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Abstract

We formulate a new iterative scheme with an inertial technique that solves a common
solution problem of finite family of continuous Bregman quasi-nonexpansive self-
mappings and system of equilibrium in a Banach space. This is achieved by
demonstrating a strong convergence theorem for it. Our proof finds a common element
in the collection of fixed set of finite family of continuous Bregman quasi-
nonexpansive self-mappings and the common solution set of the system of finite
equilibrium problems. As an improvement to other existing results in this direction, we
further justify our theoretical assertions with a numerical experiment.
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1. Introduction
We denote a reflexive real Banach space by X, the set of real numbers by R, the set of natural numbers by N.Let ||.|| represent a norm

function. We represent the dual of X by x-as the set of all linear functional. Let g, :domh xint(domh) — R* represent a bifunction with
respect to a convex function denoted byh: X — (~oo,+o0], Where domh = {u e X :h(u) <+oo}is the domain of a convex function and
int(dom h) represent the interior domain of h: X — (—o+<].

A function h: X — (—oo,+0], is Gateaux differentiable at U if yj, (NU+52)=()) _ .., yexists forany Zin x . By this definition,
50" S '

h°(u, z) = Vh(u), Which is the gradient of h: X — (—oo+00]. Let K be a closed, convex subset of X. The function h: X — (—o0,+00] s
uniformly Frechet differentiable whenever the limit is attained uniformly with || z ||=1on a subset of K = X which is bounded.
Let the convex function h:X — (—oo+oc] represent a Gdteaux differentiable function, then the bifunction
d, : domh xint(dom h) — R* defined by
d,(z,u) = h(z) - h(u) = (Vh(u), 2) +(Vh(u), u), (L1)
is the Bregman function induced by a convex functionp: X — (—oo,+0].
This bifunctiond, : domh xint(dom h) — R* defined by(1.1) has some nice properties like:
P1: The function ¢ (. u)is convex with respect to first variable,
P2: g, (uu)=0,
P3: d,(z,u)>0,
PA:4, (z,u)=d, (z,v)+d, (v,u)+(Vh(v), 2) —v) —(Vh(u),z - V),
PS5 d, (u,v) +d, (v,u)= (Vh(u),u—v)—(Vh(v),u—v),
P6: g, (u,v) <[l ulll vh(u) - Vh(v) || + | VIl Vh(u) - Vh(v) |.
Remark 1: P4 implies P5 and P6 if y=z.
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Remark 2: d, (,)in (1.1) was first called Bregman function in the work of [1]. Though, it was first studied by Bregman as a

substitute for the classical distance function, (see [1], [2]) for more details.

A function p*: x* _, r defined by

h*(x") =sup{{x,x")—h(x), x e X}, (1.2)

is called the conjugate function of h. We see from the conjugate inequality that h(x) > (x,x"y—h"(x"), Vxe X, VX e X"
Define a bifunctionv, : X x X — R by

V, (%, X)) =h(x) =(x, XY +h"(X"), ¥xe X, xe X" (1.3
In other words,
V, (%, x") =d, (x, Vh"(X")) =d,, (x, Vh" (Vh(X))), VX € X, Vh(x) € X ". (1.4)

It is easy to see that y, (x,) is nonnegative and convex with respect to the its second variable (see [3]).

The subdifferential of h at U is defined thus
oh(u) = {u* e X" :h(u)+{u",z)—u",uy<h(z); ze X}. (1.5)
The function h: X — (—o,+00]is Legendre (see [4, 5] and the references contained therein), if the following hold
(1) int(dom h)is non-void, h is differentiable on int(domh)with domh = int(domh),
(2) int(dom h*)is non-void, h"is differentiable on int(dom h*)with domh” =int(domh").
Remark 3: With h: X — (—oo+w]a Legendre function, and X reflexive, then wvhis a bijection which satisfiesyh :(Vh*)’l,
range Vh = domain Vh" = int(domainh") and
rangeVh" = domain Vh = int(domainh), Whereh: X — (—oo+o0] - @nd  h": X" 5 (-o4oc]@re  strictly convex in the int(domh). If
oh(u)={u" e X" :h(u)+(u",2y—(u",uy <h(z); ze X} of h:X —>(-w+oclhave a single value, then Oh = Vh.Given
h(u) =t™ ||u |, t € (1,0), then we have a Legendre function and (1.1) becomes the Lyapunov functional when the space is smooth. If
oh =vh = 1,then (1.1) reduces to metric distance, (see [4], [5] and the references contained therein) for more details).
The modulus of total convexity of h at U e intdomh is the function w, (u,.): int(domh) x R* — R* defined by
W, (u,s)=inf{d, (z,u): zedomh,|| z—u||=s}. (1.6)
If W, (x,s) is positive, then h: X — (—oo,+oc] becomes totally convex at U for positive value of S.For more information
(see [6, 7] and references in them).
Let K represent a non-void, closed as well as convex subset of intdomh. Let T:K — K represent a map. T:k — K iS nonexpansive
if | Tu-Tz|<|u-z|, YuzeK; T:K—Kis (quasi)-nonexpansive if |Tu-z°|<ju-z°|, and Fix(T)={z° eK:Tu=u}is the
collection of fixed point of T:K — K. Anelement "<k is asymptotic fixed point of T:K — K when gy }is contained in K
and converges weakly to U so that |, —Ty, |=0. Itis represented by the collection gixt)={uekju, -Tu, |
A map T :K —int(domh), with respect to a convex function h: X — (—o0,+0]iS
(i) Bregman relatively nonexpansive (BRNE) [8] if

d, (z°,Tu)<d, (z°,u), Vu e K, vz° e Fix(T)and Fix(T) = Fix(T).
(i) Bregman quasi-nonexpansive (BQNE) [8] if

d, (2%, Tu)<d, (z°,u), Vu e K,vz° e Fix(T) -
Remark 4:

1. Any Bregman relatively nonexpansive mapping is Bregman quasi-nonexpansive mapping (see [9]),
We note here that weak convergence of sequence {un}need not imply strong convergence of the sequence {un}(see (9D,

2
3. Ifasequence {y }in K converges strongly to a point U in K, then {y }also converges weakly to u.
4

Every nonexpansive mapping defined on a closed convex subset of a Hilbert space such that the fixed point of the mapping is non-
void is relatively nonexpansive defined on a closed and convex subset to itself and hence Bregman relatively nonexpansive

mapping with respect to h(u) =||u ||2 (see [3]).
A mapping  : K xK — RS called a bifunction so that the equilibrium problem with respect to , : K x K — R is to find z° K such that
w(z°,2) 20 VzeK. (1.7)
The collection of solution of (1.7) is represented by EP(K,w) = {zo eK:w(2%2) 20 Vze K}(see [10], [11]).
To solve a problem of the form (1.7), certain conditions are imposed on the bifunction y : K x K — R as follows [10], [11]:

(AL):w(x,x) =0, Yx ek,
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(A2):y: K xK — R is monotone

(A3): limsup, , w((L-t)Xx+1z,y) <p(x,y), ¥x,y,zeK,
(A4): The function y -y (x,y) is convex and lower-semicontinuous.
The Resolvent of a bifunctions i : K x K — R[12] is the operator Resy“, - X — 2K defined by

Res, (x) = {z° € K:1//(z°,z)+<Vh(z°)—Vh(x),z—z°) >0,Vye K}

Over the years, smooth convex minimization problem involving equilibrium and fixed point problems have attracted the interest of many
authors seeking common solution of these minimum problem in infinite-dimensional space. Iterative approximation methods have always
been used to solve this problem. Furthermore, most of the results obtained in this direction only focused on the weak or strong
convergence of the formulated schemes to the (common) fixed point sets (see e.g. [1, 3, 10, 13-18] and the many references contained in
them). However, very few authors have recently paid attention to the speed or the rate of convergence of sequence of iterates of
Bregman nonexpansive-type operators to their (common) fixed point sets when they exists. Thus, to increase the rate of convergence of
iterations, a two-step iterative method originally introduced in [19], are now being studied (see [11, 20, 21]). It is defined as

Upy = U, +ﬂn (un _unfl)' (18)

for all non-negative integers N, where 5 (,1).

Very recently, the following method of solving common point problem involving the fixed point of finite family of
nonexpansive mappings and system of finite equilibrium problems in Hilbert space was introduced in [11]. Below is their
algorithm;

W, =X, +a, (X, = X,.1),

Yo =T (W,), i=12..,N, (1.9)
f oYt Yate 4y,

n N il

Xoy = (A=A )W, + AT To . T, n>1,

satisfying certain conditions, they proved that the sequence {x }generated by their algorithm (1.9) converges weakly to a

common solution of the problem.
In 2016, a new CQ algorithm for nonexpansive mapping in a real Hilbert space was introduced in [21]. Set x  x eH

arbitrarily. Define a sequence {x }by the following algorithm:

Z, =X, +a, (X, — X, 1),
yn = (1_ﬂn)zn +ﬂnTZn'

C,={ueHily,~ul<llz,~ul} (1.10)
Q,={ueH :(x,—u,x,—X,) >0},
Xp1 = P (%) n20.

then satisfying certain conditions, the iterative sequence {x } generated by the algorithm (1.10) converges strongly to Prery (%) where
Pecry (%) is the metric projection onto nonempty fixed point of T.

Remark 5: We note here that the work was done in Hilbert space and for a single nonexpansive self-mapping on H. It contains an inertial
term which speeds up convergence of sequences in a smooth convex minimization problem. However, the algorithm has two closed half
sets c, and Q_which complicates the computation of the metric Projection at each interval of the iteration.

Following [21], in 2018a new inertial algorithm for approximating a common fixed point for a countable family of relatively
nonexpansive maps was introduced in [20]. The authors used the Lyapunov functional induced by the norm to prove a strong
convergence result of their sequence generated by their algorithm in uniformly convex and uniformly smooth Banach spaces. Set
Up, U, € X and define a sequence {un}by the following algorithm:

K, = X
z,=u,+a, (U, -U,,), (1.11)
Yo =3 A= 8)(z,)+ BITz,)
Con = {u* eK: ¢(u*, yn)s ¢(u*, zn)},
Upy = HcM (Uo)-
They showed that their method converge strongly to a mutual element of Fix(T) = N7, Fix(G,) -

Our justification for this study is the results of [11, 20, 21]. Weformulate a new iterative scheme with an inertial technique that solves a
common fixed point problems of finite family of continuous Bregman quasi-nonexpansive self-mappings and equilibrium problem in a
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reflexive and (real) Banach space. This is achieved by demonstrating a convergence theorem for it. Our proof finds a common element in
the collection of fixed set of finite family of continuous Bregman quasi-nonexpansive self-mappings and the common solution set of the
system of finite equilibrium problems. As an improvement to other existing results in this direction, we further justify our theoretical
assertions with a numerical experiment.

2. Preliminaries
The following lemmas shall be used in the sequel.
Lemma 2.1 (see [6]). The function h is totally convex on bounded sets if and only if for any two sequences {x } and {y } in x such that

either {x,}or {yn}is bounded, then
Iimdh(ynlxn) :0:>|| yn 7Xn ”:0
Lemma 2.2 (see [17]). Let k be a non-void, closed, convex subsets of int(dom h)and T:K — K be a Bregman guasi nonexpansive

mapping with respect to h. Then Fix(T) is closed and convex.

Lemma 2.3 (see [11]). Let X be a reflexive Banach space and let h be a continuous convex function which is strongly coercive. Then
the following assertions are equivalent:
1) h is bounded on bounded subsets and uniformly smooth on bounded subsets of X

) h”is Fréchet differentiable and vh* is uniformly norm-to-norm continuous on bounded subsets of x".
?3) dom h” = X, h”is strongly coercive and uniformly convex on bounded subsets of x*.
Lemma 2.4 (see [15]). Leth: X — (—oo+o0] D€ @ Gateaux differentiable on int(dom h)such that vh™ is bounded on bounded subsets of

domh”. Let x, e X and {x_} isasequencein x. If {d, (x,,X,)}is bounded, then the sequence {Xn} is also bounded.
Lemma 2.5(see [12]).Leth: X — (—oo,+oc] be a Legendre function and K a non-void, closed and convex subset of X. If the bifunctions
w : K x K — Rsatisfies condition (A1)-(A4), then the following hold:

1) Res" is single valued

(2 FixRes") =EP(K.p)

(3)  d,(p,Res!x)+d, (Resx,x)<d, (p,x) Vp e Fix(Res!)

(@) EP(K,y) IS closed and convex.

The Bregman Projection y e int(dom h)ONto K < domh, is the unique U, €K such that the mapping P :intdomh — K satisfy
d, (U,,u) =min{d, (z,u): ze K}

and p ) = u,. The Bregman Projection mapping satisfy the following results:

Lemma 2.6 (see [9]). Let K be non-void, closed, convex subsets of x.Let p:x — (—wo+w] be Gateaux differentiable and
totally convex function and let x ¢ X, then

(1)  z=PR)(x)ifand if (vh(x)-vh(z),y-2)<0, wyek,

(@) dy (v PO+, (REO0. ) <y (y,X) Wy eK.

3. Main Results

Lemma 3.1: Let h: X — (—oo,+o0] b€ a proper, lower semi-continuous and convex function, then, for all u e X we have
ROATNES JALICO)EED N ! (31)

Proof:

Using (1.3) and (1.4), we have

(0 Vh (3, VR0 =V, (U3, Vh(x)
1 1
= h(w) —u, = 37 Vh06)) (G 3, vhix))

< h(u)—%zi:(u,Vh(xi))+%Z:ilh*(Vh(xi)) (3.3)

:%Z:il[h(u)f(u,vh(xi)+h*(Vh(xi »]

T DINACALED)
1

2w, 34

3.2)
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This ends the proof. .
Theorem 3.2: Let Kbe a non-void, closed, convex subset of jy@omn). L€t h:Xx —Rbe a Legendre function which is

bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of a reflexive real Banach space x. Let
v}, KxK—>Rbe N -bifunctions which meets properties A1-A4. Let {3, KoK be m -finite family of continuous

Bregman quasi-nonexpansive mappings induced by a convex function n, Assume that g =N, EP@)N(OY, Fix(T,)) is non-void.
Set . Define a sequence {x }by the following manner:

X, € K

z, = Vh"(Vh(x,) +a,Vh(x, = X, ,)),

y) = Vh'((2-b,)Vh(z,) +b,Vh(T,z2,)) j=12,..M, (3.5)

w, =Res; (y)), i,j=12,..,N,M,

1 i
t =Vh —Vhw!) |,
= 3 vhow)
Kn+1:{UEKn:dh(u’tn)Sdh(u’Zn)}r
Xoa =P (%) n=1

SUppose {3}, {b,} < (0,1) then the sequence y 4 ¢z yconverges strongly to a common element of F.

Proof: We demonstrate the analytical proof theorem 3.2 in the steps below.
Step 1: The algorithm (3.5) is well-defined in terms of ¢ yfor each n>1.

We first demonstrate that £, Ep(wi)ﬂ(ﬂ’}"zl FiX(TJ))is closed, convex. Lemma 2.2 gives that Fix(T)is closed, convex and
consequently N, Fix(T,) is closed, convex. Lemma 2.5 gives thatEP(g) is closed, convex and sois N EP(y,)- SO
F=N", Ep(l//i)ﬂ(ﬂ’}"zl ,:ix(Tj)) is closed, convex since the intersection of closed and convex sets is itself closed andconvex.
Next is to demonstrate that that k _is closed, convex for each n>1. This can be seen from definition of k , that K, is closed.
Moreover, since g (ut )<d,(u z,) IS equivalent to

(Vh(z,) - Vh(t,),u)+(Vh(z,) - Vh(t,),t, —z,) <h(t,) —h(z,) ’

which is convex, it follows that K, is a half space and hence convex for each n>1.

In addition to closedness and convexity of F =N, EP(w)N(OY, Fix(T,)): We demonstrate concretely that F <k _for each
n>1. Itis clear from the initial assumption that F < K, = K. Now suppose that F - K, for some positive n>1 then for
peF, and using Lemma 3.1 we obtain

d,(p.t,) =dh[p,Vh*[iﬁVh(w;>D

éﬁZﬁldh(p,WL)Vi =12,..,N, (3.6)

In addition and invoking Lemma 2.5 we get

d,(p,wy) =d,(p,Res;, y,)

<D;(p.y,), Vi=12,.,N 3.7

Furthermore,

d,(p.Y,) =d,(p,Vh"((L-b,)Vh(z,) +b, Vh(T,z,)))

=V, (p.@-b,)Vh(z,) +b,Vh(T,z,))

=h(p)—{p,(L-b,)Vh(z,) +b,Vh(T,z,)) + h"((1~b,)Vh(z,) +b,Vh(T,z,))

< @-b,)lh(p)—(p,Vh(z,) +h" (Vh(z, )]+

b, [(p)—(p,Vh(T,z,)+h"(Vh(T,z,))]

=(1-b, )V, (P, Vh(z,)) +b,V, (p.VN(T;z,))

=(1_bn)dh(p’zn)+bndh(p’TjZn)

<(1-b,)d,(p.z,)+b,d,(p.2,)

= dh(p’zn )
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Thus,

dy(p.y,) <d,(p.2,)- (3.8)

Using (3.8) in (3.7) we obtain

d,(p,w))<d,(p,z,) foreach i=12., N. (3.9)

Consequently (3.9) in (3.6) gives

d,(p.t,) <dy(p,2,)- (3.10)

So pek,,and K, , cK,. Thisimplies by set induction that g . Thus, the algorithm (3.5) is well-defined in terms of

n+l

{x }foreach n>1.
Step2:  We demonstrate that

O imd,ux)=0 = fim | x,., = %, =0,
(ii) lim|x, -z, =0 = limd, (x,,2,) =0
() ind, (x,0t)=0 = fmlx, -t <0,
™) imd, @ t)=0 = lim|| z, —t, [|=0.

cK,. Thus we get

n+l

We notice that X, = P! (Xo)and X, =P (x)eK
dh (Xn ' XO) < dh (xn+1Y XO) _dh (Xn+1’ Xn)

dy (%5 %) < A (.1, X0): (3.10)

(3.10) demonstrates that{d, (x,,x,)} IS @ monotone non decreasing sequence. Again we get from Lemma 2.6 that

dp, (X, %) :dh(Plgn (X0), %) =dy (P, %,) —dy (p, Pl?" (%)) <d,(p,%,) Vn=1 peF,

implying that

dy (X, %) <dy, (P, Xp)- (3.11)

(3.11) demonstrates that {g, (x,,x,)} is bounded and from Lemma 2.4 we get that {x_} {y, }{z.} {Win },{tn}for each i=12,..,N
are bounded. Combining (3.10) and (3.11) we get that |im d, (X,,%,) exist. Now wlog, let

limd, (x,,%,) =1 (3.12)

In addition to (3.12) and Lemma 2.6 we get that for any positive integer, 4,

dh (Xn+y' Xn) = dh (Xn+,u' P:n (Xo))

= dh(XI‘H»/l’
So that
limd, (x,,,,%,)=0.

In particular,

X) —d, (X, %) =>085n — oo,

(3.13)

rI‘iﬁrr;dh(xm,xn) =0.

By Lemma 2.1, (3.13) implies that
va % 120, (3.14)

This establishes (i).

From (3.14) we conclude that the sequence {x }is a Cauchy sequence in K. Using the fact that X is complete and K is
closed, we get that x — z, e KasN— oo,

lim || x
n—w

Now, from the uniform continuity of vh we get
lim|| Vh(x,.,) = Vh(x,) [|=0. (3.15)
From the definition of Z,, and together with (3.10) we have that
I Vh(x,) = Vh(z,) | = Vh(X,) = Vh(X,) = &, Vh(X, =X, ) |
= || ath(Xn—l - Xn) ”
S”vr](xn—l_xn)ng}o as n—>oo
This implies that
Journal of the Nigerian Association of Mathematical Physics Volume 55, (February 2020 Issue), 7 — 18
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lim[| Vh(x,) - Vh(z,) | =O. (3.16)

By Lemma 2.3, we obtain that
lim{|x, -z, |=0. (3.17)
This establishes (ii) and shows that 7z, — z, asN— .

Moreso, since { z, } is bounded and using (P6) and (3.17), we have that
limd, (x,,z,)=0. (3.18)
In addition, since x <K, , < K, we have from the definition of the half space that

dh(Xml'tn) Sdh(xmivzn)' (319)
OSdh(Xnﬂan) :dh(xnﬂYXn)+dh(xn'Zn)+<Vh(Xn)_Vh(Zn)!Xn+1 _Xn>

Sdh(xnﬂ’xn) +dh(xn’zn) + ” Vh(xn) _Vh(zn) ”” Xn+1 - Xn ”‘>0aS n — .

This demonstrate that

limd, (%,.:,2,) =0. (3.20)
This implies that
Limdh(xnﬂ’tn)zo' (321)
Thus, by Lemma 2.1, (3.20) and (3.21) implies that
lim| %, =2, (=0
and

(3.223)

lim[|x,., ~t, |=0.
This implies that
lim| x,,, —w |=oforall i=12_,N. (3.22b)

This establishes (iii).
In addition, we have from our definition that

1 i 1 N ; .
(2 t,)= d| 2, Vh'| X vh(w)) | < " d,(pw,)-d,(p,2,) Vi=12...,N
i=1

Sdh(pvZn)_dh(plzn)
—0asn— oo,

This demonstrate that

limd, (z,.t,) =0

Thus by lemma 2.1, (3.19) implies that
!L"ol” z, -t |=0. (3.24)

(3.23)

This implies that
lim|z, -w! |=oforall i=12_.N.
This establishes (iv).

Step 3: We demonstrate that , (, EP(y,))N(NY, Fix(T,))
First, we demonstrate that ; <" ep(y,).Using Lemma 2.5 and the fact that p < F,we have
dh(ynlwi) = dh(yanesll;1 yn) S dh(pl Resll;l yn)_dh(p1 yn)

<d,(p,y,)—d,(p,y,) >085N—>co. (3.25)
dh(ynlws) :dh(yn7ReS;Z(yn))Sdh(p1 Res;z(yn))_dh(pv yn)
<d,(p,¥,)—d,(p,y,) >08S N> (3.26)

continuing this process, we get
dy (Y, W) =d,(y,.Res, (v,))<d,(p.Res, (¥,))—d,(p,Y,)
<d,(p.y,)—d,(p.y,) »>08 N—co. (3.27)

Journal of the Nigerian Association of Mathematical Physics Volume 55, (February 2020 Issue), 7 — 18
13



Further Investigation of Inertial... Enyinnaya and Felix J. of NAMP

Hence in general, we arrive at

limd, (y,,w,) =0, ¥i=12,..,N. (3.28)
By Lemma 2.1, (3.28) implies that
lim(jw, -y, =0, ¥i=12...,N. (3.29)
Consequently, we get
lim{z, -y, [I=0. (3.30)
Now, from the uniform continuity of v, (3.29) and (3.30) becomes
i | Vh(w,) ~ Vh(y,) =0, (3.31)
and

(3.32)

lim || Vh(z,) - Vh(y,) [I= 0.

By definition, we have for i=12,.., N, that

i (Wo, Y) +(Vh(w,) = Vh(y,),y ~w;) 20, Vy eK,
(Vh(w,)=Vh(y,),y =wp) 2w (y,w;), VyeK,
IVh(w,) = V(Y ) Il Y =wp [|2(Vh(w, ) = Vh(y,), ¥ = wp) =y (Y, w;)
This implies that

IVh(w,) = Vh(y ) Y =W, 12y (y.w) Yy eK - (3.33)

Since , (y,w') Yy eK,Vi=12,...,Nis convex and lower semicontinuous and the fact that w' —, 7z, vi=12,..,N, We get that

vi(y,2,)<0VyeK- (3.34)

We set ze(01)and w, = ay +(1- 1)z, S0 that w, e K. This demonstrates that v, (w,,z,) <0 vyeK . Using this, together
with (Al) and (A4), we get

0=y (W, W) =y (W, Ay +(1-2)2p) < Ay (W, Y) + A= (W, 20) < Ay (W, Y)

This implies that

wi(w;,y)20.
By (A3), we get that

i (2,,y) 20, yeK,i=12,.,N. We conclude that ; <™ Ep(y,).

Next, we demonstrate that 7, < Y, Fix(T,) - Since y_ :Vh*((l—bn)Vh(Zn)+anh(TjZn))' we obtain that

| Vh(z,) = Vh(y,) =1 Vh(z,) - Vh(z,) +b, (Vh(T;z,) - Vh(z,)) II=b, | Vh(T;z,) - Vh(z,) ||.

Using (3.32) we have that

lim|| Vh(T;z,) - Vh(z,) I 0.

Since his strongly coercive and uniformly convex on bounded subsets of x p*is uniformly convex on bounded subsets of
X, SO we obtain

(3.35)

(3.36)

lim||z, Tz, || 0.
Using the fact that z, — z,(a Cauchy sequence), we have from (3.36) that

z,=1limT;z,. (3.37)

n—o

If we pick a subsequence say {j, } = N such that T, =T,vk>1 then by implication z, —2,8 kK>, and the continuity of
T, (3.37) gives

Z, =|!i£r°1oTik z, =T, lm z, =Tz,

In addition, if we pick another subsequence say {3« N such that T =T, vk >1, then

z,=limT, z

k—owo kil

n =T, lim z, , =T,2,.

Furthermore, the process yields 7, =T,2,,j>3 This demonstrate that ; Y, Fix(T,) -

Thus 2, < (Y, BN, Fix(T))-

Step 4: We demonstrate that x — 7 = pf(x,)- Since X, =P (%,) and fromstep 1, F -k, so that from Lemma 2.6, we have
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dy, (X5 X))+ (X1, PFh(XO)) <d, (%, PFh (%)) (3.38)
Since x — z,and by taking limit on both sides of (3.38), we get

dy, (X0, 26) +dy (2, P (X)) <y (X, PE (X)) -

This implies

dh(xwzo) Sdh(xovF)I:h(xo))' (3'39)
On the other hand, we get using Lemma 2.6 that

dy, (%o, P (X)) +d, (PR (%), 2) <,y (X0, 25) *

This implies

dy, (%o, P (X)) <y, (%o, 20) (3.40)
By combining (3.39) and (3.40), we have

dh(X(}’PFh(XO)):dh(XOVZO) (3.41)

By the uniqueness property of pf(x ), we conclude that x — z, = P (x,) - This ends the proof of Theorem 3.2.

Corollary 3.3. Let kbe a non-void, closed, convex subset of jndomn). Let h:x —Rbe a Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of a reflexive real Banach space x. Let
{T3", :k -k be an N-finite family of continuous Bregman quasi-nonexpansive mappings induced by a convex function h.
Assume that ", Fix(T,)is nhon-void. Set x,, x, € K. Define a sequence {X"}by the following manner:

X, €K

z, = Vh"(Vh(x,) +a,Vh(x, - X, ;).

yi =Vh*((1-b,)Vh(z,)+b,Vh(Tz,))i=12,..N
t, :Vh’[i%vh(y;)}

Koo ={uekK, 1d,(ut,) <d,(u,z,)},

X = PKhnv,(Xo )’ nx1,

suppose {g,}, {b,} = (0,1), then the sequence g 3 1, yconverges strongly to a common element of v Fix(,).

Corollary 3.4. Let K be a non-void, closed, convex subset of int(dom h). Let h: X — Rbe a Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of a reflexive real Banach space X. Let
{T}', :K > K be an N-finite family of Bregman relatively nonexpansive mappings induced by a convex function h.
Assume that N Fix(T,)is non-void. Set x ,x, € K. Define a sequence {x_ }by the following manner:

X, €K

z, = Vh"(Vh(x,)+a,Vh(X, = X, 1)) (3.5)

yi =vh*((1-b,)Vh(z,) +b,Vh(Tz,))i =12,..N

t, = vh*&%vh(y;)],

Ko ={ueK, d,(ut)=<d,(uz,)},

Xy = PKhm,(Xo )v nx1,

SUPPOSE {4 }, {b,} = (01), then the sequence {x },{z,}converges strongly to a common element of NN, Fix(T,).
Corollary 3.5. Let Kbe a non-void, closed, convex subset of a Hilbert space. Let g3 :k xk — rPe N -bifunctions
which meets properties (Al)—(A4). Let {T} K>K be m-finite family of nonexpansive mappings. Assume that

F=N", EP(V/i)ﬂ( i Fix(Tj))- Set x,,x, e K. Define a sequence {x, }by the following manner:

(3.5)

X, €K (35)

Z, =X, + o, (X, = X, 1)
y) =(1-b,)z, +b,T;z,,j=12,..N
w, =Res, (V) i,j=12,.N,M,

N
t - Vh*[zth(w'n)}

iz N
Koa ={ueK, tull <z, —ulf},
X1 = PKM (Xo)r nx1
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suppose {g,}, {b,} = (0,1), then the sequence {x },{z,}converges strongly to a common element of F.

4 Numerical Example
We present a numerical example to justify our theoretical assertions made in section 3 of this paper. Our codes were written
in Python and run on PC with intel(R) Core(TM)2 Duo CPU @ 3.10 GHz processor.

Example 1:Let x =R, K =[0,1]. Also consider m =N =30. Consider the convex function h:k — rdefined by h(x) = (2/3)x?,

such that vh(x) = (4/3)x -

(i) We define the mappings T :K—>K by T,(0) =—/2)x) +x'%, j=12,.,M, vxeK- Itis easy to check that Fix(T,) ={2/3} for
j=1 and Fix(r,)={0} for j>2. To see this, for j=1 and T,(x):=—(1/2)x+1,0iVes x=—(1/2)x+1=>3x=2=x=2/3.
Hence Fix(T,)={2/3}- In addition, for j=2 and T,(x):=—(1/2)x*+x, QiVeS x=—(1/2)x>+x=-x*=0=>x=0. Thus,
Fix(T,) ={0y. Continuing the process and for j> 3, we conclude that Fix(T,) ={0}vj > 2. But A%, Fix(T,) =0.

(i) If we define the mappings T :K —KbY T (x)=-@/2)x), j=12,..,M, vxeK, We get that Fix(T,)={0}vj>1.Thus
N, Fix(T,) ={0}-

Next, we check if T (x)=—(1/2)x)+x'*, j=>1, and T,(x)=—(1/2)x’, j>1VxeKare Bregman quasi-nonexpansive
mappings and continuous.

Now for j=1and T,(x):=—(1/2)x+1, p={2/3},we get from the definition of Bregman bifunctions that

dy (p.T,x) = h(p) =h(T,x) ~(VN(T,x). P) +(VN(T,X). T;),

i3] (e e
=———| —=X+1| -| —=X+= | +| —=X+= [F| —=x+1
27 3\ 2 9 9 3 3 2

———X"—=X+=X
27 3 9" 3
2, 8 8

=—X"—=X+—=
3 9" 27

Thus,

d, (p,Tx)<d,(p,x) Vxe[0,1].

Similarly, for j=2 and 1,(x):=-(1/2)x? +x, p={0},

d,, (P T,) = h(p) — h(T,X) ~(Vh(T,X), P) + (VN(T,X), T, %),
1., 2., 2

==X —=X"+=

XZ

6 3 3
dy (p,X)=h(p) —h(x) —(Vh(x), p) +(Vh(x),X),
2
==X,
3
Thus,

d,(p,T,x)<d,(p,x) ¥xe[0,1].

Continuing the process, we get that d,(p.T,x)<d,(p,x) V=3 vxe[01]. Therefore, T, () =-@2)x +x', j=12,..M, vxek are
Bregman  quasi-nonexpansive  mappings and  continuous.  Similarly,  repeating the steps  for
T,(0) =~/ 2)x, j=12,.,M, ¥x e k with p ={oywe conclude that T, (X) =—(1/2)x}, j=12,..,M, Vx e K are Bregman quasi-
nonexpansive mappings as well as continuous.

Furthermore, we define the bifunctions ,, .k xk - r for i=12..,N by y,(u,2):=i(2z? +uz—3u?)

It is clear that y, satisfies the conditions (A1) — (A4). So by Lemma 2.5, Res! (¥) is nonempty and single-valued for each

y e K. Hence there exist ueK such that
w, (U, 2)+(Vh(u) = Vh(y),z-u)y >0, VzeK,

i(Zz2 +uz—3u2)+<gu—%y,z—u> >0,zeK,
which is equivalent to
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4 4

2izz+[iu+£u—£y]z—3iu2 u+-yu 20, zeK.
3 3 3 3

(. 4 4 ., 4, 4 . This function is a quadratic function with respect to Z. Now using the
2iz +[lu+§u—§y}z—3lu 3u +§yu

Set R(z) =
discriminant of R, we get
D1:=%(15iu +4u—4yy.

Since R(z)>0VzeK and since it has at most one solution in R, we get that so that equality holds

D1 =%(15iu+4u—4y)2 <0
and solving for U, we get
4 This implies that e ()= 4
Vi

YT isiia” 5i+4”
We assume for our purpose that
n _n (1-b,)= n+l

“Tanri10’ " e Tonst
Using the above, we simplify our scheme of theorem 3.3 for particular cases of j= j=2

Case 1: for j_j_»

4 4
"3 g

Z, =X, +—
4 4n? +10

nz? —4nzn-2z,
2n+1

e
n-* 2 ’
2 ay -
EEVARAS

h =

1 2
"'75,215|+4 Vi
={uekK, :d (u,t)sdh(u,zn)};

106
{UGK z +323yn,}
106

X = PKh,H1 (XO) = E Z, +@ Yo

Table 1: Values of x[n]and x2[n]with initials x[0]=0.25 x[1]=0.33

Itera[n] x[n] x2[n] [IX[n]-x2[n]l
0 0.250000 0.000000 0.250000
1 0.333333 0.333333 0.000000
2 0.274691 0.269981 0.004711
3 0.218965 0.218807 0.000158
4 0.175070 0.177843 0.002773
5 0.140849 0.144978 0.004130
6 0.113912 0.118499 0.004588
7 0.092505 0.097075 0.004570
8 0.075363 0.079673 0.004310
9 0.061554 0.065493 0.003939
10 0.050378 0.053906 0.003528
11 0.041300 0.044417 0.003117
12 0.033903 0.036630 0.002726
13 0.027863 0.030230 0.002367
14 0.022920 0.024964 0.002044
15 0.018868 0.020625 0.001757
16 0.015543 0.017047 0.001505
17 0.012810 0.014095 0.001285
18 0.010563 0.011657 0.001094
19 0.008714 0.009643 0.000930
20 0.007190 0.007979 0.000789
21 0.005935 0.006603 0.000668
22 0.004900 0.005465 0.000565
23 0.004047 0.004523 0.000477
24 0.003342 0.003745 0.000402
25 0.002761 0.003100 0.000339
26 0.002281 0.002567 0.000285
27 0.001885 0.002125 0.000240
28 0.001558 0.001760 0.000202
29 0.001288 0.001457 0.000169

Key: x[n] represent iterates with inertial component while x2[n] represent iterates without the inertial component. |[x[n]-x2[n]|| represents the error difference
between the iterates. Itera[n] represent the no of iterations.
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Remark: From the computed results as shown in the table above, we can see that the iterates with inertial component converges faster to its fixed point.

5. Conclusion

We formulated a new iterative scheme with an inertial component that solves a common solution problem of finite family of continuous
Bregman quasi-nonexpansive self-mappings and system of equilibrium in a reflexive and (real) Banach space. Our proof finds a common
element in the collection of fixed set of finite family of continuous Bregman quasi-nonexpansive self-mappings and the common solution
set of the system of finite equilibrium problems. As an improvement to other existing results in this direction, we further justified our
theoretical assertions with a numerical experiment as seen above.

Conflict of Interest
The authors identified void conflict of interest.

Data Availability
No data were used to support this study, except the codes written in Maple 18 and Python Programs for our numerical experiment.

Acknowledgement
Thanks to the Editor-in-Chief and anonymous referees, for their careful reading, and valuable suggestions that improved the quality of
this manuscript.

References

[1] Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34, (1981),
321-353.

[2] L. M. Bregman, The relaxation method for finding the common point of convex sets and its application to the solution of
problems in convex programming, USSR Computational Mathematics and Mathematical Physics, 7 (3), (1967), 200-217.

[3] F. Kohsaka, and W. Takahashi, Block Iterative Methods for a Finite Family of Relatively
Nonexpansive Mappings in Banach Spaces, Fixed Point Theory and Applications2007 (2007), doi:10.1155/2007/21972.

[4] H. H. Bauschke, J. M. Borwein and P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions
in Banach spaces, Communications in Contemporary Mathematics, 3 (4), (2001), 615-647.

[5] D. Butnariu, S. Reich and A. J. Zaslavski, There are many totally convex functions, J. Convex Anal.13(2006), 623-632.

[6] D. Butnariu and A. N. lusem, Totally Convex Functions for FixedPoints Computation and Infinite Dimensional Optimization,
Kluwer Academic, Dordrecht, 2000.

[7] D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in
Banach spaces, Abstr. Appl. Anal., 2006 (2006), 1-39.

[8] S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, Journal of
Nonlinear Convex Analysis, 10 (3), (2009), 471-485.

[9] J. Chen, Z. Wan, L. Yuan, and Y. Zheng, Approximation fixed points of weak Bregman relatively nonexpansive mappings in

Banach spaces, International Journal of Mathematics and Mathematical Sciences, vol.2011 (2011), Article ID 420192, 1-23 pages.
[10] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math.Stud. vol. 63 (1994), 123-145.

[11] P. Majee andC. Nahak,Inertial algorithms for a system of equilibrium problems and fixed point problems,
RendicontidelCircoloMatematico di Palerm,vol. 2018 (2017), doi: 10.1007/s12215-018-0341-2.
[12] G. C. Ugwunnadi, B. Ali, M. S. Minjibir and I. Idris, Strong convergence theorem for quasi-Bregman strictly pseudocontractive

mappings and equilibrium problems in reflexive Banach spaces, Fixed Point Theory Appl. Vol. 231(2014),1-16.
[13] E. Naraghirad and J. C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory and
Applications, 141(2013), 2013.

[14] F. Kohsaka and W. Takahashi, Proximal point algorithms with Bregman functions in Banach Spaces, J. Nonlinear Convex
Anal. 6 (2005), 505-523.

[15] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-
Valued Anal., 16 (2008), 899912.

[16] S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces,
NumericalFunctional Analysis and Optimization, 31 (2010), 22—-44.

[17] S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive
Banach spaces, Fixed-point Algorithms for Inverse Problemsin Science and Engineering, 49 (2011), 301-316.

[18] H. H. Bauschke, J. M. Borwein and P. L. Combettes, Bregman monotone optimization algorithms, SIAM Journal on

Controland Optimization, 42 (2), (2003), 596-636.

[19] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Phys., 4(5), (1964), 1-17.

[20] C.E. Chidume, S.I. lkechukwu and A. Adamu, Inertial algorithm for approximating a common fixed point for a countable
family of relatively nonexpansive maps, Fixed Point Theory and Applications,9(2018), 1-9.

[21] Q. L. Dong, H. B. Yuan, C.Y. Je, Th. M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for
nonexpansive mappings, Optim. Lett., 12 (2018), 87—102, https://doi.org/10.1007/s11590-016-1102-9.

Journal of the Nigerian Association of Mathematical Physics Volume 55, (February 2020 Issue), 7 — 18
18


https://doi.org/10.1007/s11590-016-1102-9

