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Abstract 

In our study, the Pekeris approximation scheme and Nikiforov-Uvarov (NU) method are 

applied to obtain the energy eigenvalues of the d-dimensional Schrӧdinger equation with a 

multiparameter-type potential (MPP). The normalized energy eigenfunctions were also 

obtained in terms of the hypergeometric polynomials. Numerical results of the energy 

eigenvalues were obtained in different dimensions, and they agree with results in the literature. 

With appropriate values for the potential parameters, the effects of the potential parameters on 

the energy eigenvalues were evaluated graphically. The eigenvalues of the energy relation for 

the MPP were employed to evaluate the vibrational partition function and other 

thermodynamic properties for certain temperatures and upper bound vibrational quantum 

numbers. Finally, variations of the thermodynamic properties with certain temperatures and 

upper bound vibrational quantum numbers were analyzed and discussed extensively.  
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1. Introduction 

The study of non-relativistic wave equation has attracted the interest of many researchers, because of the information that its solution 

provides regarding any quantum system under investigation. The exact solutions are seen in few cases like Harmonic and Coulomb 

potentials[1-3]. The applications of these potentials are found in different areas of atomic, nuclear and high energy physics[4-8]. 

However, for arbitrary -state ( 0 ), an appropriate approximation scheme may be employed to obtain the solution [9-14]. Many 

analytical methods have been employed while solving the non-relativistic wave equation. They include supersymmetric quantum 

mechanics (SUSYQM) approach [15-17], exact quantization method and proper quantization method [18-22], factorization method and 

modified factorization method (MFM) [23-26], asymptotic iteration method (AIM) [27-28], Nikiforov-Uvarov (NU) method [29-33], and 

others [34-38]. 

Recently, researchers have considered most potentials in their generalized form. This is done to explain the various interactions that 

exist within these potentials [39-41]. A typical example of such potential that is of interest to us is the multiparameter-type potential 

(MPP) of the form [42]: 
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where the potential parameters all take real values. The parameters , , , , , andA B C G p q  can take either positive or negative value, while 

parameters andb L must take positive values. Many authors have studied different forms MPP, due to its usefulness in describing 

the interactions in the structure of the diatomic and polyatomic molecules. The authorsin [43] studied the scattering state of the MPP with 

an improved approximation for the centrifugal termin d-dimensions. In another development, the d-dimensional Klein–Gordon equation 

for multiparameter exponential-type potential was studied, using SUSYQM [44]. With a new developed approximation, the authors 

in[45] obtained the energy eigenvalues and eigenfunctions of the bound and scattering states for a hyperbolic-type potential, using the 

NU method. The solutions for the bound and scattering states of the Klein-Gordon equation with the MPP, using a standard method and a 

Pekeris approximation scheme for the centrifugal term have been explored [46]. 

For some decades now, the thermodynamic functions of exponential-type potentials and other related potential have been 

investigated[47-52]. The authors in [53] examined the thermodynamic functions of exponential-type molecule potentials in D 

dimensions. Also, the solutions of the Schrӧdinger equation with modified Mobius square potential energy, together with its 

thermodynamic functions have been investigated [54]. In another development, the thermodynamic functions of quadratic exponential-

type potential (QEP) model were studied in D-dimensions via the MFM[55]. 
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Hence, our aim is to obtain the partition function in a closed form and other thermodynamic functions of the MPP, which has 

not been documented before in the literature so far. To help us actualize this, we adopt the conventional NU method to obtain the 

approximate eigenvalues and the eigenfunctions of the d-dimensional Schrӧdinger equation with the MPP. Numerical results of the 

energy eigenvalues are also obtained and compared with the previously related works inthe literature. We have arranged this article as 

follows: In section 2, the theoretical description of the NU method is presented briefly. We obtain the analytical expression of the 

eigenvalues of the energy for the d-dimensional MPP and its corresponding normalized energy eigenfunctions in section 3. In section 4, 

we evaluate both the vibrational partition function and other thermodynamic functions of the MPP. An elaborate discussion of the result 

is done in section 5. Finally, the summary and conclusion of our study are presented in section 6.   
 

2.0 Theoretical Framework 

2.1 Brief description of the Nikiforov-Uvarov (NU) method 
The NU method as proposed in [29] is often used in converting a nonrelativistic-like equation into a differential equation of the second 

order using a coordinate transformation ( ),t t r  given as 
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where ( ), ( )t t   are polynomials, at most second degree, and ( )t  is a first-degree polynomial. To obtain the exact solution of Eq. (2), 

we employ the transformation given below: 

( ) ( ) ( )nt t y t            (3) 

Eq. (3) reduces Eq. (2) into a hypergeometric-type equation given as 

( ) ( ) ( ) ( ) ( ) 0n n nt y t t y t y t              (4) 

We also define the function ( )t  as the logarithm derivative given by [29] 
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where ( )t  is a first-degree polynomial. The second part of ( )t  being ( )ny t  in Eq. (3) is the hypergeometric function and its 

solution is obtained in the form of a polynomial, using the Rodrigues relation of the form 
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Here, 
nB and ( )t  are known to be the normalization constant and the weight function, respectively, and they satisfy the condition 

 ( ) ( ) ( ) ( )
d

t t t t
dt

             (7) 

with  

( ) ( ) 2 ( )t t t             (8) 

We also state here that the derivative of ( )t   should be negative for bound state solutions. The eigenfunctions and eigenvalues can be 

obtained with the help of the function ( )t  and parameter , respectively, as given below: 
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and 

( ).k t             (10) 

To obtain the value of k , we set the discriminant of the square root in Eq. (9) equal to zero; hence obtaining the new eigenvalue 

equation as 

( 1)
( ) ( ) 0, ( 0,1,2,...).

2

n n
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            (11) 

 

2.2 Solutions of D-Dimensional Schrӧdinger Equation with Multiparameter-type Potential (MPP) 

The radial part of the Schrӧdinger equation in d-dimensions reads [56]: 
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where  is the reduced mass and 
nE is the non-relativistic energy eigenvalues to be determined. 

Substituting Eq. (1) into Eq. (12) gives, 
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where 
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By letting ,
p

r z L
q

   , we can find the analytical solution of Eq. (13) by invoking the Pekeris approximation [9] of the form: 
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with the coefficients 0 1 2, ,c c c being obtained as [42] 
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By using the expression  1bz bz bzp qe qe e     and the coordinate transformation bzt e   , Eq. (13) reduces to 
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Where 
1 2 3, ,    are given respectively as 
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By comparing Eq. (17) and Eq. (2), we have 

        2

1 2 31 ; 1 ; .t t t t t t t t                   (19) 

Substituting eq. (19) into Eq. (9), ( )s  becomes 
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To find the constant ,k  the discriminant of the expression under the square root of Eq. (20) must be zero. As such, we have that 
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Substituting Eq. (21) into Eq. (20), we have 
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Here, we choose the expression ( )t 
which the function ( )t  has a negative derivative. This is given by 
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with ( )t  being obtained as 
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From Eq. (10), we define the constant   to be 
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Substituting Eq. (25) into Eq. (11) and carrying out simple algebra, where 

   3 1 2 3

1
2 1 , 2

4
t t     

 
          

 

     (26) 

we have  
2

2

1 3 2 3 1

3

1 3 2

1 1

2 4
.

1 1
2

2 4

n

n

    



  

  
        
    

        
  

     (27) 

Substituting Eq. (18) into Eq. (27) and rearranging the terms yields the d-dimensional energy eigenvalues of the (MPP) in the form 
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where 

  1 3 2
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1 1 4
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                (29) 

We also evaluate the corresponding eigenfunctions by substituting ( ) and ( )t t 
 from Eqs. (23) and(19) respectively into Eq. (5) and 

solving the first order differential equation. This gives 
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The weight function ( )t from Eq. (7) can be obtained as 
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From the Rodrigues relation of Eq. (6), we obtain 
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where
 ,

nP
 

 is the Jacobi Polynomial which is defined as [57] 
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Substituting ( ) and ( )nt y t  from Eqs.(30) and(33) respectively into Eq. (3), we obtain 
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where 
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and
nB  is the normalization constant. 

In terms of hypergeometric Polynomials, Eq. (35) can be written as 
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To find the normalization constant, we write the radial wave function as 
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Eq. (38) also represents the probability density ( )t . Effecting the normalization condition given by 

2

0

( ) 1,r dr



          (39) 

We have that  
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Carrying out a coordinate transformation 1 2Z t  , Eq. (40) becomes 
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Using the standard integral [58], 
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we have the normalization constant in Eq. (41) as 
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2.3 Partition Function and Thermodynamic Properties of MPP 

To obtain the vibrational partition function of the MPP, we first reduce Eq. (28) to the form 
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For any bound state system, the vibrational partition function at absolute temperature T is defined as [59] 
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where 0,1,2,... ,n    and   being the maximum quantum number is given by 

R R T      ; Bk  being the Boltzmann constant. 

Substituting Eq. (44) into Eq. (46) gives 
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where 
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Replacing the sum in Eq. (47) by an integral, we obtain: 
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By the evaluation of Eq. (49), we obtain the vibrational partition function to be 
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and the imaginary error function is defined as [60]: 
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Other thermodynamic functions can be deduced from the vibrational partition function of Eq. (50), via the following relations [52]: 
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where        , , , , , , and ,F S U C         represents the Helmholtz free energy, entropy, internal energy, and specific heat capacity, 

respectively. 

 

3.0 Results and discussion 

 In this paper, the energy eigenvalues for the d-dimensional MPP are computed. Table 1 shows the 3-dimensional energy 

eigenvalues, with appropriate potential parameters being chosen. Our results agree with that obtained in [42], for vibrational and 

rotational quantum numbers. Table 2 presents the energy eigenvalues for the d-dimensional MPP in higher dimensions. It can be seen 

that for any quantum number ,n the energy eigenvalue decreases as  increases. Also, there is a decrease in the energy eigenvalue as the 

dimension increases at a specific quantum number. 

 We also investigate the effects of the potential parameters on the energy eigenvalues, as presented in Figures 1-8, for 

2 , 3 , and 4p d f  quantum states. As the potential parameters , , , , andA B C q d  increases, the energy eigenvalues increases also (see 

Figures 1-5). We observe a monotonic decrease in energy eigenvalues as the potential parameter b  increases (see Figure 6). The variation 

of the energy eigenvalue with the potential parameter p  tends to be unsteady. As seen in Figure 7, the energy eigenvalues increases as 

p  increases, and later becomes constant with continuous increase in the potential parameter. An inversely proportional relationship is 

observed between the energy eigenvalues and potential parameter ,G  as shown in Figure 8 for various quantum states. 

 We plot the vibrational partition function for the d-dimensional MPP for various upper bound quantum numbers

10, 50, and 100 , and temperature 0.01, 0.02, and 0.1  , as shown in Figures 9 and 10 respectively. We observe that the vibrational 

partition function increases as and   increase for the potential understudy. The vibrational internal energy shows a monotonous 

decrease as and   increases, as observed in Figures 11 and 12. Figure 13 and Figure 14show the dependence of the vibrational 

Helmholtz free energy on and  , respectively. Also, as and   increases, the vibrational entropy of the d-dimensional MMP increases 

also, as seen in Figures 15 and 16. In Figure 17, the vibrational specific heat capacity and the temperature  increase simultaneously. 
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Table 1. The energy eigenvalues for the multiparameter-type potential for different quantum states. 

n   nE  1,nE 
 [42] n   nE  1,nE 

 [42] 

0 0 -1.481428659 -1.48143 5 0 -18.55021385 -18.5502 

1 0 -2.347432522 -2.34743  1 -18.51953115  

 1 -2.330023408   2 -18.45768587  

2 0 -4.806389509 -4.80639  3 -18.36366403  

 1 -4.786890497   4 -18.23579471  

 2 -4.747710656   5 -18.07152133  

3 0 -8.363783599 -8.36378 6 0 -25.15521853 -25.1552 

 1 -8.340910484   1 -25.12044421  

 2 -8.294877769   2 -25.05032235  

 3 -8.225078453   3 -24.94364243  

4 0 -12.95098275 -12.9510  4 -24.79841127  

 1 -12.92429849   5 -24.61158232  

 2 -12.87054512   6 -24.37856375  

 3 -12.78890891  7 0 -32.76333562  

 4 -12.67804679   1 -32.72441813  

 

Table 2. The energy eigenvalues for the multiparameter-type potential for different quantum states at different dimensions. 

n    4nE D    5nE D    6nE D   

0 0 -1.473671949 -1.460749546 -1.442669653 

1 0 -2.340906561 -2.330023408 -2.314772907 

 1 -2.288589515 -2.260164739 -2.227285168 

2 0 -4.799084327 -4.786890497 -4.769779611 

 1 -4.740336666 -4.708277938 -4.671068219 

 2 -4.641124001 -4.588323244 -4.529872980 

3 0 -8.355217141 -8.340910484 -8.320818836 

 1 -8.286202991 -8.248448093 -8.204542701 

 2 -8.169143656 -8.106577693 -8.037095230 

 3 -8.000420690 -7.910501812 -7.812181019 

    

Figure 1. Energy eigenvalues versus A  for different quantum states, with   Figure 2. Energy eigenvalues vs B  for different quantum states, with 
1 1 1 12 ; 1 ; 1 ; 1.5; 3.5; 2 ; 3; 7 ; 1.B fm C fm G fm p q b fm d L fm                   

1 1 1 15 ; 1 ; 1 ; 1.5; 3.5; 2 ; 3; 7 ; 1.A fm C fm G fm p q b fm d L fm                

 

    

Figure 3. Energy eigenvalues vs C  for different quantum states, with  Figure 4. Energy eigenvalues vs q  for different quantum states, with 

1 1 1 15 ; 2 ; 1 ; 1.5; 3.5; 2 ; 3; 7 ; 1.A fm B fm G fm p q b fm d L fm                 
1 1 1 1 15 ; 2 ; 1 ; 1 ; 1.5; 2 ; 3; 7 ; 1.A fm B fm C fm G fm p b fm d L fm                 
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Figure 5. Energy eigenvalues vs d for different quantum states, with         Figure 6. Energy eigenvalues vs b  for different quantum states, with 
1 1 1 1 15 ; 2 ; 1 ; 1 ; 1.5; 3.5; 2 ; 7 ; 1.A fm B fm C fm G fm p q b fm L fm                       

1 1 1 15 ; 2 ; 1 ; 1 ; 1.5; 3.5; 3; 7 ; 1.A fm B fm C fm G fm p q d L fm                
 

 

Figure 7. Energy eigenvalues vs p  for different quantum states, with  Figure 8. Energy eigenvalues vs G  for different quantum states, with 

1 1 1 1 15 ; 2 ; 1 ; 1 ; 3.5; 2 ; 3; 7 ; 1.A fm B fm C fm G fm q b fm d L fm                  
1 1 1 15 ; 2 ; 1 ; 1.5; 3.5; 2 ; 3; 7 ; 1.A fm B fm C fm p q b fm d L fm                

    
Figure 9. Vibrational partition function versus   for various values of  .         Figure 10. Vibrational partition function versus   for various values of  . 

 

   

Figure 11. Vibrational mean energy versus   for various values of  .             Figure 12. Vibrational mean energy versus   for various values of  . 
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Figure 13. Vibrational free energy versus   for various values of  .              Figure 14. Vibrational free energy versus   for various values of  . 
 

   

Figure 15. Vibrational entropy versus   for various values of  .  Figure 16. Vibrational entropy versus   for various values of  . 

 

Figure 17. Vibrational specific heat capacity versus   for various values of  . 

 

4.0 Conclusion 

In the present study, the Schrӧdinger equation was solved in d-dimensions, using the NU method. The eigenvalue of 

the energy equation of theMPPand the normalized wave function were deduced. By applying the Pekeris approximation 

scheme for the centrifugal potential, we obtained the analytical solutions for the d-dimensional Schrӧdinger equation with 

the MPP. The numerical solutions of the d-dimensional Schrӧdinger equation with the MPP were also obtained. Our 

analysis show that our results agree with the results obtained in literatures for the 3-dimensional case. The effects of the 

different potential parameters on the energy eigenvalues were demonstrated graphically. Furthermore, we calculated the 

vibrational partition function, using the energy eigenvalues obtained for the MPP. Also, other thermodynamic properties 

like the vibrational free energy, vibrational mean energy, vibrational entropy, and vibrational specific heat capacity were 

obtained via the vibrational partition function. The variation of these thermodynamic functions with temperature and upper 

bound quantum numbers were considered graphically. This novel aspect of our study has been discussed extensively. The 

study of the thermodynamic properties of the MPP has not been reported before in literature. As such, this aspect of our 

study could not be compared with any previous work. 
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