = 0 along the differential. 

We may choose  ℎ0 to vanish on 𝐼𝑚 𝑔0 without violating the condition that  ℎ0 preserves total weight. Similarly  ℎ𝑛+1 ℎ𝑛 is a lift of  

 (𝑔𝑛+1𝑓𝑛+1 −↿𝑛+1− ℎ𝑛𝑑) ℎ𝑛  =  −ℎ𝑛 − ℎ𝑛𝑑ℎ𝑛 

=  −ℎ𝑛 − ℎ𝑛 (𝑔𝑛𝑓𝑛 − 𝑙𝑛 − ℎ𝑛−1𝑑) 
=   ℎ𝑛ℎ𝑛−1𝑑 

along the differential. Inductively this is zero, and again we may choose ℎ𝑛+1 to be zero on 𝐼𝑚ℎ𝑛 without violating the condition that 

ℎ𝑛+1 preserves total weight. Finally, ℎ𝑛 then satisfies (8) for 𝑖 = 𝑛 and by construction, the resulting homotopy ℎ has the properties II 

and III. End of proof. 

It is clear, the dg lie structure on 𝐷𝑒𝑟ℓ(𝐶)//ℓ(𝐶) induces one on 𝑠𝐴⨂𝜏ℓ(𝐶) by the neutral isomorphism in Proportion 2.3 and corollary 

2.6. This is not the same as the one from definition 2.1. By  [−,−]𝐷𝑒𝑟, we mean induced bracket that comes from the derivations. 

Suppose now that A is nilpotent, by Theorem 2.2 there are contractions along which we may transfer the structure using Theorem 1.5 for  

𝐿∞ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑠 to get   𝐿∞ − 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 {ℓ𝑛} and {𝑙𝑛} as below: 
𝑠𝐴⨂𝜏ℓ(𝐶) ⇆ 𝑠𝐴⨂𝑘𝐿 ⇆ 𝐻∗(𝑠𝐴⨂𝜏𝐿)

⋮ ⋮ ⋮
[−, −]𝐷𝑒𝑟 {ℓ𝑛} {𝑙𝑛}

 

It is easy to check that if we transfer the structure further along the contraction to the homology. 

↺ 𝑠𝐴⨂𝑘𝐿
𝑔
⇆
𝑖
𝐻∗(𝑠𝐴⨂𝑘𝐿) 

We get the same result as we do by transferring the original one along the composed contraction, and the resulting structure can be 

obtained by composing maps similar to example 1.1. The composed tree is an easy exercises for our readers, hence the omission. 
 

4. Grading’s and Transferred Operations 

In this section, we refer to elements of bracket length q by ℓ(𝑞), and elements in the subspace 𝐷𝑖 of bracket length q by 𝐷𝑖(𝑞). The 

koszul algebra C has a weight grading and the dual algebra 𝐴 = 𝐶𝑣 has an induced weight grading 𝐴(𝑃) = 𝐶(𝑃)𝑣, preserved by the 

induced multiplication on A. we still assume that  C or L is finite or that 𝐴 = 𝐶𝑣 and L are both bounded in the same direction.  

Lemma 4.1 (Weight lemma): The given maps 𝑓and 𝑖, and the maps 𝑔 and ℎ chosen in Theorem 3.1, interacting with the following 

weight gradings of A, L and ℓ. Then, for  𝑝 ≥ 0, 𝑞 ≥ 1 and 𝑖 ≥ 0., the following maps are in order. 

𝑓: ℓ(𝑞)   →   𝐿(𝑞) 
𝑔: 𝐿(𝑞)   →   ℓ(𝑞) 
ℎ: 𝐷𝑖(𝑞)   →   𝐷𝑖+1(𝑞 − 1) 
𝑖: 𝑠𝐴(𝑝)⨂𝐷𝑖(𝑞)   →   ⊕

𝑚≥1
𝑠𝐴(𝑝 + 𝑀)⊗ 𝐷𝑖+𝑚−1(𝑞 + 1) 

 

It should be noted that the notation 𝑖 is a short hand for the map 𝑎𝑑𝑖  using the structure from Definition 2.1. 

Proof. By construction of 𝐶𝑖 = 𝐿, the bracket length in L corresponds to that of ℓ(𝐶(1)) = 𝐷. Since ℎ preserves total weight and raises 

the offset index for the diagonals, it lowers bracket length by 1. The map 𝑖 splits as a sum  𝑙 =  ∑ 𝑙𝑚𝑚≥1  with one summand for each 

weight 𝑚 is a linear basis for A. The weight is raise by 𝑚 in 𝐴, bracket length by 1 in  ℓ(𝐶), and raises total weight by 𝑚 in ℓ(𝐶).  
 

As immediate consequence of lemma 4.1, we have the following proposition. 

Proposition 4.2   The maps 𝑔′, ℎ′ and 𝑖⨂𝑓 interact with the weight gradings of A, L  and ℓ as follow. For   𝑝 ≥ 0, 𝑞 ≥ 1. 

𝑖⨂𝑓: 𝑠𝐴(𝑝)⨂𝑘  ℓ(𝑞)  →   𝑠𝐴(𝑝)⨂𝑘  𝐿(𝑞)  
𝑔′: 𝑠𝐴(𝑝)⨂𝑘  𝐿(𝑞)  →   𝑠𝐴(≥ 𝑝)⨂𝑘  ℓ(𝑞) 
ℎ′: 𝑠𝐴(𝑝)⨂𝑘  ℓ(𝑞)  →  𝑠𝐴(≥ 𝑝)⨂𝑘  ℓ(𝑞 − 1) 
 

Proof. By Theorem 2.2 we can identify 𝑔′𝑎𝑛𝑑 ℎ′ from g, h and i. 

𝑔′ =  ∑ ((1⨂ℎ)𝑖)
𝑖

𝑖≥0  (1⨂𝑔)         

ℎ′ =  ∑ ((1⨂ℎ)𝑖)
𝑖

𝑖≥0  (1⨂ℎ)        (9) 
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𝐾𝑒𝑟 𝑓 ∩ 𝐷𝑛+1 

𝐷𝑛 
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The Proposition 4.2 now follows by combining these formulae with Lemma 4.1. 

Similar properties can be deduced for the maps in the contraction to the homology. 
 

Proposition 4.3 There is a contraction  ↺ 𝑠𝐴⨂𝜏𝐿
𝑞
⇆
𝑖
𝐻∗(𝑠𝐴⨂𝑘𝐿) such that 𝑞and 𝑖 preserves the weight grading in  𝐿 and the homotopy 𝑘 

decreases the weight by 1 in both  𝐴 and   𝐿. 

It is easy to check the splitting in Lemma 1.10, can be chosen such that the contraction produced in that Lemma has the desired 

properties. It suffices to show how the transferred  𝐿∞ − 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 interacts with the weight gradings. Now, we write ℓ for short of 

ℓ(𝐶), just for the sake of notational convenient. We begin by given a formula for the Lie bracket [−,−]𝐷𝑒𝑟 on  𝐴⨂ℓ.  
 

Definition 4.4   For any 𝑎 ∈ �̅� and 𝑥 ∈  ℓ, denote by 𝑥
𝜕

𝜕𝑎
 ,  the unique derivations on ℓ(𝐶) extending the linear map 𝜑(𝑠𝑎 ⨂𝑥): 𝑠−1𝐶 →

 ℓ(𝐶) given by  

𝜑(𝑠𝑎 ⨂𝑥)(𝑠−1𝐶) = (−1)|𝑐||𝑥|+|𝑎|𝑎(𝑐)𝑥  is in order (see., Proposition 2.3).  

Theorem 4.5   The Lie bracket on  𝑠𝐴⨂𝑘ℓ induced by the isomorphism   𝐷𝑒𝑟||ℓ ≃ 𝑠𝐴⨂𝑙ℓ  is given by 

[𝑠𝑎⨂𝑥, 𝑠𝑏⨂𝑦]𝐷𝑒𝑟 =

{
 

 (−1)𝛼𝑠𝑏⨂𝑥
𝜕

𝜕𝑎
𝑦 − (−1)𝛽𝑠𝑎⨂𝑦

𝜕

𝜕𝑏
𝑥                   𝑎, 𝑏 ∈ �̅�

(−1)|𝑎|+|𝑥|+| 𝑠 ↿  ⨂𝑥
𝜕

𝜕𝑎
𝑦                                 𝑎 ∈ �̅�, 𝑏 ∈ 𝐴(0)

0                                                                              𝑎, 𝑏 ∈ 𝐴(0) 

      (10) 

where  𝑥, 𝑦 ∈ ℓ(𝐶) have signs given by  

𝛼 = (|𝑥| + |𝑎|)(|𝑏|+↿)+↿ 
𝛽 = |𝑥|(|𝑦| + |𝑏| + 1) + |𝑎| 
 

Proof. Let {𝐶𝑖}𝑖 be a basis for 𝐶̅. The bracket [−,−]𝐷𝑒𝑟 is by definition, the composition is  

𝜑−1𝑜[−,−]𝑜(𝜑⨂𝜑). For 𝑥, 𝑦 ∈ ℓ and basis elements , 𝑏 ∈ �̅� , we get  

[𝑠𝑎⨂𝑥, 𝑠𝑏⨂𝑦]𝐷𝑒𝑟 =  ∑(−1)𝑐

𝑖

𝑠𝑐𝑖
∗⨂[𝑥

𝜕

𝜕𝑎
, 𝑦
𝜕

𝜕𝑏
](𝑠−1𝑐𝑖) 

where the sign is given by 

∈ =   (|𝑥
𝜕

𝜕𝑎
| + |𝑦

𝜕

𝜕𝑏
|) |𝑠𝑐𝑖

∗| + 1 

= (|𝑥| + |𝑎| + |𝑦| + |𝑏|) |𝑠𝑐𝑖
∗| + 1 

According to the Remark 2.4, we have the following evaluation   

[𝑥
𝜕

𝜕𝑎
, 𝑦

𝜕

𝜕𝑏
] (𝑠𝑐𝑖

∗) = (𝑥
𝜕

𝜕𝑎
𝑜 𝑦

𝜕

𝜕𝑏
− (−1)(|𝑥|+|𝑎|+1)(|𝑦|+|𝑏|+1)𝑦

𝜕

𝜕𝑏
𝑜 𝑥

𝜕

𝜕𝑎
) (𝑠𝑐𝑖

∗). 

Clearly, the first term is non-zero only if 𝑐𝑖
∗ = 𝑏, and second term is non-zero only if 𝑐𝑖

∗ = 𝑎. Thus the sum reduces to  

(−1)(|𝑏|+1)(|𝑥|+|𝑦|+|𝑎|)+1𝑠𝑏⨂𝑥
𝜕

𝜕𝑎
𝑜 𝑦

𝜕

𝜕𝑏
(𝑠−1𝑏∗) 

−(−1)(|𝑥|+|𝑎|+1)(|𝑦|+|𝑏|+1)+(|𝑎|+1)(|𝑥|+|𝑦|+|𝑏|)+1𝑠𝑎⨂𝑦
𝜕

𝜕𝑏
𝑜 𝑥

𝜕

𝜕𝑎
(𝑠−1𝑎∗)  

= (−1)(|𝑥|+|𝑎|)(|𝑏|+1)+1𝑠𝑏⨂𝑥
𝜕

𝜕𝑎
𝑦 − (−1)|𝑥|(|𝑦|+|𝑏|+!)+|𝑎|𝑠𝑎⨂𝑦

𝜕

𝜕𝑏
𝑥 

Next, let 𝑥, 𝑦 ∈ ℓ(𝐶) and let  𝑏 = 𝑦 ∈ 𝐴(0). Let 𝜑(𝑠𝐿⨂𝑦) be a linear map 𝑠−1𝑐 →  𝐿 which is non-zero only on c(0) ≃ Q, and 𝜑(𝑠 ↿
⨂𝑦)(↿)  = 𝑠𝑦. Thus, 

[−,−]𝑜(𝜑⨂𝜑)(𝑠𝑎⨂𝑥⨂𝑠 ↿ ⨂𝑦)    = [𝑥
𝜕

𝜕𝑎
, 𝑠𝑦]  =    (−1)|𝑎|+|𝑥|+|𝑠𝑥

𝜕

𝜕𝑎
𝑦. 

By the definition of the bracket restricted to 𝐷𝑒𝑟 𝐿⨂𝑠𝐿. The inverse 𝜑−1 on  𝑠ℓ is given by 𝑠𝑥 → 𝑠 ↿ ⨂𝑥, so we get  

[𝑠𝑎⨂𝑥, 𝑠𝑡⨂𝑦]𝐷𝑒𝑟   = (−1)
|𝑎|+|𝑥|+|𝑠 ↿ ⨂𝑥

𝜕

𝜕𝑎
𝑦 

Finally, for a = b = 1 ∈ A(0), we have [𝑠𝑥, 𝑠𝑦] = 0, and thus  [𝑠𝑎⨂𝑥, 𝑠𝑏⨂𝑦]𝐷𝑒𝑟  = 0. 

Lemma 4.6   The bracket [−,−]𝐷𝑒𝑟 interacts with the weight gradings of A and  𝐿 as follows. For 𝑃2 ≥ 0 and 𝑞1𝑞2 ≥ 1 
𝑠𝐴(𝑃1)⨂𝑙ℓ(𝑞1)⨂𝑠𝐴(𝑃2)⨂𝑙ℓ(𝑞2)

↓
𝑠𝐴(𝑃1)⨂𝑙𝐿(𝑞1 + 𝑞1 − 1)⨁𝑠𝐴(𝑃2)⨂𝑙𝐿(𝑞1 + 𝑞2 − 1)

 

Proof. The composition 𝑦
𝛿

𝛿𝑏
𝑜 𝑥

𝛿

𝛿𝑎
  is given by   𝑦

𝛿

𝛿𝑏
𝑜 𝑥

𝛿

𝛿𝑎
(𝑠−1𝑐)  =  (−1)|𝑐||𝑥|+|𝑎|𝑎(𝑐)𝑦

𝛿

𝛿𝑏
(𝑥) and the recursive formula. 

𝑦
𝜕

𝜕𝑏
(𝑥)  = {(−1)|𝑥||𝑦|+|𝑏|  𝑏(𝑥)𝑦, 𝑥 ∈ ℓ(1) 

=  𝑠−1𝑐  ([𝑦
𝜕

𝜕𝑏
(𝑥1), 𝑥2] +  (−1)

|𝑦
𝜕

𝜕𝑏
|||𝑥1| [𝑥1, 𝑦

𝜕

𝜕𝑏
(𝑥2)]) , 𝑥 = [𝑥1, 𝑥2]   (12) 

Clearly, the weight of 𝑦
𝜕

𝜕𝑏
 ⃘𝑥

𝜕

𝜕𝑎
 (c) is the sum of weights of 𝑥 and 𝑦 minus ↿. Furthermore, all terms of (10) for which 𝑎(𝑐𝑖) = 0 vanish. 

Therefore all the 𝑠𝑐𝑖
∗ appearing in the resulting sum will have the same weight as 𝑠𝑎. The same holds mutatis mutandis and  𝑥

𝜕

𝜕𝑎
 ⃘𝑦

𝜕

𝜕𝑏
.  
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Example 4.7   Let {𝑎𝑖} be a basis for A, and let {𝑐𝑖} be the dual basis for c. by calculating the first term of the bracket 

[𝑠𝑎1⨂[𝑐1, 𝑐2], 𝑠𝑎2⨂[𝑐1, [𝑐2, 𝑐3]]]
𝐷𝑒𝑟

 (but pave out the signs), we have 

𝑠𝑎1⨂[𝑐1, 𝑐2]
𝜕

𝜕𝑠𝑎2
[𝑐1, [𝑐2, 𝑐3]] 

= 𝑠𝑎1⨂([[𝑐1, 𝑐2]
𝜕

𝜕𝑠𝑎2
(𝑐1), [𝑐2, 𝑐3]  + [𝑐1, [𝑐2, 𝑐3]

𝜕

𝜕𝑠𝑎2
[𝑐2, 𝑐3]]) 

= 𝑠𝑎1⨂([𝑐1, [[𝑐1, 𝑐2]
𝜕

𝜕𝑠𝑎2
(𝑐2), 𝑐3]]  + [𝑐1, [𝑐2,[𝑐1, 𝑐2]

𝜕

𝜕𝑠𝑎2
 (𝑐3)]]) 

= 𝑠𝑎1⨂[𝑐1, [[𝑐1, 𝑐2]𝑐3]] 

Clearly, we have scanned the word [𝑐1, [𝑐2, 𝑐3]] for occurrences of the letter 𝑎2
∗ = 𝑐2, and replaced it with the word [𝑐1, 𝑐2]. It is easy to 

see how 𝑠𝑎1is preserved in the first term and that the bracket lengths in ℓ(𝑐) goes from 2 + 3 = 5 inputs 4 = 5 - 1 in the output. The 

second term is computed in the same way.  

Definition 4.8   The complex 𝑠𝐴⨂𝑘𝐿 is bigraded by weight in A and L. The shifted weight grading is the bigrading which degree (𝑝, 𝑞)  
is   𝑠𝐴(𝑃𝐻)⨂𝑘𝐿(𝑞 + 1) for   𝑝 ≥ 0. 

The differential 𝑘 has bi-degree (↿, ↿) in the standard weight, and so also in the shifted weight grading. This is a special case of the 

following theorem on the entire   𝐿∞-structure. 

Theorem 4.9 (Technical Result)   Let 𝐶 be a koszul graded cocummutative coalgebra with koszul dual graded Lie algebra L, such that 

the linear dual 𝐴 = 𝐶𝑣 is nilpotent. The 𝐿∞-structure on 𝑠𝐴⨂𝑘𝐿 transferred from the derivations 𝐷𝑒𝑟ℓ(𝐶)// ℓ(𝐶) through the chosen 

contraction, respect the shifted weight grading in the sense that for any  𝑟 ≥ 1, the operation ℓ𝑟 has a bidegree  2 − 𝑟, 2 − 𝑟. 
Proof. We now introduced yet another grading for 𝑠𝐴⨂𝑘𝐿  (𝐶): The mass 𝑚(𝑠𝐴⨂𝑥) of an element 𝑠𝐴⨂𝑥 is the total weight ℓ𝑤(𝑥) of 𝑥 

in ℓ(𝐶) minus the weight 𝑤(𝑎) of 𝑎 in 𝐴. We verify that,  ℎ, 𝑖  and  [−,−]𝐷𝑒𝑟  preserve the mass grading. It is straight forward to see that 

ℎ and 𝑖 preserve the mass by Lemma 4.1. From the formulae (10) and (12), we see that [−,−]𝐷𝑒𝑟 preserves the mass. In general case we 

get  

𝑚([𝑠𝑎⨂𝑥, 𝑠𝑏⨂𝑦]𝐷𝑒𝑟) = ℓ𝑤(𝑥) − 𝑤(𝑎) + ℓ𝑤(𝑦) − 𝑤(𝑏) 
= ℓ𝑤(𝑥) − 𝑤(𝑏) + ℓ𝑤(𝑦) − 𝑤(𝑎) 
= ℓ𝑤(𝑦) − 𝑤(𝑎) − ℓ𝑤(𝑥) − 𝑤(𝑏) 
where second and third line is the mass of respectively first and second term of the right hand side expression of (10) in the first case. The 

other cases are similar. For 𝑓 and 𝑔, the total weight in 𝐿(𝐶) agrees with the weight in 𝐿 since 𝑓 vanish outside 𝐷𝑜 and   𝐼𝑚𝑞 . 

Thus, the interaction of 𝑓and 𝑔  preserves the mass grading. In particular, the maps ↿ ⨂𝑓, 𝑔′ and ℎ′ all preserve the mass grading. Now 

consider the operation 

⨂𝑘=1
𝑇  =

𝑠𝐴(𝑃𝑘)⨂𝑘𝐿(𝑞𝑘)

↓
𝑠𝐴⨂𝑘𝐿

} all mass preserve. 

There coincides weight grading L with the total weight grading and 𝐷𝑜. Then we have for any element in the source that  

A-weight for ℓ𝑟(𝑥) = L-weight of  ℓ𝑟(𝑥) – mass of ℓ𝑟(𝑥) 

= L-weight of  ℓ𝑟(𝑥) – mass of 𝑥 

where the mass of  𝑥 =  ∑ 𝑎𝑘 − 𝑝𝑘
𝑟
𝑘=1 , and by Lemma 4.11 below, the image ℓ𝑟(𝑥) has weight  ∑ 𝑎𝑘 − 2𝑟 + 3

𝑟
𝑘=1  in  𝐿. 

Thus, the image ℓ𝑟(𝑥) has weight ∑ 𝑎𝑘 − 2𝑟 + 3
𝑟
𝑘=1 −  ∑ (𝑎𝑘 − 𝑝𝑘

𝑟
𝑘=1 )    =  ∑ 𝑝𝑘 − 2𝑟 + 3

𝑟
𝑘=1  

in A, and ℓ𝑟 bi-degree (2-r, 2-r) in the shifted weight. 

Remark 4.10   Clearly, none of the maps defining the transferred operations decrease the weight in A. Thus, the condition 

∑ 𝑝𝑘 ≥
𝑟
𝑘=1  2𝑟 − 3 gives a lower bound on the weight in A for where ℓ𝑟 is non-zero. ℓ3 restricted to 𝐴(1)⨂𝐿 is zero. In the shifted 

weight grading, it is an operation from copies of weight (0,*) to (-1,*0), but then one of the maps defining ℓ3 would have lowered the 

weight in  𝐴. 𝐿∞ − 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 in Theorem 4.9 respect the grading. However, there is no priori connection to the homological grading in 

what is discussed. 

Lemma 4.11   For 𝑟 ≥ 1, the operations ℓ𝑟 on  𝑠𝐴⨂𝑘𝐿, interacts with the weight grading of 𝐿 as follows  

⨂𝑘=1
𝑇   𝑠𝐴⨂𝑘𝐿(𝑞𝑘)

↓ ℓ𝑟

𝑠𝐴⨂𝑘𝐿(∑𝑎𝑘 − 2𝑟 + 3

𝑟

𝑘=1

)

 

Proof.   By Theorem 1.5, ℓ𝑟 is given by composing along binary rooted tree with r leaves decorated maps as established earlier. For each 

vertex, we apply the bracket, and for each internal edge, we apply the homotopy. The bracket length decrease in ℓ by 1 and there are (r-

1)t (r-2) = 2r-3 vertices and internal edges. The other maps do not change the bracket length in ℓ 𝑜𝑟 𝐿. 

If we consider only the transferred binary operation we have the following   
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Corollary 4.12 Consider the graded anti-commutative (non-associative) algebra (𝑠𝐴⨂𝐿, ℓ2). Then, we have the following  

I.  𝑠𝐴⨂𝑘𝐿 (1) is a subalgebra of 𝑠𝐴⨂𝑘𝐿 

II.  𝑠𝐴⨂ 𝑘 𝐿 (𝑗) is a module over 𝑠𝐴⨂ 𝑘 𝐿(↿) for 𝑗 ≥ 0 

III.  ⨁𝑗≥𝑚𝑠𝐴⨂𝑘𝐿(𝑗) is a subalgebra of 𝑠𝐴⨂𝑘𝐿,∀ 𝑚 ≥ 0 

IV.  𝑠𝐴(↿)⨂𝑘𝐿 is a subalgebra of 𝑠𝐴⨂𝑘𝐿 

V.  𝑠𝐴(𝑖)⨂𝑘𝐿 is a module over 𝑠𝐴(↿)⨂𝑘𝐿 for 𝑖 ≥ 0 

VI.  ⨁𝑖≥𝑚𝑠𝐴(𝑖)⨂𝑘𝐿 is a subalgebra of 𝑠𝐴⨂𝑘𝐿,∀ 𝑚 ≥ 0 

 

5.  Final Remark and Conclusion 

We have produced a smaller  𝐿∞ −𝑚𝑜𝑑𝑒𝑙 for the cover of the classifying space of the homotopy automorphism, and the contraction. 

Explicitly, 

ℎ′ + 𝑔′𝑘𝑓 ↺ 𝑠𝐴⨂𝑘𝐿 ⇄  𝐻(𝑠𝐴⨂𝑘𝐿)∗ 

𝑔′ =  ∑((↿ ⨂ℎ)𝑖)
𝑗
(↿ ⨂𝑔)

𝑗≥0

 

ℎ′ =  ∑((↿ ⨂ℎ)𝑖)
𝑗
(↿ ⨂ℎ)

𝑗≥0

 

The map 𝑖  splits as a sum  𝑙 =  ∑ 𝑙𝑚𝑗≥0 , 𝑙𝑚 increases the total weight in 𝐿 by 𝑚 and bracket length by ↿. The homotopy ℎ preserves total 

weight and decreases bracket length by 1. So, for any  𝑗 ≥↿,  the map ((↿ 0ℎ)𝑖)
𝑗
 preserves bracket length and strictly increases total 

weight. In our case 𝐴(𝑝) = 0 for 𝑝 ≥ 3, so only the diagonals 𝐷0 and  𝐷1 are non-zero, and in particular 

 (↿ ⨂ℎ)𝑖 (↿ ⨂ℎ) = 0. In conclusion we have 

𝑔′ = ↿ ⨂𝑔 + (↿ ⨂ℎ)𝑖 (↿ ⨂𝑔) 

𝑔′ = ↿ ⨂ℎ  

The map 𝑖 is given by a choice of cyclic representatives for the homology, and the map g as produced by Theorem 3.1 is given by a 

choice of basis for  𝐿. cycle representative may be consider our next work, while the unmixed basis for 𝐿 gives a choice of 𝑔. Finally, ℎ is 

inductively constructed according to the proof of Theorem 3.1. It is our hope to show these constructions in future papers. The trees in 

figure 1.1 are simply a composition. Before the contraction in (a) no leaf was shared, but after the contraction, it loses most of its leafs 

represented by g. Thus, summing all vertexes in (a) is equivalence to that of (b), and their composition gives a complete isomorphism. 

Nonetheless, One may investigate what can be said in general about the 𝐿∞ − 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 on the homology of the model, upto degree 

zero. There are two ways of approaching this. The first approach relies on [6], and the second is by studying a kan complex associated to 

the Maurer-Cartan elements of  𝐴⨂𝐿. The following literatures [7, 20, 24, and 25] may be of help. 
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