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Abstract 

This study was carried out to show that the backward differentiation method is stable 

for step numbers less than or equal to 6(k<= 6). The study also shows that the variable 

order step methods are self starting. The explicit methods are feasible for variable step 

size with Adam methods and Backward Differentiation formula. Orders two and one 

are respectively adopted to generate the starting values. It was found that, it is unstable 

for k=7, and k=8. This indeed corroborates earlier results. 

 
 

INTRODUCTION 
The general form of the ordinary differential equation can be written as 

A(y) = r (x)       (1.1) 

Where L is a differential operator and r (x) is a given function of the independent variable x. The order of the differential equation is the 

order of the highest order after the equation has been normalized. If the dependent variable y (x) and it’s derivatives occurs in the first 

degree the equation is said to be linear, otherwise it is non – linear. 

A linear differential equation of order can be expressed in the form  

𝑑(𝑦) = ∑ 𝑓𝑛
𝑝=0 p (x) y(p) (x) = r (x)      (1.2) 

In which f p (x) are known functions. The general non – linear differential equation of order n can be written as; 

F (x,y,y’ ….y(n-1) y(n)) = 0      (1.3) 

or 

У(n) (x) = f(x,y,y’ …..y(n-1)       (1.4) 

The general solution of the nth order ordinary differential equation contains n independent arbitrary constants. In order to determine the 

arbitrary constants in the general solution, the n conditions are prescribed at one point these are called initial conditions. 

The differential equation together with the initial condition is called the INITIAL VALUE PROBLEM. Thus the nth order initial value 

problem can be expressed as: 

У(n) (x) = f(x,y,y’ …..y(n-1)) 

У(p) (a) = y(p), p = 0,1, …… n-1     (1.5) 

If the N conditions are prescribed at more than one point, these are called boundary conditions. The differential equation together with 

the boundary condition is known as the BOUNDARY – VALUE PROBLEM Perhaps the simplest boundary – value problem is 

expressed the conditions:  

Уn = f(x,y): y(a) = A, y(b) = B     (1.6) 

Where b > a and A and B are given constants. 

Fourth – order boundary – value problems  

У(iv) (x) + ky(x) = q       (1.7a) 

У(0) = y1(0) = 0       (1.7b) 

У(1) y11(1) = 0        (1.7c) 

Here y may represent the deflection of a beam of length L which is subjected to a Uniform load q. Condition (1.7b) states that the end x = 

0 is built in, while (1.7c) states that the end x = L is simply supported. Heat flow problems fall into this class when the temperatures or 

temperature gradient are given at two points. A special case of boundary value problem is involved in vibration problems. The theory of 

boundary value problems for ordinary differential equation relies rather heavily on initial – value problems.  

The fact is that some of the most generally applicable numerical methods for solving boundary – value problems employ initial – value 

problems, hence we briefly review some of the basic result required. However we assume that the reader is familiar with numerical 

methods for solving initial – value problems  
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Initial – value problems  

A first order differential equations  

y1= f(x,y)        (1.8) 

May posses an infinite number of solutions for instance 

y(x) = (ex)       (1.9) 

For any value of constant (), is a solution of the differential equation 

y1 = y         (1.10) 

Where   is a given constant. Any particular solution is obtained by prescribing an initial condition y (a) = A 

Hence the particular solution satisfying this initial condition is easily found to be  

y(x) = Ae(x-a)        (1.11) 

The differential equation together with an initial value problem  

y1 = f(x,y), y(a) = A       (1.12) 

In many applications, we are confronted with a single differential equation, but with a system of M simultaneous first order equation in 

M dependent variables. 

y1, y2 …. ym 

If each of these variables satisfies a given condition at the same value x = a then we have an initial value problem for a first order system 

which we may write 

y1
1 = f1(x,y1,y2, ….., ym) y1(a) = A1 

y2
1 = f2 (x,y1,y2, ….., ym) 

y2(a) = A2       (1.13)   

y1
m = fm(x,y1,y2, ….., ym) ym(a) = Am 

This IVP can be compactly expressed in a vector form 

y1 = f(x,y)  y (a) = A      (1.14) 

Where y is a common vector and  

A = (A1, A2, … Am)T 

 

Theoretical foundation  

The existence and uniqueness properties of the solutions of initial – point (a, A). The following theorem states conditions on f (x,y) which 

guarantee the existence of a unique solution of the initial value problem. 
 

Theorem 1.3 

Let f (x,y) be defined and continuous for all point (x,y) in the region D defined by a < x < b,  - , a and b finite, and, let there exist a 

constant L such that for every x, y, y  such that (x, y) and (x,y) are both in D 

If (x,y)  - f (x,y*) 1≤ Ldy – y*1      (1.15)   

The if a is any given number, there exists a unique solution y (x) of the IVP (1.12) where y (x\) is continuous and differentiable for all (x, 

y) in D. 

The requirement (1.15) is called a lipschitz condition of order one and the constant 1 as a lipschitz constant. 

Constitutes a discrete point set defined on the integration interval [a,b where h ≥ 0 is a suitable mesh size, possibly allowed to vary in 

accordance with certain desired criteria, except h is assumed to be fixed, provided the points 

[(xn =j, yn=j) 1  j=0(1)k-1] 

below to the solution space of IVP, the K – step linear multiple method (LMM) extrapolates the next point in the solution space with the 

following k-th order finite difference equation 

&(E)yn = h 𝜎(E) fn, 

fn = f(xn + j)        (1.16) 

Where E is the shift operator defined as 

Eyn = yn + j 

and 𝜎(E) and 𝜎(E) are respectively, the first and second characteristic polynomials of the LMM. These polynomials are defined 

respectively as: 

&(E) = ∑ 𝛼𝑗 𝐸𝑗𝑘

𝑗 =0
, 𝛼k≠ 0      (1.17) 

𝜎(E) = ∑ 𝛽𝑗 𝐸𝑗𝑘

𝑗 =0
       (1.18) 

Usually with the added assumption that 

𝜎0
2 + 𝛽0

2>0 

Degree (𝜎) < degree (S) 

Implies that the method is explicit and the unknown quantity yn + K in (1.16) can be obtained directly from the solution of the difference 

equation. Otherwise if (1.16) is implicit, iteration processes have to be adopted. This introduce the problem of generating a good initial 

estimate and of ascertaining conditions which ensure the convergence of the iterative process. 

A desired solution is generated from (1.16) provided the past values  

[yn, yn+1, yn+k-1] 

are available. Unfortunately, at the initial stage, only the starting value yo is known. Hence, we cannot apply the LMM (1.16) except 

when necessary additional starting values. 
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Y1 y2 yk - 1 

are available. These values can be generated with a Runge – Kutta method whose order of accuracy is at least as high as that of the LMM 

under consideration. Explicit R -  schemes are recommended for the non stiff phase. While the implicit R – K schemes might be adopted 

in the stiff phase. The variable order step methods are self starting. The explicit methods are after feasible for variable step size with 

Adams methods and Backward differentiation formula. 

The (K – 1) additional starting values are generated by the single step (K – 1) stage R- K process of the form.  

Yj = Yo + n∑ 𝑌𝑘−1
𝑟=1 jrYr

1 j = 1(r) K – 1 

the slopes Yr = hf (xo + h𝛼r
1Yo + h∑ 𝛽𝑘−1

𝑠=1 reYs  = r = 1(1) K - 1 

with the constant 

αx = ∑ − 1 𝛽𝑘
𝑠=1 re 

[6] proposed a fourth order six – stage explicit R – K process for non- stiff IVPS, while he proposed (K – 1)th order (K-1) stage R-K 

process to generate the K-1 points simultaneously. 
 

METHODS BASED ON NUMERICAL INTEGRATION  

Explicit Linear multistep methods 

Adams – Bashforth, and related methods 

The linear multistep method is essentially a polynomial interpolation procedure whereby the solution or it’s derivative is replaced by a 

polynomial of appropriate degree in the independent variable x, whose derivative or integral is readily obtained. This accounts for the 

poor performance of the LMM when dealing with IVPS whose solutions contains singularities, or those with large lipschitz constant as 

polynomials approximations are in appropriate for these classes of problems. 
 

Table 1.: Co – efficient of ABF [1] [3] 

K K 0 1 2 3 4 
Yk Yk 1 ½ 5/12 3/8 251/720 
K 5 6 7 8 9 10 
Yk 95/288 19087/60480 5257/17280 1070017/3628800 25713/89600 26842258/95800320 

The influence function approach can be applied to bound the right hand side of (1.19).  

An alternative expression for the integration formular (1.19) can be obtained by inserting the identity. 

 


rfy=0 = r∑(−1)j

j
r fn-j       (1.20) 

In (1.19). This yields  

Yn + 1 – yn
k h j = 0 ∑(𝑇)kjfn-j       (1.21) 

With 

Yfkj – (-1)j-r∑(𝑗 − 1)yi       (1.22) 

The Adams – Bashforth [1][3] formula are really captivating because being explicit they involve a straight forward computation of yn+1. 

However, it will be shown later that such procedures are handicapped by lower attainable order compared with the corresponding implicit 

formulars. Besides, their stability is quite, inferior to that of the corresponding implicit process. In practical applications the explicit 

Adams are used to generate the necessary additional starting values.    

The multistep formulas, known as backward differentiation formulas or the B.D.F. – methods] are widely used for the integration of stiff 

differential equations. They were introduced by [5] [8] call them standard step by step methods 

For sake of completeness we give these formulas also in the equation in which the backward differences are expressed in terms of the 

followings; 

When K = 1 

∑
1

𝑗
▼𝑗 𝑦𝑛+1 = ℎ𝑓𝑛+1         𝑤ℎ𝑒𝑟𝑒 1 𝑓𝑛 + 1 = 0

𝑘

𝑗=1

 

1 ▼𝑗 𝑦𝑛+1 = ℎ𝑓𝑛+1 

Recall 

𝑦𝑛+1 = ℎ𝑓𝑛+1 − 𝑦𝑛 

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝑓𝑛+1 

= 𝑦𝑛+1 − 𝑦𝑛 = 0 

When K = 2 

∑
1

𝑗
▼𝑗 𝑦𝑛+1 = ℎ𝑓𝑛+1

2

𝑗=1

 

𝑦𝑛+1 − 𝑦𝑛 +  1 2⁄ ▼ 2𝑦𝑛+1 = ℎ𝑓𝑛+1 

Recall  

𝑦𝑛+1 = 𝑦𝑛+1 = 𝑦𝑛 

▼2 𝑦𝑛+1 = (𝑦𝑛+1 − 𝑦𝑛) 

= 𝑦𝑛+1 − 𝑦𝑛−= (𝑦𝑛 − 𝑦𝑛−1) 
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= 𝑦𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1 

𝑦𝑛+1 − 𝑦𝑛
1

2⁄ 𝑦𝑛+1 − 1
2.⁄ 2𝑦𝑛 + 1

2⁄ 𝑦𝑛−1 

𝑦𝑛+1 − 1
2⁄ 𝑦𝑛+1 − 2𝑦𝑛 + 1

2⁄ 𝑦𝑛−1 =  ℎ𝑓𝑛+1 

3
2⁄ 𝑦𝑛+1 − 2𝑦𝑛 + 1

2⁄ 𝑦𝑛−1 =  ℎ𝑓𝑛+1 

1
2⁄ 𝑦𝑛+1 − 2𝑦𝑛 + 1

2⁄ 𝑦𝑛−1 =  0 

When K = 3 

∑
1

𝑗


𝑗𝑦𝑛+1 = ℎ𝑓𝑛+1

3

𝑗=1

 

3
2⁄ 𝑦𝑛+1 − 2𝑦𝑛 + 1

2⁄ 𝑦𝑛−1 + 1
3⁄ 

3𝑦𝑛+1 = ℎ𝑓𝑛+1 


3𝑦𝑛+1 =  (𝑦𝑛+1 − 𝑦𝑛) 

= 3
2⁄ 𝑦𝑛+1 − 2𝑦𝑛 + 1

2⁄ 𝑦𝑛−1 + 1
3⁄ 𝑦𝑛+1 −  𝑦𝑛−1 − 1

3⁄ 𝑦𝑛−2 

= 11
6⁄ 𝑦𝑛+1 − 3𝑦𝑛 + 3

2⁄ 𝑦𝑛−1 −  1
3⁄ 𝑦𝑛−2 = 0 

When K = 4 

∑
1

𝑗


𝑗𝑦𝑛+1 = ℎ𝑓𝑛+1

4

𝑗=1

 

11
6⁄ 𝑦𝑛+1 − 3𝑦𝑛 +  3 2⁄ 𝑦𝑛−1 − 1

3⁄ 𝑦𝑛−2 + 1
4⁄ 

4
𝑦𝑛+1 = ℎ𝑓𝑛+1 


4𝑦𝑛+1(𝑦𝑛+1 − 3𝑦𝑛 +  3𝑦𝑛−1 − 𝑦𝑛−2 

= 𝑦𝑛+1 − 𝑦𝑛 − 3𝑦𝑛 + 3𝑦𝑛−1 + 3𝑦𝑛−1 −  3𝑦𝑛−2 −  𝑦𝑛−2 + 𝑦𝑛−3 

= 𝑦𝑛+1 − 4𝑦𝑛 + 6𝑦𝑛−1 − 4𝑦𝑛−2 + 3𝑦𝑛−3 
11

6⁄ 𝑦𝑛+1 − 3𝑦𝑛 + 3
2⁄ 𝑦𝑛−1 − 1

3⁄ 𝑦𝑛−2 + 1
4⁄ 𝑦𝑛+1 − 𝑦𝑛 + 6

4⁄ 𝑦𝑛−1 − 𝑦𝑛−2 + 1
4⁄ 𝑦𝑛−3 

25
12⁄ 𝑦𝑛+1 − 4𝑦𝑛3𝑦𝑛−1 − 4

3⁄ 𝑦𝑛−2 + 1
4⁄ 𝑦𝑛−3 = ℎ𝑓𝑛+1 

25
12⁄ 𝑦𝑛+1 − 4𝑦𝑛 + 3𝑦𝑛−1 − 4

3⁄ 𝑦𝑛−2 + 1
4⁄ 𝑦𝑛−3 = 0 

When K=5 

∑
1

𝑗


𝑗𝑦𝑛+1 = ℎ𝑓𝑛+1

5

𝑗=1

 

25
12⁄ 𝑦𝑛+1 − 4𝑦𝑛 +  3𝑦𝑛−1 − 4

3⁄ 𝑦𝑛−2 + 4
3⁄  𝑦𝑛−2 =

1

4
𝑦𝑛 − 3 

+
1

5
5 𝑦𝑛 + 1 = ℎ𝑓𝑛 + 1 


 5𝑦 𝑛 + 1 = (𝑦𝑛+1 − 4𝑦𝑛 + 6𝑦𝑦𝑛−1 − 4𝑦𝑦𝑛−2 + 𝑦𝑛−1 

= yn+1 – yn – 4yn + 4yn-1 + 6yn-1 – 6yn-2 – 4yn-3 + yn-3 – yn-4 

= yn+1 – 5yn + 10yn-1 – 10yn-2 + 5yn-3 – yn-4 

= 25/12yn+1 – 4yn + 3yn-1 – 4/3yn-2 + 1/4yn-3 + 1/5yn+1 – 1/5.5yn  + 1/5 10yn-1 - 1/5.10yn-2 + 1/5.5yn-3 – 1/5yn-4 

= 25/12yn+1 – 4yn + 3yn-1 – 4/3yn-2 + 1/4yn-3 + 1/5yn+1 – yn + 2yn – 2yn-2 + yn-3 – 1/5yn-4 

= 137/60yn+1 – yn + 5yn-1 – 10/3yn-2 + 5/4yn-3 – 1/5yn-4 = hfn + 1 
137/60yn+1 – 5yn + 5yn-1 – 10/3yn-2 + 5/4yn-3 – 1/5yn-4 = 0   

 

When k = 6 

 

 

 
 

137/60yn+1 – 5yn + 5yn-1 - /3yn-2 + 5/4yn-3 – 1/5yn-4 = hfn+1 

▼6yn+1 - ▼(yn+1 – 5yn + 10yn-2 + 5yn-3 – yn-4) 

= yn+1 – yn – 5yn-1 + 10yn-1 - 10yn-2 – 10yn-2 + 10yn-3 + 5yn-3 – 5yn-4 – yn-4 + yn-5) 

= yn+1 – 6yn + 15yn-1 – 20yn-3 + 15yn-3 – 6yn-4 yn-5 

137/60yn+1 – 5yn + 5yn-1 – 10/3yn-2 + 5/4yn-3 – 1/5yn-4 

+ 1/6yn+1 – 1/6.6yn + 1/6.15yn-1 – 1/6.20yn-2 

+ 1/6. 15yn-3 – 1/6.6yn-4 + 1/6yn-5. 

147/60yn+1 – 6yn + 15/2yn-1- 20/6yn-2 + 15/4ynn-3 – 6/5yn-4 + 1/6yn-5 = hfn+1 

147/60yn+1 – 6yn + 15/2yn-1 – 20/6yn-2 + 154yn – 6/5yn-4 + 1/6yn-5 = 0  
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𝑗

6

𝑗=1
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When k = 7 

 

 

 
 

47/60yn+1 – 6yn + 15/2yn-1 – 20/6yn-2 + 15/4yn-3 – 6/5yn-4 + 1/6yn-5 = hfn + 1  

▼7yn+1 = ▼(yn+1 – 6yn + 15yn-1- 20yn-2 + 15yn-3 6yn-4 + yn-5 

  = yn+1 yn – 6yn + 6yn-1 + 15yn-1 – 15yn-2 – 20yn-2 + 20yn-3 + 15yn-3 -15yn-4 – 6yn-4 + 6yn-5 + yn-5 – yn-6. 

  = yn+1 – 7yn + 21yn-1 – 35yn-2 + 35yn-3 – 21yn-4 + 7yn-5 – yn-6 

  = 147/60yn+1 – 6yn + 15/2yn-1 20/6yn-2 + 15/4yn-3 – 6/5yn-4 + 1/6yn-5 +  

1/7.7yn + 1/7.21yn-1 – 1/7.35yn-2 + 1/7y.21yn-4 + 1/7.7yn-6 

147/60yn+1 – 6yn + 15/2yn-1 – 20/6yn-2 + 15/4yn-3 – 6/5yn-4 + 1/6yn-5 + 1/7yn+1 – yn +  

3yn-1 – 5yn-2 + 5yn-3 – 3yn-4 + yn-5 – 1/7yn-6 

108/420yn+1 – 7yn + 21/2yn-1 – 25/3yn-2 + 35/4yn-3 – 21/5yn-4 + 7/6yn-5 – 1/7yn-6 = 0  

 

When K = 8 

 

 

 

 

1089/420yn+1 7yn + 21/2yn-1 – yn-1 25/3yn-2 + 35/4yn-4 + 21/yn-5 + 7/6yn-5 – 1/7yn-5 –  

1/7yn-6 = hfn+1 

▼8yn+1  = ▼(yn+r – 7yn + 21yn-1 – 35yn-2 + 35yn-3 + 35yn-3 – 21yn-4 + 7yn-5 – yn-6 

 = yn+1 – yn – 7yn + 7yn-1 + 21yn-1 21yn-2 + 35yn-2 + 35yn-3 + 35yn-3 – 35yn-4 –  

21yn-5 + 7yn-5 – 7yn-6 – yn-6 + yn-7 

= yn+1 – 8yn + 28yn-1 – 56yn-2 + 70yn-3 – 56yn-4 + 28yn-5 – 8yn-6 + yn-7 

= 1089/420yn+1 – 7yn + 21/2yn-1 – 25/3yn-2 + 35/4yn-3 – 21/5yn-4 + 7/6yn-5 – 1/7yn-6 +  

1/8yn+1 – 1/8.8yn + 1/8.28yn-1 – 1/8.56yn-2 – 1/8.79yn-3 – 1/8.28yn-5 – 1/8.8yn-6 + 1/8yn – 7 

1089/420yn-1 – 7yn + 21/2yn-1 – 25/3yn-2 + 34/4yn-3 21/5yn-4 + 7/6yn-5 – 1/7yn-6 +  

1/8yn+1 – yn + 7/2yn-1 – 7yn-2 + 35/4yn-4 + 7/2yn-5 – yn-6 + 1/8yn-7 = hfn + 1  

= 761/280yn+1 – 8yn + 14yn-2 46/3yn-2 + 35/2yn-3 + 56/5yn-4 + 14/3yn-5 – 8/7yn-6 + 1/8yn-7 

= 0 

When k = 9 

 

 

 

 

761/280 yn+1 – 8yn + 14yn-1 – 46/3yn-2 + 35/2yn-3 – 56/5yn-4 + 14/3yn-5  - 8/7yn-6 +  

1/8yn-7 

▼9yn+1 = ▼ (yn+1 – 8yn + 28yn-1-46yn-2 + 60yn-3 + 56yn-4 28yn-4 - 8yn-6+yn-7  

yn+1 – yn – 8yn + 8yn-1 + 28yn-1 28yn-2 - 46yn-2 + 46yn-3 + 60yn-3 - 60yn-4 - 56yn-4 +  

56yn-5 + 28yn-5 – 28yn-6 – 8yn-6 + 8yn-7 – yn-8 

= yn+1 – 9yn + 36yn-1 74yn-2 + 106yn-3 – 166yn-4 + 84yn-5  - 36yn-6 + 9yn-7  - yn-8 

= 761/280yn+1 – 8yn + 14yn-1 – 46/3yn-2 + 35/2yn-3 – 56/5yn-4 + 14/3yn-5 – 8/7yn-6 +  

1/8yn-7 – 1/9yn + 1/9.36yn-1 – 1/9.36yn-6 + 1/9.9yn-7 – 1/9.yn-8 

= 761/280yn+1 – 8yn + 14yn-1 – 46/3yn-2 + 35/2yn-3 – 56/5yn-4 + 14/3yn-5 – 8/7yn-6 +  

1/8yn-7 + 1/9yn+1 – yn = 4yn-1 – 74/9yn-2 + 106/9yn-3 – 116/9yn-4 + 84/9yn-5 – 4yn-6 +  

yn-7 – 1/9yn-8  

= 7129yn+1 – 9yn + 81yn-1 – 212yn-2 + 527yn-31084yn-4 + 14yn-5 – 36yn-6 + 9/8yn-7 

    2520   9 18        45            7 

– 1/9yn-8 = 0 

 

When K = 10  

 

 

 

▼10 = ▼(yn+1 – 9yn + 36yn-1 – 74yn-2 + 106yn-3 – 116yn-4 + 84yn-6 – 36yn-6  + 9yn-7 – yn-8)  

Yn+1 – yn 9yn + 9yn-1 + 36yn-1 – 36yn-2 74yn-2 + 74yn-3 + 106yn-3 – 106yn-4 – 116yn-4 – 116yn-5 +  

84yn-5 – 84yn-6 – 36yn-6 + 36yn-7  + 9yn-7 – 9yn-8 – yn-8  + yn-9 

= yn+1 – 10yn + 45yn-1 – 110yn-2 + 180yn-3 – 222yn-4 + 200yn-5 – 110yn-6 – 45yn-7 – 10yn-8 + yn-9 

= 7129/2520yn+1 – 9yn + 18yn-1 – 212/9yn-2 + 527/18yn-3 – 1084/45yn-4 + 14yn-5 – 36/7yn-6 + 9/8yn-7  

- 1/9yn-8 + 1/10yn+1 – 1/10.10yn + 1/10.45yn-1-1/10.110yn-2 + 1/10.180yn-3 – 1/10.222yn-4  
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▼jyn+1 = hfn+1 

 

∑

7

𝑗=1

1

𝑗
 

▼jyn+1 = hfn+1 

 

∑

8

𝑗=1

1

𝑗
 

▼jyn+1 = hfn+1 

 

∑

9

𝑗=1

1

𝑗
 

▼jyn+1 = hfn+1  

 

∑

10

𝑗=1

1

𝑗
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+ 1/10.200yn-5-1/10.110yn-6 + 1/10.45yn-7-1/10.10yn-8+1/10.yn-9 

7129yn+1 – 9yn + 18yn-1 – 212yn-2 + 527yn-3 – 1084yn-4 – 14yn-5 - 36yn-6 + 9/8yn-7 – 1/9yn-8 +  

2520               9            18              45             7 

1/10yn+1 - yn + 9/2yn-1 – yn-8 + 1/10yn-9 = hfn+1 

= 73810yn+1 – 10ynn + 45yn-1 – 311yn-2 + 851yn-3 – 2083yn-4 + 34yn-5 – 113yn-6 + 45yn-7 – 10yn-8 

    25200         2       9     18        45        7     8    9 

+1/10yn-9 = 0, h=0  

 

Conclusion  

The explicit Adams method, Implicit Adams method, explicit Nystrom methods, recurrent relations for [ I] and[2] the Milline simpson 

method are classical linear multistep method based on Numerical integration.  

The implicit formula  

J=0 Yn+1 = hfn+1 

With coefficients  

𝛿j= (-1﴿j = 1 

 

 

Using the definition of the binomial co-efficient 

(-1﴿ [-s + 1]= 1/j (s-1﴿ s(s+1﴿ …………… (s+j-2﴿ 

The co-efficient of Sj are obtained by direct differentiation  

𝛿0= 1/j (s-1﴿ s(s+1﴿ …………… (s+j-2﴿ 

The formula  

∑ 𝛿𝑘
𝑗=0 j      Y n+1 = hfn+1 

Therefore becomes  

∑
1

𝐽

𝑘
𝑗=0

j      Y n+1 = jfn+1 

The multistep formulas, known as backward differentiation formulas or the B.D.F methods which are widely used for the integration of 

stiff differential equations, were introduced by[5] and[8]  which they call standard step by step methods.  

In determining distribution of the roots of a polynomial, we used [7] theorem as found in [3] 

Finally, is was shown that the Backward Differentiation method is stable for step number less than or equal to 6 (K ≤ 6﴿, out unstable for 

K=7 and K=8. This results corroborate earlier results of [1]  [7]  and [9]. 
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d [-s + 1] 

ds     j   

 

 

s 


