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Abstract 
 

We formulate a new iterative scheme with an inertial technique that solves a common 

solution problem of finite family of continuous Bregman quasi-nonexpansive self-

mappings and system of equilibrium in a Banach space. This is achieved by 

demonstrating a strong convergence theorem for it. Our proof finds a common element 

in the collection of fixed set of finite family of continuous Bregman quasi-

nonexpansive self-mappings and the common solution set of the system of finite 

equilibrium problems. As an improvement to other existing results in this direction, we 

further justify our theoretical assertions with a numerical experiment.  
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1.  Introduction 
We denote a reflexive real Banach space by ,X the set of real numbers by ,R the set of natural numbers by .N Let ||.||  represent a norm 

function. We represent the dual of X by X as the set of all linear functional. Let  Rhdomhdomdh )int(: represent a bifunction with 

respect to a convex function denoted by ],(: Xh , where   )(: uhXuhdom is the domain of a convex function and 

)int( hdom represent the interior domain of ].,(: Xh  

A function ],(: Xh , is G𝑎 teaux differentiable at u if ),(
))()((

lim
0

zuh
s

uhszuh

s






exists for any z in X . By this definition, 

),(),( uhzuh   which is the gradient of ].,(: Xh Let K be a closed, convex subset of .X  The function ],(: Xh  is 

uniformly Frechet differentiable whenever the limit is attained uniformly with 1|||| z on a subset of XK   which is bounded. 

 Let the convex function ],(: Xh  represent a G𝑎 teaux differentiable function, then the bifunction

 Rhdomhdomdh )int(:  defined by  

  ,),(),()()(,  uuhzuhuhzhuzdh
     (1.1) 

is the Bregman function induced by a convex function ],(: Xh .
 

This bifunction  Rhdomhdomdh )int(:  defined by(1.1) has some nice properties like: 

P1: The function )(.,udh
is convex with respect to first variable, 

P2: ,0),( uudh
 

P3: ,0),( uzdh
 

P4:     ,),(),(,,),(  vzuhvzvhuvdvzduzd hhh
 

P5:   ,),(),(,),(  vuvhvuuhuvdvud hh
 

P6: .||)()(||||||||)()(||||||),( vhuhvvhuhuvudh   

Remark 1: P4 implies P5 and P6 if .zu   
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Remark 2: )(,hd in (1.1) was first called Bregman function in the work of [1]. Though, it was first studied by Bregman as a 

substitute for the classical distance function, (see [1], [2]) for more details. 

A function RXh ** :  defined by  

},),(,sup{)( *** Xxxhxxxh         (1.2) 

is called the conjugate function of .h  We see from the conjugate inequality that ***** ,),(,)( XxXxxhxxxh  .  

Define a bifunction RXXVh  *: by  

.,),(,)(),( ***** XxXxxhxxxhxxVh       (1.3) 

In other words,  

.)(,))),((,())(,(),( ***** XxhXxxhhxdxhxdxxV hhh     (1.4) 

It is easy to see that ,.)(xVh
 is nonnegative and convex with respect to the its second variable (see [3]). 

The subdifferential of h  at u  is defined thus 

 .);(,,)(:)( **** XzzhuuzuuhXuuh       (1.5) 

The function ],(: Xh is Legendre (see [4, 5] and the references contained therein), if the following hold 

(1) )int( hdom is non-void, h  is differentiable on )int( hdom with ),int( hdomhdom   

(2) )int( *hdom is non-void, *h is differentiable on )int( *hdom with ).int( ** hdomhdom   

Remark 3: With ],(: Xh a Legendre function, and X reflexive, then h is a bijection which satisfies   ,
1* 

 hh

)int( ** hdomainhdomainhrange   and 

),int(* hdomainhdomainhrange  where ],(: Xh  and ],(: ** Xh are strictly convex in the )int( hdom . If 

 XzzhuuzuuhXuuh  );(,,)(:)( ****  of ],(: Xh have a single value, then .hh  Given 

),1(,||||)( 21   tutuh , then we have a Legendre function and (1.1) becomes the Lyapunov functional when the space is smooth. If 

,Ihh  then (1.1) reduces to metric distance, (see [4], [5] and the references contained therein) for more details). 

The modulus of total convexity of h at hdomu int  is the function   RRhdomuWh )int(:,.)(  defined by  

}.||||,:),(inf{),( suzhdomzuzdsuW hh       (1.6) 

If ),( sxWh
is positive, then ],(: Xh becomes totally convex at u for positive value of .s For more information 

(see [6, 7] and references in them). 

Let K represent a non-void, closed as well as convex subset of .int hdom  Let KKT : represent a map. KKT : is nonexpansive 

if ;,||,|||||| KzuzuTzTu   KKT : is (quasi)-nonexpansive if ||,|||||| 00 zuzTu  and }:{)( 0 uTuKzTFix  is the 

collection of fixed point of .: KKT   An element Ku *  is asymptotic fixed point of KKT : when }{ nu is contained in K

and converges weakly to u  so that .0||||  nn Tuu  It is represented by the collection  .||:||)(ˆ
nn TuuKuTixF   

A map ),int(: hdomKT  with respect to a convex function ],(: Xh is  

(i)  Bregman relatively nonexpansive (BRNE) [8] if     

 )(,),,(),( 000 TFixzKuuzdTuzd hh  and ).()(ˆ TFixTixF   

(ii)    Bregman quasi-nonexpansive (BQNE) [8] if   

 )(,),,(),( 000 TFixzKuuzdTuzd hh  . 

Remark 4:  
1. Any Bregman relatively nonexpansive mapping is Bregman quasi-nonexpansive mapping (see [9]), 

2. We note here that weak convergence of sequence }{ nu need not imply strong convergence of the sequence }{ nu (see [9]), 

3. If a sequence }{ nu in K converges strongly to a point u in K , then }{ nu also converges weakly to .u  

4. Every nonexpansive mapping defined on a closed convex subset of a Hilbert space such that the fixed point of the mapping is non-

void is relatively nonexpansive defined on a closed and convex subset to itself and hence Bregman relatively nonexpansive 

mapping with respect to 2||||)( uuh   (see [3]). 

A mapping RKK : is called a bifunction so that the equilibrium problem with respect to RKK :  is to find Kz 0 such that  

.0),( 0 Kzzz                      (1.7) 

The collection of solution of (1.7) is represented by  KzzzKzKEP  0),(:),( 00  (see [10], [11]). 

To solve a problem of the form (1.7), certain conditions are imposed on the bifunction RKK : as follows [10], [11]: 

(A1): ,,0),( kxxx    
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(A2): RKK : is monotone 

(A3): ,,,),,(),)1((suplim
0

Kzyxyxytzxt
t




  

(A4): The function ),( yxy  is convex and lower-semicontinuous. 

The Resolvent of a bifunctions RKK : [12] is the operator Kh Xs 2:Re 
defined by  

  .,0),()(,:)(Re 0000 KyzzxhzhzzKzxsh  
 

Over the years, smooth convex minimization problem involving equilibrium and fixed point problems have attracted the interest of many 

authors seeking common solution of these minimum problem in infinite-dimensional space. Iterative approximation methods have always 

been used to solve this problem. Furthermore, most of the results obtained in this direction only focused on the weak or strong 

convergence of the formulated schemes to the (common) fixed point sets (see e.g. [1, 3, 10, 13-18] and the many references contained in 

them).  However, very few authors have recently paid attention to the speed or the rate of convergence of sequence of iterates of 

Bregman nonexpansive-type operators to their (common) fixed point sets when they exists. Thus, to increase the rate of convergence of 

iterations, a two-step iterative method originally introduced in [19], are now being studied (see [11, 20, 21]). It is defined as   

).( 11   nnnnn uuuu           (1.8) 

for all non-negative integers ,n  where ).1,0(n  
Very recently, the following method of solving common point problem involving the fixed point of finite family of 

nonexpansive mappings and system of finite equilibrium problems in Hilbert space was introduced in [11]. Below is their 

algorithm: 




























,1...)1(

,
...

,,...,2,1),(

),(

111

21

1

ntTTTwx

N

yyy
t

NiwTy

xxxw

n

nn

m

n

mnnnn

N

nnn
n

n

f

r

i

n

nnnnn

i

n





       (1.9) 

satisfying certain conditions, they proved that the sequence }{ nx generated by their algorithm (1.9) converges weakly to a 

common solution of the problem.  

In 2016, a new CQ algorithm for nonexpansive mapping in a real Hilbert space was introduced in [21]. Set Hxx 10 ,  

arbitrarily. Define a sequence }{ nx by the following algorithm: 

           (1.10) 

then satisfying certain conditions, the iterative sequence }{ nx  generated by the algorithm (1.10) converges strongly to )( 0)( xP TF
, where 

)( 0)( xP TF
 is the metric projection onto nonempty fixed point of .T  

Remark 5: We note here that the work was done in Hilbert space and for a single nonexpansive self-mapping on H. It contains an inertial 

term which speeds up convergence of sequences in a smooth convex minimization problem. However, the algorithm has two closed half 

sets 
nC  and 

nQ which complicates the computation of the metric Projection at each interval of the iteration. 

Following [21], in 2018a new inertial algorithm for approximating a common fixed point for a countable family of relatively 

nonexpansive maps was introduced in [20]. The authors used the Lyapunov functional induced by the norm to prove a strong 

convergence result of their sequence generated by their algorithm in uniformly convex and uniformly smooth Banach spaces. Set 

Xuu 10 , and define a sequence }{ nu by the following algorithm: 

 

    
 
































.

,,,:

,)()1(

),(

01

***

1

1

1

0

1
uu

zuyuKuC

TzJzJJy

uuuz

XK

nCn

nnn

nnn

nnnnn





        (1.11) 

They showed that their method converge strongly to a mutual element of )()( 1 ii GFixTFix 

  .  

Our justification for this study is the results of [11, 20, 21]. Weformulate a new iterative scheme with an inertial technique that solves a 

common fixed point problems of finite family of continuous Bregman quasi-nonexpansive self-mappings and equilibrium problem in a  
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reflexive and (real) Banach space. This is achieved by demonstrating a convergence theorem for it. Our proof finds a common element in 

the collection of fixed set of finite family of continuous Bregman quasi-nonexpansive self-mappings and the common solution set of the 

system of finite equilibrium problems. As an improvement to other existing results in this direction, we further justify our theoretical 

assertions with a numerical experiment.  

 

2. Preliminaries 

The following lemmas shall be used in the sequel.  
Lemma 2.1 (see [6]). The function h is totally convex on bounded sets if and only if for any two sequences }{ nx  and }{ ny  in X such that 

either }{ nx or }{ ny is bounded, then 

0||||0),(lim 


nnnnh
n

xyxyd . 

Lemma 2.2 (see [17]). Let K  be a non-void, closed, convex subsets of )int( hdom and KKT : be a Bregman quasi nonexpansive 

mapping with respect to .h Then )(TFix  is closed and convex. 

Lemma 2.3 (see [11]). Let X  be a reflexive Banach space and let h  be a continuous convex function which is strongly coercive. Then 

the following assertions are equivalent: 

(1) h is bounded on bounded subsets and uniformly smooth on bounded subsets of X  

(2) *h is Fr𝑒 chet differentiable and *h  is uniformly norm-to-norm continuous on bounded subsets of .*X  

(3) ,** Xhdom 
*h is strongly coercive and uniformly convex on bounded subsets of .*X  

Lemma 2.4 (see [15]). Let ],(: Xh be a 𝐺𝑎 𝑡𝑒𝑎𝑢𝑥 differentiable on )int( hdom such that *h  is bounded on bounded subsets of 

.*hdom  Let Xx 0
and }{ nx  is a sequence in .X  If )},({ 0 nh xxd is bounded, then the sequence }{ nx  is also bounded. 

Lemma 2.5(see [12]).Let ],(: Xh be a Legendre function and K a non-void, closed and convex subset of .X  If the bifunctions 

RKK : satisfies condition (A1)-(A4), then the following hold: 

(1) hsRe is single valued 

(2) ),()(Re  KEPsFix h   

(3) )(Re),(),(Re)Re,( h

h

h

h

h

h sFixpxpdxxsdxspd    

(4) ),( KEP is closed and convex. 

The Bregman Projection )int( hdomu onto ,hdomK  is the unique Ku 0
such that the mapping KhdomPh

K int:  satisfy 

 Kzuzduud hh  :),(min),( 0
      

and .)( 0uuPh

K   The Bregman Projection mapping satisfy the following results: 

Lemma 2.6 (see [9]). Let K be non-void, closed, convex subsets of .X Let ],(: Xh  be 𝐺𝑎 𝑡𝑒𝑎𝑢𝑥 differentiable and 

totally convex function and let ,Xx  then 

(1) )(xPz h

K if and if  ,,0),()( Kyzyzhxh   

(2) .),()),(())(,( KyxydxxPdxPyd h

h

Kh

h

Kh   

 

3.  Main Results 

Lemma 3.1: Let ],(: Xh  be a proper, lower semi-continuous and convex function, then, for all Xu we have  

.),(
1

)))(
1

(,(
11

*  


N

i ih

N

i ih xud
N

xh
N

hud
          (3.1) 

Proof:  

Using (1.3) and (1.4), we have  

 


N

i ih

N

i ih xh
N

uVxh
N

hud
11

* ))(
1

,()))(
1

(,(
          (3.2) 

))(
1

()(
1

,)(
1

*

1  


N

i i

N

i i xh
N

hxh
N

uuh  

 


N

i i

N

i i xhh
N

xhu
N

uh
1

*

1
))((

1
)(,

1
)(       (3.3) 

  


N

i ii xhhxhuuh
N 1

* ))(()(,)(
1  

 


N

i ih xhuV
N 1

))(,(
1  

.),(
1

1 


N

i ih xud
N

         (3.4) 
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This ends the proof.                   ∎ 

Theorem 3.2: Let K be a non-void, closed, convex subset of ).int( hdom  Let RXh : be a Legendre function which is 

bounded, uniformly Fr𝑒 chet differentiable and totally convex on bounded subsets of a reflexive real Banach space .X  Let 

RKKN

ii  :}{ 1 be N -bifunctions which meets properties  A1–A4. Let KKT m

jj  :}{ 1
 be m -finite family of continuous 

Bregman quasi-nonexpansive mappings induced by a convex function .h  Assume that  )()( 11 j

M

ji

N

i TFixEPF     is non-void. 

Set 
;;

 Define a sequence }{ nx by the following manner:  

 

 

 



















































,1,

,}),(),(:{

,)(
1

,,,...,2,1,),(Re

,,...,2,1,)()()1(

,)()(

01

1

1

*

*

1

*

0

1
nxPx

zudtudKuK

wh
N

ht

MNjiysw

MjzThbzhbhy

xxhxhhz

Kx

h

Kn

nhnhnn

N

i

i

nn

j

n

hi

n

njnnn

j

n

nnnnn

n

i



         (3.5) 

suppose )1,0(}{},{ nn b , then the sequence }{},{ nn zx converges strongly to a common element of .F  
Proof: We demonstrate the analytical proof theorem 3.2 in the steps below. 

Step 1: The algorithm (3.5) is well-defined in terms of }{ nx for each .1n  

We first demonstrate that  )()( 11 j

M

ji

N

i TFixEPF    is closed, convex. Lemma 2.2 gives that )(TFix is closed, convex and 

consequently )(1 j

M

j TFix is closed, convex. Lemma 2.5 gives that )(gEP  is closed, convex and sois )(1 i

N

i EP  . So 

 )()( 11 j

M

ji

N

i TFixEPF     is closed, convex since the intersection of closed and convex sets is itself closed andconvex.   

Next is to demonstrate that that 
nK is closed, convex for each .1n This can be seen from definition of 

nK , that 
nK is closed. 

Moreover, since    nhnh zudtud ,,   is equivalent to 

)()(),()(),()( nnnnnnnn zhthztthzhuthzh  ,  

which is convex, it follows that 
nK  is a half space and hence convex for each .1n  

In addition to closedness and convexity of  )()( 11 j

M

ji

N

i TFixEPF    , we demonstrate concretely that 
nKF   for each 

.1n  It is clear from the initial assumption that .0 KKF   Now suppose that 
nKF   for some positive ,1n then for 

,Fp  and using Lemma 3.1 we obtain 



















 



N

i

i

nhnh wh
N

hpdtpd
1

* )(
1

,),(
 

  


N

i

i

nh wpd
N 1

,
1 Ni ,...,2,1 ,       (3.6) 

In addition and invoking Lemma 2.5 we get 
)Re,(),( n

h

h

i

nh yspdwpd
i  

NiypD nf ,...,2,1),,(          (3.7)  

Furthermore, 

  )()()1(,),( *

njnnnhnh zThbzhbhpdypd   

 )()()1(, njnnnh zThbzhbpV   

))()()1(()()()1(,)( *

njnnnnjnnn zThbzhbhzThbzhbpph   

   ))(((,)()1( *

nnn zhhzhpphb   

 ))(((,)( *

njnjn zThhzThpphb   

))(,())(,()1( njhnnhn zThpVbzhpVb     

   njhnnhn zTpdbzpdb ,,)1(   

   nhnnhn zpdbzpdb ,,)1(   

 ., nh zpd        
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Thus,   

 nhnh zpdypd ,),(  .        (3.8) 

Using (3.8) in (3.7) we obtain 

),,(),( nh

i

nh zpdwpd  for each .,...,2,1 Ni        (3.9) 

Consequently (3.9) in (3.6) gives 

),(),( nhnh zpdtpd  .        (3.10) 

So 
1 nKp and .1 nn KK 

 This implies by set induction that 
nKF  . Thus, the algorithm (3.5) is well-defined in terms of 

}{ nx for each .1n  

Step 2:      We demonstrate that  

(i) 0),(lim 1 


nnh
n

xxd
 



 
,0||||lim 1 


nn

n
xx

 

(ii) 0||||lim 


nn
n

zx
 



 
0),(lim 


nnh

n
zxd  

(iii) 0),(lim 1 


nnh
n

txd
 



 
,0||||lim 1 


nn

n
tx  

(iv) 0),(lim 


nnh
n

tzd
 


 

.0||||lim 


nn
n

tz  

We notice that )( 0xPx h

Kn n
 and .)( 101 1 nn

h

Kn KKxPx
n

  

Thus we get  

),(),(),( 1010 nnhnhnh xxdxxdxxd    

).,(),( 010 xxdxxd nhnh          (3.10) 

(3.10) demonstrates that ),( 0xxd nh
 is a monotone non decreasing sequence. Again we get from Lemma 2.6 that 

,,1),())(,(),()),((),( 000000 FpnxpdxPpdxpdxxPdxxd h

h

Khh

h

Khnh nn
  

implying that 

).,(),( 00 xpdxxd hnh          (3.11) 

(3.11) demonstrates that  ),( 0xxd nh
 is bounded and from Lemma 2.4 we get that      }{,,,, n

i

nnnn twzyx for each Ni ,...,2,1  

are bounded. Combining (3.10) and (3.11) we get that ),(lim 0xxd nh
n 

 exist. Now wlog, let 

lxxd nh
n




),(lim 0
         (3.12) 

In addition to (3.12) and Lemma 2.6 we get that for any positive integer, ,  

))(,(),( 0xPxdxxd h

Knhnnh n    

0),(),( 00   xxdxxd nhnh 
as .n  

So that 
.0),(lim 


nnh

n
xxd 

 

In particular,  

.0),(lim 1 


nnh
n

xxd          (3.13) 

By Lemma 2.1, (3.13) implies that 

.0||||lim 1 


nn
n

xx          (3.14)  

This establishes (i).  

From (3.14) we conclude that the sequence }{ nx is a Cauchy sequence in K . Using the fact that X is complete and K  is 

closed, we get that nx Kz 0
as n .  

Now, from the uniform continuity of h  we get 

.0||)()(||lim 1  


nn
n

xhxh         (3.15) 

From the definition of ,nz and together with (3.10) we have that 

||)()()(||||)()(|| 1 nnnnnnn xxhxhxhzhxh   

||)(|| 1 nnn xxh    

0||)(|| 1   nn xxh  as n .  

This implies that  
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.0||)()(||lim 


nn
n

zhxh         (3.16)  

By Lemma 2.3, we obtain that 

.0||||lim 


nn
n

zx          (3.17) 

This establishes (ii) and shows that 
0zzn   as n .  

Moreso, since  nz  is bounded and using  (P6) and (3.17), we have that  

.0),(lim 


nnh
n

zxd          (3.18) 

In addition, since ,11 nnn KKx  
we have from the definition of the half space that 

).,(),( 11 nnhnnh zxdtxd           (3.19)  

nnnnnnhnnhnnh xxzhxhzxdxxdzxd   111 ),()(),(),(),(0  

0||||||)()(||),(),( 11   nnnnnnhnnh xxzhxhzxdxxd as n .  

This demonstrate that  

.0),(lim 1 


nnh
n

zxd          (3.20) 

This implies that  

.0),(lim 1 


nnh
n

txd          (3.21) 

Thus, by Lemma 2.1, (3.20) and (3.21) implies that 
0||||lim 1 


nn

n
zx  

and 

.0||||lim 1 


nn
n

tx          (3.22a) 

This implies that 

0||||lim 1 


i

nn
n

wx for all Ni ,...,2,1 .       (3.22b) 

This establishes (iii). 

In addition, we have from our definition that 

     

   

.n as0

,,

,...,2,1,,,
1

)(
1

,,
1

1

*























  



nhnh

nh

N

i

i

nh

N

i

i

nnhnnh

zpdzpd

Nizpdwpd
N

wh
N

hzdtzd

  

This demonstrate that 

0),(lim 


nnh
n

tzd          (3.23) 

Thus by lemma 2.1, (3.19) implies that 

.0||||lim 


nn
n

tz          (3.24) 

This implies that  

0||||lim 


i

nn
n

wz for all .,...,2,1 Ni   

This establishes (iv). 

 

Step 3: We demonstrate that    )()( 110 j

M

ji

N

i TFixEPz     

First, we demonstrate that ).(10 i

N

i EPz  Using Lemma 2.5 and the fact that ,Fp we have  

),()Re,()Re,(),(
11

1

nhn

h

hn

h

nhnnh ypdyspdysydwyd  
 

  0),(),(  nhnh ypdypd as n .      (3.25) 

),())(Re,())(Re,(),( 2

2

2 nhn

h

hn

h

nhnnh ypdyspdysydwyd  
 

  0),(),(  nhnh ypdypd as n .      (3.26) 

continuing this process, we get 

),())(Re,())(Re,(),( nhn

h

hn

h

nh

N

nnh ypdyspdysydwyd
nn

 
 

  0),(),(  nhnh ypdypd as n .      (3.27) 
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Hence in general, we arrive at 

.,...,2,1,0),(lim Niwyd i

nnh
n




.        (3.28) 

By Lemma 2.1, (3.28) implies that 

.,...,2,1,0||||lim Niyw n

i

n
n




       (3.29) 

Consequently, we get 

.0||||lim 


nn
n

yz          (3.30) 

Now, from the uniform continuity of ,h  (3.29) and (3.30) becomes 

,0||)()(||lim 


n

i

n
n

yhwh
        (3.31) 

and 

.0||)()(||lim 


nn
n

yhzh         (3.32) 

By definition, we have for Ni ,...,2,1 , that 

),(),()(||||||)()(||

,),,(),()(

,,0),()(),(

i

ni

i

nn

i

n

i

nn

i

n

i

ni

i

nn

i

n

i

nn

i

n

i

ni

wywyyhwhwyyhwh

Kywywyyhwh

Kywyyhwhyw












 

This implies that  

 ||||||)()(|| i

nn

i

n wyyhwh ),( i

ni wy Ky .     (3.33) 

Since ),( i

ni wy NiKy ,....,2,1,  is convex and lower semicontinuous and the fact that 
0zwi

n  Ni ,....,2,1 , we get that  

0),( 0 zyi Ky .        (3.34) 

We set )1,0( and 
0)1( zyw    so that .Kw 

 This demonstrates that 0),( 0 zwi  Ky . Using this, together 

with (A1) and (A4), we get 

),(),()1(),())1(,(),(0 00 ywzwywzywww iiiii     

This implies that  

.0),( ywi           (3.35) 

By (A3), we get that  

.,...,2,1,,0),( 0 NiKyyzi   We conclude that ).(10 i

N

i EPz   

Next, we demonstrate that )(10 j

M

j TFixz  . Since  )()()1(*

njnnnn zThbzhbhy  , we obtain that  

.||)()(||||))()(()()(||||)()(|| nnjnnnjnnnnn zhzThbzhzThbzhzhyhzh   

Using (3.32) we have that 
.0||)()(||lim 


nnj

n
zhzTh   

Since h is strongly coercive and uniformly convex on bounded subsets of *, hX is uniformly convex on bounded subsets of 

,X so we obtain 

.0||||lim 


njn
n

zTz          (3.36) 

Using the fact that 
0zzn  (a Cauchy sequence), we have from (3.36) that 

.lim0 nj
n

zTz


          (3.37) 

If we pick a subsequence say Nik }{ such that ,11  kTT
ki

then by implication 
0zz

kn  as ,k and the continuity of 

1T (3.37) gives 

.limlim 0110
1

zTzTzTz
kkk n

k
ni

k


 

 

In addition, if we pick another subsequence say Nik  }{ 1
 such that ,12

1




kTT
k

i
then  

.limlim 0220 111

zTzTzTz
kkk

n
k

ni
k


 

 

Furthermore, the process yields 3,00  jzTz j
. This demonstrate that )(10 j

M

j TFixz  .  

Thus    )()( 110 j

M

ji

N

i TFixEPz    . 

Step 4: We demonstrate that )( 00 xPzx h

Fn  . Since )( 0xPx h

Kn n
 and from step 1, 

nKF   so that from Lemma 2.6, we have  
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))(,())(,(),( 000110 xPxdxPxdxxd h

Fh

h

Fnhnh  
      (3.38) 

Since 
0zxn  and by taking limit on both sides of (3.38), we get 

))(,())(,(),( 000000 xPxdxPzdzxd h

Fh

h

Fhh  . 

This implies 

))(,(),( 0000 xPxdzxd h

Fhh  .       (3.39) 

On the other hand, we get using Lemma 2.6 that 

),()),(())(,( 000000 zxdzxPdxPxd h

h

Fh

f

Fh  . 

This implies  

),())(,( 0000 zxdxPxd h

h

Fh          (3.40) 

By combining (3.39) and (3.40), we have  

),())(,( 0000 zxdxPxd h

h

Fh          (3.41) 

By the uniqueness property of )( 0xPh

F
, we conclude that )( 00 xPzx h

Fn  . This ends the proof of Theorem 3.2. 

            ∎  
Corollary 3.3. Let K be a non-void, closed, convex subset of ).int( hdom  Let RXh : be a Legendre function which is 

bounded, uniformly Fr𝑒 chet differentiable and totally convex on bounded subsets of a reflexive real Banach space .X  Let 

KKT N

i  :}{ 1
 be an N-finite family of continuous Bregman quasi-nonexpansive mappings induced by a convex function .h  

Assume that )(1 i

N

i TFix is non-void. Set ., 10 Kxx   Define a sequence }{ nx by the following manner:  

 

 

 














































,1,

,}),(),(:{

,)(
1

,...2,1,)()()1(

,)()(

01

1

1

*

*

1

*

0

1
nxPx

zudtudKuK

yh
N

ht

NiTzhbzhbhy

xxhxhhz

Kx

h

Kn

nhnhnn

N

i

i

nn

nnnn

i

n

nnnnn

n


          (3.5) 

suppose )1,0(}{},{ nn b , then the sequence }{},{ nn zx converges strongly to a common element of ).(1 i

N

i TFix  

Corollary 3.4. Let K be a non-void, closed, convex subset of ).int( hdom  Let RXh : be a Legendre function which is 

bounded, uniformly Fr𝑒 chet differentiable and totally convex on bounded subsets of a reflexive real Banach space .X  Let 

KKT N

i  :}{ 1
 be an N-finite family of Bregman relatively nonexpansive mappings induced by a convex function .h  

Assume that )(1 i

N

i TFix is non-void. Set ., 10 Kxx   Define a sequence }{ nx by the following manner:  

 

 

 














































,1,

,}),(),(:{

,)(
1

,...2,1,)()()1(

,)()(

01

1

1

*

*

1

*

0

1
nxPx

zudtudKuK

yh
N

ht

NiTzhbzhbhy

xxhxhhz

Kx

h

Kn

nhnhnn

N

i

i

nn

nnnn

i

n

nnnnn

n

           (3.5) 

suppose )1,0(}{},{ nn b , then the sequence }{},{ nn zx converges strongly to a common element of ).(1 i

N

i TFix  

Corollary 3.5. Let K be a non-void, closed, convex subset of a Hilbert space. Let RKKN

ii  :}{ 1 be N -bifunctions 

which meets properties (A1)–(A4). Let KKT m

jj  :}{ 1
 be m -finite family of nonexpansive mappings. Assume that

 )()( 11 j

M

ji

N

i TFixEPF    . Set ., 10 Kxx   Define a sequence }{ nx by the following manner:  

 



















































,1,

,||}||||:||{

,)(
1

,,,...2,1,),(Re

,...2,1,)1(

),(

01

1

1

*

1

0

1
nxPx

uzutKuK

wh
N

ht

MNjiysw

NjzTbzby

xxxz

Kx

n

i

Kn

nnnn

N

i

i

nn

j

n

i

n

njnnn

j

n

nnnnn




           (3.5) 
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suppose )1,0(}{},{ nn b , then the sequence }{},{ nn zx converges strongly to a common element of .F  
 

4 Numerical Example 

We present a numerical example to justify our theoretical assertions made in section 3 of this paper. Our codes were written 

in Python and run on PC with intel(R) Core(TM)2 Duo CPU @ 3.10 GHz processor. 

 

Example 1:Let ].1,0[,  KRX  Also consider 30 NM . Consider the convex function RKh : defined by ,)3/2()( 2xxh 

such that xxh )3/4()(  . 

(i)  We define the mappings KKT j : by KxMjxxxT jj

j   ,,...,2,1,)2/1()( 1 . It is easy to check that }3/2{)( 1 TFix  for 

1j  and }0{)( jTFix  for .2j  To see this, for 1j  and ,1)2/1(:)(1  xxT gives 3/2231)2/1(  xxxx . 

Hence }3/2{)( 1 TFix . In addition, for 2j  and ,)2/1(:)( 2

2 xxxT   gives .00)2/1( 22  xxxxx  Thus, 

}.0{)( 2 TFix  Continuing the process and for 3j , we conclude that .2}0{)(  jTFix j
 But  )(1 j

M

j TFix ∅.  

(ii)  If we define the mappings KKT j : by KxMjxxT j
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Using the above, we simplify our scheme of theorem 3.3 for particular cases of .2 ji  
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Table 1: Values of ][nx and ][2 nx with initials 25.0]0[ x 33.0]1[ x  

Itera[n]             ][nx      ][2 nx
 
  ||x[n]-x2[n]|| 

   0     0.250000     0.000000     0.250000    

   1     0.333333     0.333333     0.000000   
   2     0.274691     0.269981     0.004711   

   3     0.218965     0.218807     0.000158   

   4     0.175070     0.177843     0.002773   

   5     0.140849     0.144978     0.004130   

   6     0.113912     0.118499     0.004588   

   7     0.092505     0.097075     0.004570   

   8     0.075363     0.079673     0.004310   
   9     0.061554     0.065493     0.003939   

  10     0.050378     0.053906     0.003528   

  11     0.041300     0.044417     0.003117   

  12     0.033903     0.036630     0.002726   

  13     0.027863     0.030230     0.002367   

  14     0.022920     0.024964     0.002044   

  15     0.018868     0.020625     0.001757   

  16     0.015543     0.017047     0.001505   
  17     0.012810     0.014095     0.001285   

  18     0.010563     0.011657     0.001094   

  19     0.008714     0.009643     0.000930   

  20     0.007190     0.007979     0.000789   

  21     0.005935     0.006603     0.000668   

  22     0.004900     0.005465     0.000565   

  23     0.004047     0.004523     0.000477   

  24     0.003342     0.003745     0.000402   
  25     0.002761     0.003100     0.000339   

  26     0.002281     0.002567     0.000285   

  27     0.001885     0.002125     0.000240   

  28     0.001558     0.001760     0.000202   

  29     0.001288     0.001457     0.000169   

Key: ][nx represent iterates with inertial component while ][2 nx represent iterates without the inertial component. ||x[n]-x2[n]|| represents the error difference 

between the iterates. Itera[n] represent the no of iterations.  
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Remark: From the computed results as shown in the table above, we can see that the iterates with inertial component converges faster to its fixed point. 

 

5. Conclusion 

We formulated a new iterative scheme with an inertial component that solves a common solution problem of finite family of continuous 

Bregman quasi-nonexpansive self-mappings and system of equilibrium in a reflexive and (real) Banach space. Our proof finds a common 

element in the collection of fixed set of finite family of continuous Bregman quasi-nonexpansive self-mappings and the common solution 

set of the system of finite equilibrium problems. As an improvement to other existing results in this direction, we further justified our 

theoretical assertions with a numerical experiment as seen above. 
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