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Abstract 
 

We have solved the radial Schrödinger equation with generalized Morse potential 

including the spin-orbit coupling term by ansatz method. Also we have applied 

generalized Pekeris approximation scheme to deal with the centrifugal term potential 

and obtained bound state energy eigenvalues and normalized radial wave functions 

in closed forms. To test the accuracy of our results, we computed energy eigenvalues 

for 2p, 3p, 3d, 4p, 4d and 4f quantum states and compared with those in the literature 

obtained by other approximation schemes and solution methods. In contrast our 

computed energy eigenvalues are in total agreement with those obtained numerically 

and by supersymmetric quantum mechanics than those obtained by Nikiforov-Uvarov 

method. We have also considered the variation of energy eigenvalue with energy 

determining parameter, α, and the result shows that the energy of the system initially 

decreases with α up to a critical value after which it begins to increase. 
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1. Introduction 

Because of the information derivable from energy eigenspectrum and eigenfunctions, emphasis is placed on the solution of Schrödinger 

equation which is used to describe nonrelativistic spinless particles [1]. It is a well-known fact that exact solutions play an important role 

in quantum mechanics since they contain all the necessary information regarding the quantum system under investigation, for instance, 

the exact solution of the Schrödinger equation for a hydrogen atom and for a harmonic oscillator in three dimensions are an important 

milestone at the beginning stage of quantum mechanics, which provided a strong evidence for supporting the correctness of the quantum 

theory [2-4]. The Coulomb potential and the harmonic oscillator potential are amongst the few potential models which gives exact 

solution for all quantum states nℓ,of the Schrödinger equation, where n is the principal quantum number and ℓ is the angular momentum 

quantum number [5]. Not many potential models give exact solution for the case of s-wave (zero angular momentum quantum number) 

[6-8]. Most potential models have no exact solution with the Schrödinger equation, a common practice for thisclass of potentials is to 

obtain approximate numerical [5] or analytical solutions [9], the analytical method of solution involves dealing with the spin-orbit 

coupling term using approximation schemes [10-14]. However, most of the approximation models are only applicable to exponential-

type potentials and are restricted to screening parameters of the potential. In this article we have solved the Schrödinger equation with the 

generalized Morse potential including the spin-orbit coupling term via the generalized Pekeris approximation scheme [9-10, 15-16] 

which, to the best of our knowledge has not been solved in the existing literatures. There is rather a lengthy list of solution methods of the 

Schrödinger equation, some of the methods used to solve the Schrödinger equation include: ansatz solution [2-4], Nikiforov-Uvarov 

method [17-18], exact and proper quantization rules [7, 19], factorization method [20], extended transformation method [21] and 

asymptotic iteration method [22]. In this paper we have used the ansatz solution method to obtain eigenspectra of generalized Morse 

potential including the spin-orbit coupling term and compared results with those in literatures. 
 

2 Theoretical Formulation 

2.1 The Generalized Morse Potential 

The generalized Morse potential [18] is given by: 
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where De is the dissociation energy, re is the equilibrium internuclear separation, r is the internuclear separation, δ is an adjustable 

screening parameter and 1 ereb


. Using the following hyperbolic function relations: 
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together with the identity: 

   xechx 22 cos1coth  .         (5) 

Eq. (1) transforms to: 
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2.2 The Radial Schrödinger Time Independent Wave Equation with Spin-Orbit Coupling Term 

The radial Schrödinger time independent wave equation [9-10] with spin-orbital centrifugal term can be expressed as: 
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where µ is the reduced mass of the molecule, nE  is the energy eigenvalue and nR  is the radial wave function. If we substitute Eq. (6) 

in Eq. (10), we get: 
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Eq. (11) transforms to: 
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Eq. (13) has no exact analytical solution, it can only be solved by approximation technique, and several approximation models have been 

proposed by researchers to make equations such as this amenable to solution. In this article, we have employed the generalized Pekeris 

approximation [10, 16] to approximate the factor (r/re)
2 which occurs in Eq. (13) by terms of a Taylor series expansion given as: 
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where Γ and its inverse function, Γ
1

 are appropriately chosen functions and α n  (dimensionless) are elements in the domain of  Γ
1

. 

The constant coefficients: 0c , 1c  and 2c are defined by Ferreira and Bezerra [16]. In this work we have: 
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    11 coth .           (17) 

Using Eq. (15) and Eq. (17), we have: 
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where     ,11,n  and 
 nen rd  1coth2  . Substitute Eq. (14) in Eq. (13) and using Eq. (16), we have: 
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With simplified coefficients, Eq. (21) can be expressed as: 
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Eq. (22) can be written in compact form as: 
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In order to solve Eq. (23), let us assume an ansatz solution as used by Rosen and Morse [23] 
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where 
nN  are normalization constants, s  and t  are constants to be determined when Eq. (27) is satisfied by Eq. (23) and  un  is a 

function of u . Thus, Eq. (27) gives: 
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where prime designate derivatives with respect to u. By putting Eq. (28) in Eq. (23), we obtained: 

                0coscoth2coth2 2222   uRuuechttutstsuutsu nnnn    (29) 

Eq. (29) can be converted to a more useful form by imposing the following constraints: 

 22 ts .           (30) 

and 

ts2 .            (31) 

From Eq. (30) and Eq. (31) get: 
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Using Eq. (30) and Eq. (31), Eq. (29) reduces to: 

          0coscoth2 22  uuechssuutsu nnn   .      (34) 

Introducing the change of variable in Eq. (34) given by: 
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Eq. (34), gives: 
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Eq. (36) is the Gaussian hypergeometric differential equation, whose solution is the hypergeometric function given by: 
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For a polynomial solution [4, 23] either σ or ϛ or both must be a negative integer, n  
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Thus, Eq. (38) can be written as: 
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so that: 
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2.3 Energy Eigenspectra 

Eq. (41) can be recast as: 
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By putting Eq. (33) in Eq. (43) get: 
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From Eq. (24), we get: 
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Inserting Eq. (25) and Eq. (26) in Eq. (45), the analytical energy eigenvalue is therefore given by: 
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2.4 Normalization Constant 

The requirement for the normalization of wave functions [24] is given by: 
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where 
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is the probability density function. 

Using Eq. (12), Eq. (35), Eq. (48) and the identity given by Eq. (5), Eq. (47) transforms to: 
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Eq. (27) when expressed in terms of variable z can be used to eliminate  zRn  in Eq. (49), leading to: 
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It follows that: 
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3.0 Results and Discussion 

Table 1: Comparison of Bound State Energy Eigenvalues (in eV) of the Generalized Morse Potential for 2p, 3p, 3d, 4p, 4d and 4f 

Quantum States with 12  ere and 
115  mcDe  as a Function of Screening Parameter 

State δ 
n  nE  

(PM) 

nE  

[18] (NU) 

nE  

[18] (NUM) 

nE  

[18] (SUSY) 

2p 0.05 80.048723 7.816795 7.77122 7.8628 7.8608 

0.10 36.436184 7.955375 7.77577 7.95537 7.9533 

0.15 21.849229 8.047245 7.78125 8.04724 8.0451 

0.20 14.701458 8.138425 7.78768 8.13842 8.1362 

3p 0.05 80.101563 7.449385 10.9468 10.9998 10.9978 

0.10 40.017966 7.849045 11.0628 11.1647 11.1626 

0.15 26.642249 8.515015 11.1779 11.3265 11.3262 

0.20 19.931503 9.447205 11.2921 11.4851 11.4828 

3d 0.05 31.344887 10.216550 10.0723 10.2165 10.316 

0.10 15.290867 10.354150 10.1725 10.3541 10.3535 

0.15 9.693648 10.489950 10.2734 10.4899 10.4894 

0.20 6.676524 10.623949 10.4739 10.624 10.6235 

4p 0.05 80.136887 7.332950 12.4651 12.4992 12.4976 

0.10 40.011738 7.954550 12.6344 12.6985 12.6968 

0.15 26.692084 8.990250 12.7986 12.8901 12.8884 

0.20 19.965469 10.440150 12.9579 13.074 13.0722 

4d 0.05 36.008121 12.098150 12.0105 12.0981 12.0983 

0.10 17.429241 12.285749 12.1143 12.2857 12.285 

0.15 10.867873 12.467149 12.2176 12.4672 12.4664 

0.20 7.262262 12.643248 12.3204 12.6432 12.6426 

4f 0.05 22.996016 11.820850 11.6417 11.8209 11.8208 

0.10 11.053723 11.998149 11.6456 11.9981 11.998 

0.15 6.785111 12.171849 11.6518 12.1718 12.1717 

0.20 4.324315 12.342148 11.6603 12.3421 12.0421 
 

The Table 1 shows energy determining parameter used in our computations and the corresponding bound state (negative) energy 

eigenvalues obtained using Eq. (46). Also shown in the Table are bound states energy eigenvalues obtained by other methods and 

approximation schemes in otherrelated literatures, the results show that the present method (PM) is in total agreement with those 

computed by numerical methods (NUM) [18] as well as those obtained by supersymmetric quantum mechanics (SUSY) [18] than those 

obtained by Nikiforov-Uvarov (NU) method [18], except for the p states (3p and 4p).  

Figure 1 Plot of Energy Eigenvalues versus Energy Determining Parameter 

 

The Figure1 shows plot of energy eigenvalues versus energy determining parameter for p, d and f states for a given screening parameter, 

these plots clearly suggests a minimum energy eigenvalue in agreement with the remarks by Eyube et al. [18]. As a special case, by 

putting 0 in Eq. (46), the s-wave energy eigenvalue becomes 
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which is clearly independent of α and only varies with n. 
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