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Abstract 

In the previous studies of TB-SMA Model, the tight binding model important parameter n was 

assigned the values of n=1/2 or 2/3 and the four other parameters of the model are fitted to 

experimental data. This work has outlined another approach where the important parameter n 

is uniquely obtained for the different alkali metals, and it turns out to vary from one metal to 

another. 

The method outlined here has been employed to study the Cohesive energy of alkali metals 

using the TB-SMA Model. 
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Introduction. 

Empirical potentials, that include many body interactions terms, beyond a pair potential term, have been developed to overcome the 

burden posed by the first principle computation [1,2].  

In general, semi empirical approaches tackle the many-body problem by determining a functional form for the cohesive energy based on 

some physical model [3,4,5]. The functional form often contains some parameters, which are to be determined by fitting to the 

experimental properties. 

The main advantage of a many-body potential treatment over the traditional and practically simple pair-potential treatment is the ability 

to reproduce some basic features of metallic systems. Once these parameters have been obtained, the functional form may then be used to 

calculate other properties, such as defect energies. 

The tight-binding (TB) theory of cohesion in solids [6,7], has been extensively applied to describe the energies of alkali metals. It is well 

known that the cohesion of alkali metals and their alloys has its main contribution from d-bands [8]. The second moment approximation 

(SMA) of TB-Theory express the Cohesive energy as a sum of the two terms, one coming from the band energy EB(the attractive term) 

and the other term, ER being a repulsive contribution. In the TB-SMA scheme the interaction between two atoms depends on the atomic 

distance and also on the local environment around each atom. Improvement over the SMA have been proposed, first by Carlsson [9,10], 

and later by related approaches of Guevara et al., who added other attractive terms to the cohesive energy [11,12]. 

The TB-SMA potentials has an advantage that it is simply in mathematical form and are used to estimate the thermodynamic properties 

of fcc metals whose cohesive properties originates from the large f-band density of states [11,12]. 

The TB-SMA scheme, contains five model parameters, usually denoted as A, ξ, p, q and n [13-14]. These parameters can be determined 

by fitting to the experimental values of the cohesive energy, the Monovacancy formation energy, the independent elastic constants, and 

also by taking the equilibrium condition into account. 

In many of the TB-SMA scheme, the model parameter n is often taken as ½ [15,16]. With such a fixed value for n, the other four 

parameters for alkali metals were determined, by fitting to the experimental cohesive energy EC; the bulk modulus BO, the elastic 

constants C44 and also by taking the equilibrium condition into account. For several metals, the predicted values of the Monovacancy 

formation energy F

IVE and other elastic constants (C11 and C12) disagreed with the experimental values. 

In this work, instead of arbitrarily assigning a fixed value for n, the five parameters in the TB-SMA scheme have been determined by 

fitting to the experimental value of EC, F

IVE , BO, C12, C44, and also taking the equilibrium condition into account. 

It is shown in this study that the value of parameter, n, was not constant for the alkali metals, Lithium (Li), Sodium (Na), Potassium (K), 

Rubidium (Rb), and Caesium (Cs) whose potentials are explicitly exhibited. At the same time, the resulting TB potentials lead to a good 

agreement with experiment in the physical quantities whose values are predicted. 

The relevant details of the TB-SMA as we use it are outlined in section 2.0 and 2.1. The results for the determined five TB-SMA 

parameters and cohesive energy functions 

For the four models are presented in section 3.0.  
 

Materials and Methods 

2.0The Basic equations of the EAM  
The TB-SMA scheme is formally analogous to the embedded-atom method (EAM). Empirical potentials such as the EAM also describe 

the atomic interactions by several analytical functions [17,18]. 

However, we give below the 7 basic equations that regularly arise when working Practically with the EAM. 
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In the equations above, Uo is the equilibrium energy per atom, i.e. the negative of the experimental cohesive energy. Bo and Cij 

are, respectively, the bulk modulus, and elastic constants written in Voigt notation Ωo, is the volume per atom in the solid, ro is the 

equilibrium nearest–neighbour distance; and a is the equilibrium lattice constant. 

1  is a repulsive pair potential whose first and second derivatives with respect to the radial distance r are respectively, 
1 and 

1  ( all 

quantities being evaluated at r = ro), while F is the embedding function with respect to the density ρ, with F   and F   being the first two 

derivatives; again all quantities being evaluated at the equilibrium density e . F

IVE  is the mono vacancy formation energy. In all the 

previous applications of the EAM [ 17], V11, W11 andW12 have been considered as free parameters to be consistently determined so that 

the basic equations of the EAM are satisfied. Such an approach enables us to surmount the problem of the elastic constants not being 

correctly reproduced theoretically. Here, we shall introduce a slightly different approach since it is often desirable to predict several 

physical quantities from a minimum set of parameters. 

For BCC lattice, ro=  
2

3a  , 

2

3a
o 

  and expressions for   V11, W11 andW12 in terms of the derivatives of the density are in the form [1]

 
It is obvious from equation (2.1) to (2.7) above that the EAM has three basic functions, i.e.;     Fr ,1

and  r  which 

generate the 8 EAM parameters:  or1
,  or


1

,  or


1
,  eF  ,  eF  ,  eF  ,  or ,and  or   .  

 

2.1 The Basic Functions of the TB-SMA Scheme 

In an obvious correspondence with the EAM scheme, the expressions for the cohesive energy Uo, in the TB-SMA scheme is the sum of 

the two terms [19] 

Uo = ER  + EB         (2.9) 

The functions ER and EB are usually written in the form 

ER = 61(rij) = A
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Density as a function of the atomic distance ij. 

Equations (2.10), (2.11), and (2.12) are the equations for the three basic functions of the TB-SMA scheme. 

The sum over j in equations (2.10) to (2.12) is actually a sum over neighbours, rij, being the distance between atoms i and j and ro, is the 

bulk nearest neighbour distances. 

The TB-SMA expressions for the functions 1(r), F (ρ) and ρ(r) as contained in the equation (2.1) to (2.7) are governed by only 5 

parameters (A, p, ξ, q, and n), instead of the 8 parameters                ooeeooo randrFFrrr   ,,,,, 111
  which we encountered in the 

EAM scheme. In the initial development of the TB-SMA scheme, the 5 basic parameters were determined by fitting results from ab initio 

calculations for high symmetry structures, the only experimental input being the lattice constant. The fitting procedure is quite 

cumbersome since the ab initio results are not easily available. Physical quantities like the elastic constants, the vacancy formation 

energy, etc were subsequently predicted by the theory. Unfortunately this ambiguitious programme[20,21] is yet to reach the much 

desired perfection stage, since several predicted quantities are in conflict with experiment. 

In several applications of the TB –SMA scheme the parameter n is specified. In this situation the four remaining free parameters of the 

TB-SMA scheme can be determined from the EAM equations either using equation (2.1), (2.2). (2.3), and (2.7) or equation (2.1), (2.2), 

(2.3) and any one of (2.4) to (2.6). 
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Cohesive energy E(r) expression (Rose et al.) is: 

𝐸(𝑟) = −𝐸𝐶  1 + 𝛼   
𝑟

𝑟𝑜
− 1  𝑒𝑥𝑝    −𝛼   

𝑟

𝑟𝑜
− 1       (2.13 ) 

Where 𝛼, the exponential decay factor is 
2/1

3 








 

CE

  

3.0      Results and Discussion 

This model for the Alkali metals requires some physical input parameters. These input parameters are the experimental values of the pure 

metal properties. They are used as input to determine the functions to be used for this work. These inputs are the three bulk elastic 

constants (C11,C12, C44), the bulk cohesive energy EC, Lattice constants a, the Bulk modulus Bo, and the vacancy formation energy F

IVE . 

The pure metal inputs used to determine the TB-SMA functions are elastic constants (C11,C12, C44) are in 1012erg/cm3. Bulk modulus in 

1012erg/cm3and cohesive energies are in eV. Elastic constants are in 1012erg/cm3. The vacancy formation energy F

IVE is expressed in eV. 

The values for these parameters are taken from Ref. [11,12]. All these are put together in Table 1. 

TABLE 1: Experimental Data used for the Parameters Determination. 

 

TABLE 2: Calculated parameters of TB-SMA from this study up to fourth neighbours.  

METALS A(eV) ξ(eV) P q n ro(Å)          α 

Li 1.2524E-03 0.5798 46.4200 0.2836 0.2840 3.0390      2.0786 

Na 8.1485E-04 0.3961 48.4470 0.2821 0.2954 3.7157      2.6038 

K 7.9876E-04 0.3325 42.8100 0.2909 0.3537 4.6071      2.6921 

Rb 9.9593E-04 0.3041 45.8400 0.4247 0.3087 4.9362      3.0768 

Cs 1.1243E-03 0.2874 38.2910 0.42370 0.3163 5.3172      2.8442 
 

Table 3: The calculated minimum Cohesive energy function E(r) of this study (TS), compared with Rose et.al [9]. 

METALS THIS STUDY ROSE ET. AL[9] 

Li -1.6280 -1.6300 

Na -1.1117 -1.1130 

K -0.9326 -0.9340 

Rb -0.8504 -0.8520 

Cs -0.8021 -0.8040 

 

 
Fig. 1: The Cohesive energy function E(r) of Li, obtained from this study and compared with Rose et. al.[9].        Fig. 2: The Cohesive energy function E(r) of Na, obtained from this study and compared with Rose et. al.[9]. 

 

       
Fig. 3: The Cohesive energy function E(r) of K, obtained from this study and compared with Rose et. al.[9].     Fig. 4: The Cohesive energy function E(r) of Rb, obtained from this study and compared with Rose et. al.[9]. 
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Physical Quantity Li Na K Rb Cs 

EC (eV), Cohesive Energy. 1.6300 1.1130 0.9340 0.8520 0.8040 

F

IVE (eV),Monovacancy. 
0.4800 0.3400 0.3400 0.2700 0.2600 

a(Å), Equilibrium Lattice. 3.5092 4.2906 5.3200 5.7000 6.1400 

BO (erg/cm2), Bulk Modulus. 0.1160E+12 0.0680E+12 0.0320E+12 0.0310E+12 0.0200E+12 

C11 (erg/cm2), Elastic Constant. 0.1440E+12 0.0816E+12 0.0415E+12 0.0312E+12 0.0247E+12 

C12 (erg/cm2), Elastic Constant. 0.1210E+12 0.0679E+12 0.0340E+12 0.0262E+12 0.0206E+12 

C44 (erg/cm2), Elastic Constant. 0.1070E+12 0.0570E+12 0.0284E+12 0.0186E+12 0.0148E+12 
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Fig. 5: The Cohesive energy function E(r) of Cs, obtained from this study and compared with Rose et. al.[9]. 
 

Results and Discussion 
3.0 The experimental data used for the determination of the parameters are shown in Table 1. The parameters of the tight-binding 
potentials calculated for the five alkali metals up to fourth neighbors with the variation of parameter n, are presented in Table 2. 
The cohesive energy function E(r) obtained from this study, in comparison with Rose et.al are illustrated in Fig.1 (Li), Fig.2 (Na), Fig.3 
(K), Fig.4 (Rb) and Fig.5 (Cs). 
The values of the minimum cohesive energy function E(r) obtained in this study and Rose et.al are illustrated in Table 3. 
The percentage differences between the determined values of the minimum cohesive energy function E(r) of this study and Rose et.al are: 
Li (0.31%), Na (0.12%), K (0.15%), Rb (0.19%) and Cs (0.25%) and both graphs have their minimum cohesive energy points as shown 
in Table 3.  
It was observed from Fig.1 (Li),Fig.2 (Na),Fig.3 (K),Fig.4 (Rb), and Fig.5 (Cs) that the cohesive energy curves of This Study are 
narrower than the standard curve of Rose et.al [9] and  both curves tend to converge as the nearest neighbor distances, r(Å), increases.  
 

4.0 Conclusion 
In this study, the connection between EAM and TB-SMA scheme has been established and utilized to determine the five unknown 
parameters in the TB-SMA scheme. The parameter n is not constant for all the alkali metals. 
This study Cohesive energy function curve and the Rose et.al curve is in good agreement with each other. Therefore, the calculated TB-
SMA parameters could be used to obtain other phonon thermodynamics properties of the alkali metals. 
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