SOLVABILITY OF LINEAR AND NONLINEAR KLEIN-GORDON EQUATION BY VARIATIONAL ITERATION METHOD, NEW ITERATIVE METHOD AND ADOMIAN DECOMPOSITION METHOD

Usman M.A., Shittu M.T. and Solanke O.O.
Department of Mathematical Sciences, Olabisi Onabanjo University, Ago Iwoaye, Nigeria

Abstract

In this study, Variational Iteration Method (VIM) developed by Ji-Huan He, Adomian Decomposition Method (ADM) by Adomian, New Iterative Method (NIM) developed by Daftardar Gejji and Jafari and the modified Adomian Decomposition method by Wazwaz have been employed to solve the linear and nonlinear KleinGordon equations. The solution is calculated is calculated in the form of series in which its component are computed by applying a recursive relation. To illustrate the ability and reliability of the method some examples are provided. In this study, we compare numerical results with the exact solution. The results show that the Variational Iteration Method, Adomian Decomposition Method and New Iterative Method are powerful tolls in solving the Klein-Gordon equation and they can be used to solve other linear and nonlinear equations

Keywords: Klein-Gordon equation, Variational iteration Method, Lagrange multiplier, New Iterative Method, Relativistic Wave Equation.

1. Introduction

Klein-Gordon equation plays an important role in mathematical physics, it appears in quantum field theory, dispersive wavephenomena, plasma physics, nonlinear optics and applied and physical sciences.
We consider the Klein-Gordon equation
$u_{t t}(x, t)-u_{x x}(x, t)+N u(x, t)=f(x, t)$
Subject to the initial conditions
$u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x)$
where u is a function of x and $\mathrm{t}, N u(x, t)$ is a nonlinear function and $f(x, t)$ is a known or given analytical function [1]. Because of the importance of Klein-Gordon equation in quantum mechanics, several techniques have been developed in order to compute the solution of these equations, such as Sumudu Decomposition Method [2], Perturbation Method [3]. Variational Iteration Method [4], Homotopy Pertubation Transform Method [5], Modified New Iterative Method [6], Homotopy Pertubation Method [7], Adomian Decomposition Method and its convergence [8], Differential Transform Method [9], Homotopy Analysis Method [10], Laplace Decompostion Method [11], New Perturbation Iteration Transform Method [12].

In this study, three (3) of these methods were applied to solve the Klein-Gordon equation, these methods are Variational Iteration Method (VIM), New Iterative Method (NIM) and Adomian Decomposition Method (ADM) with its modification. These methods have been widely used in solving different types of differential equations in Physics, Engineering and Modelling. They have been proved to be powerful, reliable, which can effectively easily and accurately solve higher order linear and nonlinear differential problems with rapid convergence with number of iterations [13].

2. METHODS

I. VARIATIONAL ITERATION METHOD (VIM)

Consider the following differential equation:
$L u+N u=g(t)$
Where, L and N are linear and nonlinear operators respectively, and $g(t)$ is the source inhomogeneous term.
The variational iteration method presents a correction functional as follows:

Corresponding Author: Usman M.A., Email: usman.mustapha@oouagoiwoyeedu.ng, Tel: +2348033454676
$u_{n+1}(t)=u_{n}(t)+\int_{0}^{t} \lambda(\varepsilon)\left(L u_{n}(\varepsilon)+N \tilde{u}_{n}(\varepsilon)-g(\varepsilon)\right) d \varepsilon$
where λ is a general Lagrange multiplier, which can be identified optimally via the variational theory, and \tilde{u}_{n} is a restricted variation which means $\delta \tilde{u}_{n}=0$.
It is obvious now that the main steps of the variational iteration method require first the determination of the Lagrange multiplier $\lambda(\varepsilon)$ that will be identified optimally. Integration by parts is usually used for the determination of the Lagrange multiplier $\lambda(\varepsilon)$. In other words, carrying out the integration as follows can yield:
$\int \lambda(\varepsilon) u_{n}^{\prime}(\varepsilon) d \varepsilon=\lambda(\varepsilon) u_{n}(\varepsilon)-\int \lambda^{\prime}(\varepsilon) u_{n}(\varepsilon) d \varepsilon$,
$\int \lambda(\varepsilon) u^{\prime \prime}{ }_{n}(\varepsilon) d \varepsilon=\lambda(\varepsilon) u_{n}(\varepsilon)-\lambda^{\prime}(\varepsilon) u_{n}(\varepsilon)+\int \lambda^{\prime \prime}(\varepsilon) u_{n}(\varepsilon) d \varepsilon$
Having determined the Lagrange multiplier $\lambda(\varepsilon)$, the successive approximations $u_{n+1}, n \geq 0$, of the solution u will be readily obtained upon using any selective function u_{0}.
However, for fast convergence, the function $u_{0}(x, t)$ should be selected by using the initial conditions as follows:
$\begin{array}{ll}u_{0}(x, t)=u(x, 0) & \text { for first order } \\ u_{0}(x, t)=u(x, 0)+t u_{t}(x, 0) & \text { for second order }\end{array}$
Consequently, the solution
$u=\lim _{n \rightarrow \infty} u_{n}$
In other words, equation (5) will give several approximations, and therefore the exact solution is obtained as the limit of the resulting successive approximations (Wazwaz, 2009).

II. NEW ITERATIVE METHOD

To illustrate the idea of the NIM, we consider the following general functional equation:
$u=f+N(u)$
where N is a nonlinear operator and f is a given function. We can find the solution of equation having the series form
$u=\sum_{i=0}^{\infty} u_{i}$
The nonlinear operator N can be decomposed as:
$N\left(\sum_{i=0}^{\infty} u_{i}\right)=N\left(u_{0}\right)+\sum_{i=1}^{\infty}\left\{N\left(\sum_{j=0}^{i} u_{j}\right)-N\left(\sum_{j=0}^{i-1} u_{j}\right)\right\}$
Substituting equations (9) and (10) into equation (8) gives
$\sum_{i=0}^{\infty} u_{i}=f+N\left(u_{0}\right)+\sum_{i=1}^{\infty}\left\{N\left(\sum_{j=0}^{i} u_{j}\right)-N\left(\sum_{j=0}^{i-1} u_{j}\right)\right\}$
We define the recurrence relation of equation in the following way:
$u_{0}=f$
$u_{1}=N\left(u_{0}\right)$
$u_{2}=N\left(u_{0}+u_{1}\right)-N\left(u_{0}\right)$
$u_{3}=N\left(u_{0}+u_{1}+u_{2}\right)-N\left(u_{0}+u_{1}\right)$
$u_{n+1}=N\left(u_{0}+u_{1}+\ldots+u_{n}\right)-N\left(u_{0}+u_{1}+\ldots+u_{n-1}\right) ; \mathrm{n}=1,2,3$
Then
$u_{1}+\cdots+u_{m+1}=N\left(u_{0}+u_{1}+\cdots+u_{m}\right) ; \quad \mathrm{m}=1,2,3$
and
$\sum_{i=0}^{\infty} u_{i}=f+N\left(\sum_{j=0}^{\infty} u_{j}\right)$
The m-term approximate solution of (8) is given by $u=u_{0}+u_{1}+u_{2} \ldots+u_{m-1}$

III. ADOMIAN DECOMPOSITION METHOD

To give a clear overview of Adomian decomposition method,
Considering the following equation:
$L u+R u=g$
where L is, mostly, the lower order derivative which is assumed to be invertible, R is a linear differential operator, and g is a source term.
Applying the inverse operator $\left(L^{-1}\right)$ to both sides of (14) and using the initial condition to obtain
$u=f-L^{-1} R u$
where the function f represents the terms arising from integrating the source term g and noting the prescribed conditions.
The Adomian Decomposition Method assumes that the unknown function u can be expressed by an infinite series of the form
$u(x, y)=\sum_{n=0}^{\infty}\left(u_{n}(\mathrm{x}, \mathrm{y})\right)$
or equivalently,
$u=u_{0}+u_{1}+u_{2}+\ldots \ldots$
where the components $u_{0}, u_{1}, u_{2}, \cdots$ are usually recurrently determined.
Substituting equation (16) into equation (15) yields
Journal of the Nigerian Association of Mathematical Physics Volume 55, (February 2020 Issue), 27 - 34
$\sum_{n=0}^{\infty} u_{n}=f-L^{-1}\left(R\left(\sum_{n=0}^{\infty} u_{n}\right)\right)$
For simplicity, Equation (18) can be re-written as
$u_{0}+u_{1}+u_{2}+\cdots=\sum_{n=0}^{\infty} u_{n}=f-L^{-1}\left(R\left(\sum_{n=0}^{\infty} u_{0}+u_{1}+u_{2}+\cdots\right)\right)$
To construct the recursive relation needed for the determination of the components $u_{0}, u_{1}, u_{2}, \cdots$, it is important to note that Adomian method suggests that the zeroth component u_{0} is usually defined by the function f described above, that is, by all terms that are not included under the inverse operator L^{-1}, which arise from the initial data and from integrating the inhomogeneous term. Accordingly, the formal recursive relation is defined by
$u_{0}=f$
$u_{k+1}=-L^{-1}\left(R\left(u_{k}\right)\right), \quad k \geq 0$
or equivalently,
$u_{0}=f$
$u_{1}=-L^{-1}\left(R\left(u_{0}\right)\right)$
$u_{2}=-L^{-1}\left(R\left(u_{1}\right)\right)$
$u_{3}=-L^{-1}\left(R\left(u_{2}\right)\right)$
It is clearly seen that the relations (21) reduced the differential equation under consideration into an elegant determination of computable components. Having determined the relations (21), a series form solution is obtained by substituting relations (21) into equations (16).
The approximate solution is given by $u=u_{0}+u_{1}+u_{2} \ldots+u_{m-1}$

IV. MODIFIED ADOMIAN DECOMPOSITION METHOD

Modified Adomian decomposition method developed by Wazwaz (2009). The modified decomposition method will further accelerate the convergence of the series solution. It is to be noted that in this study, the modified decomposition method will be applied to linear inhomogeneous and nonlinear Klein-Gordon equations.
The decomposition method admits the use of the recursive relation,
$u_{0}=f$,
$u_{k+1}=-L^{-1}\left(R u_{k}\right), \quad k \geq 0$
the components $u_{n}, \quad n \geq 0$ is obtained.
The modified decomposition method introduces a slight variation to the recursive relation (22) that will lead to the determination of the components of u in a faster and easier way.
For specific cases, the function f can be set as the sum of two partial functions, namely f_{1} and f_{2}.
In other words, we have
$f=f_{1}+f_{2}$.
Using equation (23), we introduce a qualitative change in the formation of the recursive relation (22). To reduce the size of calculations, we identify the zeroth component u_{0} by one part of f, namely f_{1} or f_{2}. The other part of f can be added to the component u_{1} among other terms. In other words, the modified recursive relation can be identified by
$u_{0}=f_{1}$
$u_{1}=f_{2}-L^{-1}\left(R\left(u_{0}\right)\right)$
$u_{k+1}=-L^{-1}\left(R\left(u_{k}\right)\right)$
The success of this modification depends only on the choice of f_{1} and f_{2}, and this can be made through trials. Second, if f consists of one term only, the standard decomposition method should be employed in this case.
The approximate solution is given by $u=u_{0}+u_{1}+u_{2} \ldots+u_{m-1}$

3. NUMERICAL APPLICATIONS

In this section, we use the three methods in solving linear and nonlinear Klein-Gordon equations.

3.1 Linear Klein-Gordon Equation

Example 1

Consider the following Klein-Gordon equation
$u_{t t}-u_{x x}+u=0$
With the initial conditions
$\mathrm{u}(\mathrm{x}, 0)=0, \mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=\mathrm{x}$
and the exact solution is
$u(x, t)=x \operatorname{Sin} t$

Following the procedures in section 2 and by substituting the obtained coefficient in the equation, the solution for the three methods become
$u(x, t)=x \operatorname{Sin} t$
Which is the exact solution.
Table 1 shows the numerical results of the three methods for example (1)

Figure 1a: 3D plot of example 1 at $x=-10 . .10, t=-10 . .10$

Figure 1b: 3D plot of example 1 at $x=-5 . .5, t=-5 . .5$

Example 2

Consider the Klein-Gordon equation
$u_{t t}-u_{x x}-u=0$
With initial conditions
$u(x, 0)=\operatorname{Sin}(x)+1, u_{t}(x, 0)=0$
and the exact solution is
$u(x, t)=\sin (x)+\cosh (t)$
Following the procedures for the three methods after 3 iterations, the solution becomes
$u(x, t)=\sin (x)+\cosh (t)$
Which is the exact solution.
Table 2 shows the numerical results of the three methods for example (2)

Figure 2a: 3D plot of example 2 at $x=0 . .5, t=0 . .5$
Figure 2b: 3D plot of example 2 at $x=-10 . .10, t=-10 . .10$

Example 3

Consider the inhomogeneous linear Klein-Gordon equation
$u_{t t}-u_{x x}+u=2 \sin x$
With the initial conditions
$u(x, 0)=\sin x, \quad u_{t}(x, 0)=1$
and the exact solution is
$u(x, t)=\sin x+\sin t$
Following the procedures for the three methods after 3 iterations, the solution becomes
$u(x, t)=\sin x+\sin t$
Which is the exact solution
Table 3 shows the numerical results of the three methods for example (3)

Figure 3a: 3D plot of example 3 at $x=-10 . .10, t=-10 . .10$

Figure 3b: 3D plot of example 3 at $x=0 . .5, t=0 . .5$

3.2 Nonlinear Klein-Gordon Equations

Example 4
Consider the following Nonlinear Klein-Gordon equation
$u_{t t}-u_{x x}+u^{2}=x^{2} t^{2}$
With the boundary conditions
$u(x, 0)=0, \quad u_{t}(x, 0)=x$
The exact solution is
$u(x, t)=x t$
Following the procedures for the three methods after 3 iterations, the solution becomes $u(x, t)=x t$
Which is the exact solution
Table 4 shows the numerical results of the three methods for example (4)

Figure 4a: 3D plot of example 4 at $x=0 . .5, t=0 . .5$

Figure 4b: 3D plot of example 4 at $\mathbf{x}=\mathbf{- 1 0 . . 1 0 , ~} \mathbf{t}=\mathbf{- 1 0 . . 1 0}$

Example 5

Given the following nonlinear inhomogeneous Klein-Gordon equation:
$u_{t t}-u_{x x}-u+u^{2}=x t+x^{2} t^{2}$
With the initial conditions
$u(x, 0)=1, \quad u_{t}(x, 0)=x$
The Exact solution is
$u(x, t)=1+x t$
Following the procedures for the three methods after 3 iterations, the solution becomes
$u(x, t)=1+x t$
Which is the exact solution
Table 5 shows the numerical results of the three methods for example (5)

Figure 5a: 3D plot of example 5 at $\mathrm{x}=\mathbf{- 1 0 . . 1 0 , ~} \mathbf{t = - 1 0 . . 1 0}$ Example 6
Given the following nonlinear inhomogeneous Klein-Gordon equation:
$u_{t t}-u_{x x}+u^{2}=2 x^{2}-2 t^{2}+x^{4} t^{4}$
(

Figure 5b: 3D plot of example 5 at $\mathbf{x}=\mathbf{0 . . 1 0 ,} \mathbf{t}=\mathbf{0 . . 1 0}$

Journal of the Nigerian Association of Mathematical Physics Volume 55, (February 2020 Issue), 27 - 34

With the initial conditions
$u(x, 0)=0, \quad u_{t}(x, 0)=0$
And the exact solution is
$u(x, t)=x^{2} t^{2}$
Following the procedures for the three methods after 3 iterations, the solution becomes
$u(x, t)=x^{2} t^{2}$
Which is the exact solution
Table 6 shows the numerical results of the three methods for example (6)

Figure 6a: 3D plot of example 5 at $x=-5 . .5, t=-5 . .5 \quad$ Figure $6 b$: 3D plot of example 5 at $x=0 . .5, t=-5 . .5$ 4. RESULTS

Table 1: comparison of the 3 methods for example 1 at $x=0 . .2, \mathrm{t}=0.3$ after 2nd iteration

X	VIM	NIM	ADM
0.0	0	0	0
0.2	0.05910405	0.05910405	0.05910405
0.4	0.11820810	0.11820810	0.11820810
0.6	0.17731215	0.17731215	0.17731215
0.8	0.23641620	0.23641620	0.23641620
1.0	0.29552025	0.29552025	0.29552025
1.2	0.35462430	0.35462430	0.35462430
1.4	0.41372835	0.41372835	0.41372835
1.6	0.47283240	0.47283240	0.47283240
1.8	0.53193645	0.53193645	0.53193645
2.0	0.59104050	0.59104050	0.59104050

Table 2:comparison of the 3 methods for example 2 for $\mathrm{x}=0 . .2, \mathrm{t}=0.3$ after $2^{\text {nd }}$ iteration

x	VIM	NIM	ADM
0	1.04533750000	1.04533750000	1.04533750000
0.2	1.24400683080	1.24400683080	1.24400683080
0.4	1.43475584231	1.43475584231	1.43475584231
0.6	1.60997997340	1.60997997340	1.60997997340
0.8	1.76269359090	1.76269359090	1.76269359090
1.0	1.88680848481	1.88680848481	1.88680848481
1.2	1.97737658597	1.97737658597	1.97737658597
1.4	2.03078722999	2.03078722999	2.03078722999
1.6	2.04491110304	2.04491110304	2.04491110304
1.8	2.01918513088	2.01918513088	2.01918513088
2.0	1.95463492683	1.95463492683	1.95463492683

Table 3:comparison of the 3 methods for example 3 for $x=0 . .2, t=0.3$ after $2^{\text {nd }}$ iteration

x	VIM	NIM	ADM
0	0.2955202500	0.2955202500	0.2955202500
0.2	0.4941895808	0.4941895808	0.4941895808
0.4	0.6849385923	0.6849385923	0.6849385923
0.6	0.8601627234	0.8601627234	0.8601627234
0.8	1.0128763409	1.0128763409	1.0128763409
1.0	1.1369912348	1.1369912348	1.1369912348
1.2	1.2275593360	1.2275593360	1.2275593360
1.4	1.2809699800	1.2809699800	1.2809699800
1.6	1.2950938530	1.2950938530	1.2950938530
1.8	1.2693678809	1.2693678809	1.2693678809
2.0	1.2048176768	1.2048176768	1.2048176768

Journal of the Nigerian Association of Mathematical Physics Volume 55, (February 2020 Issue), 27 - 34

Table 4:comparison of the3 methods for example 4 for $\mathrm{x}=0 . .2, \mathrm{t}=0.3$ after $2^{\text {nd }}$ iteration

x	VIM	NIM	MADM
0	0.000	0.000	0.000
0.2	0.060	0.060	0.060
0.4	0.120	0.120	0.120
0.6	0.180	0.180	0.180
0.8	0.240	0.240	0.240
1.0	0.300	0.300	0.300
1.2	0.360	0.360	0.360
1.4	0.420	0.420	0.420
1.6	0.480	0.480	0.480
1.8	0.540	0.540	0.540
2.0	0.600	0.600	0.600

Table 5: comparison of the 3 methods for example 5 for $\mathrm{x}=0 . .2, \mathrm{t}=0.3$ after $2^{\text {nd }}$ iteration

\mathbf{x}	VIM	NIM	MADM
0	1.000	1.000	1.000
0.2	1.060	1.060	1.060
0.4	1.120	1.120	1.120
0.6	1.180	1.180	1.180
0.8	1.240	1.240	1.240
1.0	1.300	1.300	1.300
1.2	1.360	1.360	1.360
1.4	1.420	1.420	1.420
1.6	1.480	1.480	1.480
1.8	1.540	1.540	1.540
2.0	1.600	1.600	1.600

Table 6:comparison of the 3 methods for example 6 for $x=0 . .2, t=0.3$ after $2^{\text {nd }}$ iteration

X	VIM	NIM	MADM
0	0.0000	0.0000	0.0000
0.2	0.0036	0.0036	0.0036
0.4	0.0144	0.0144	0.0144
0.6	0.0324	0.0324	0.0324
0.8	0.0576	0.0576	0.0576
1.0	0.0900	0.0900	0.0900
1.2	0.1296	0.1296	0.1296
1.4	0.1764	0.1764	0.1764
1.6	0.2304	0.2304	0.2304
1.8	0.2916	0.2916	0.2916
2.0	0.3600	0.3600	0.3600

5. CONCLUSION

In this paper, the methods of VIM, NIM and ADM have been successfully performed for Klein-Gordon equations. The obtained results show that the three methods yielded the same results and they were excellent agreement with the exact solutions. It is capable to converge to exact solutions with fewest number of iterations.
Tables 1-6 and figures 1-6 justify that the methods are reliable and efficient and can be applied to linear and nonlinear equations of different parameters.

REFERENCES

[1] Khalid M., Sultana M., Zaidi F. and Uroosa A. (2016), ‘Solving Linear and nonlinear Klein-Gordon equations by New Perturbation Iteration Transform Method', TWMS Journal of Applied and Engineering Mathematics, vol. 6, No. 1, pp. 115-125, 2016
[2] Majeed A. Yousif and Bewar A. Mahmood (2017), 'Approximate Solutions for Solving the Klein-Gordon and SineGordon equations', Journal of the Association of Arab Universities for Basic and Applied Sciences, 22, pp. 83-90
Journal of the Nigerian Association of Mathematical Physics Volume 55, (February 2020 Issue), 27 - 34
[3] Mohyud-din S. T. and Yildirim A.(2010), 'Variational iteration method for solving Klein-Gordon equations', ?journal of Applied Mathematics, Statistics and Informatics, Vol. 6, No. 1.
[4] Odibat Z. and Momani S. (2007), 'A reliable treatment of homotopy perturbation method for Klein-Gordon equations', Phys. Lett. A 365(2007), 351-357
[5] Rabie Mohammed E. A. (2015) 'Solvability of nonlinear Klein-Gordon equation by Laplace Decomposition Method' African journal of mathematics and computer science research, Vol. 8(4), pp. 37-42, ISSN 2006-9731, Article No. 6310F9154159
[6] Ramadan Mohammed A. and Al-luhaibi Mohammed S. (2014) 'Application of Sumudu Decomposition Method for Solving Linear and Nonlinear Klein-Gordon equations', International Journal of Soft Computing and Engineering (IJSCE). ISSN: 2231-2307, Volume 3, Issue 6.
[7] Ravi Kanth A.S.V. and Aruna K. (2008),'Differential Transform Method for Solving the Linear and Nonlinear KleinGordon equation', Computer Physics Communications, 0010-4655
[8] Singh J., Kumar D and Rathore S. (2012), 'Application of homotopy perturbation transform method for solving linear and nonlinear Klein-Gordon euations', Journal of Information and Computing Science, Vol. 7, No. 2, pp. 131-139.
[9] Sun Q. (2005), 'Solving the Klien-Gordon equation by means of the homotopy analysis method', Applied Mathematics and Computation, 169 (1) 2005, 355-365.
[10] Wazwaz Abdul-Majid (2009) 'Partial Differential Equations and Solitary Waves Theory' Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg.
[11] Yaseen M. and Samraiz M (2012) ‘The Modified New Iterative Method for Solving Linear and Nonlinear Klein-Gordon Equations', Applied Mathematical Sciences, Volume 6, No. 60, 2979-2987.
[12] Yildiray Keskin, SemaServi and GalipOturanc (2011) 'Reduced Differential Transform Method for solving KleinGordon equation' Proceedings of the world congress on Engineering, Vol. 1.
[13] Yusufoglu E. (2008), 'The variational Iteration Method for studying the Klein-Gordon equation', Applied Mathematics Letters, 21 (7), 669-674.

