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Abstract 

The purpose of this work is to determine the resonant states in a one-dimensional finite 

square well system. Resonant states are the Eigen solutions to the time independent 

Schrödinger’s equation with outgoing wave boundary conditions. The secular 

transcendental equations for even and odd states were first obtained. This is done by 

solving the Schrödinger’s wave equation with purely outgoing wave boundary 

conditions. The equations obtained were solved numerically in MATLAB leading to 

three types of states namely: bound states, antibound states and resonant states. Apart 

from bound states which has been covered in so many textbooks resonant states have 

attracted significant interest in recent time, in particular, in quantum mechanics due to 

rapid progress in the field of semiconductor physics were different electronic states are 

formed. In spite of this growing interest, many fundamental aspects of resonant states 

are still to be investigated. In this case the effect of changing the parameters in the 

system is fully observed. We observed that for a shallow well there is at least one bound 

state within the system. However, increasing the strength of the potential will lead to an 

increase in the number of bound/antibound states.  

Keywords: Finite Square well, Bound states, Antibound states, Resonant states. 

1. Introduction 

 In quantum mechanics resonant states (RSs) have been studied for over a long period of time [1, 2]. They are obtained by seeking solutions 

to the time independent Schrödinger’s equation with outgoing wave boundary conditions [3, 4, 5]. These are states with complex energy 

eigenvalues, causing them to decay exponentially in time [6, 7].  Because of their complex nature, resonant states have been used to model 

unstable particles in nuclear physics [2, 4]. Resonant state investigation is very important in a vast majority of physics areas among which 

are quantum physics and electrodynamics. 

In this work, we demonstrate how the effect of changing the parameter affects the spectrum of a studied system [6, 8].  

These spectrums include bound states, antibound states and normal resonant states. All these form a complete set of Eigen wave numbers. 

We first work out the analytics obtaining secular transcendental equations for even and odd states. This is done by applying the outgoing 

wave boundary conditions to the one-dimensional Schrödinger’s equation [9]. Solutions to these equations are obtained numerically in 

MATLAB and plotted in a complex k-plane.  
 

2. Theory 

2.1 Finite square well potential 

The finite square well potential (also known as the finite square well) is a concept from quantum mechanics in which a particle is bounded 

to a box which has finite potential well [6] as shown in Fig. 1. 
 

 
Figure 1: A schematic diagram for a finite square well potential. 
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The time-independent Schrödinger equation for one dimensional finite square potential well is 

 −
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉 𝑥  𝜓 𝑥 = 𝐸𝜓 𝑥                                                           (1) 

Where 𝑉 𝑥  is the potential of the particle given as 

𝑉 𝑥 =  
−𝛼,  𝑧 < 𝑎

0,  𝑧 > 𝑎
                                                (2) 

and  𝐸 =
ℏ2𝑘2

2𝑚
 is the energy of the particle. For convenience, we use in the following 𝑚 = 1/2 and ℏ = 1, so that 𝐸 = 𝑘2, where 𝑘 

is the eigen wave number of the particle, ℏ is the Planck’s constant, 𝑚 is the effective mass of the particle.  

Equation 1 can be written as  

 

 −
𝑑2

    𝑑𝑥2  𝜓 𝑥 =  𝑘2𝜓(𝑥)                            (3) 

where 

 k = 
 −2𝑚𝐸

ℏ
                (4) 

The general solution to equation 3 is 

       𝜓 𝑥 = 𝐴𝑒−𝑖𝑘𝑛𝑥 + 𝐵𝑒𝑖𝑘𝑛𝑥                                                 (5) 

Where A and B are constant         

For a wave function to be  normalized, the constant A must be zero. 

Thus equation (5) becomes,  

𝜓 𝑥 = 𝐵𝑒𝑖𝑘𝑛𝑥                                                               (6) 

By introducing a new constant q in region II i.e., −𝑎 < 𝑥 < 𝑎, the Schrödinger’s equation in equation (1) will now become 
𝑑2

 𝑑𝑥2  𝜓 𝑥 =  −𝑞2𝜓(𝑥)                                                      (7) 

k and q are the eigenvalues in their respective regions and are related as 

𝑞 =  𝑘2 + 𝛼                                                                         (8) 

The general solution to equation 7 is 

𝜓 𝑥 = 𝐶 𝑠𝑖𝑛(𝑞𝑥) + 𝐷 𝑐𝑜𝑠(𝑞𝑥)                                 (9) 

In region III     𝑥 < −𝑎,  𝛼 𝑥 = 0 , same case with region I 

𝜓 𝑥 = 𝐹𝑒−𝑖𝑘𝑛𝑥 + 𝐺𝑒𝑖𝑘𝑛𝑥                                             (10) 

In order to keep the wave function normalized we set G = 0. Thus  

 𝜓 𝑥 = 𝐴𝑒−𝑖𝑘𝑛𝑥                                                        (11) 

Therefore;  

𝜓 𝑥 =  
𝐵𝑒𝑖𝑘𝑛𝑥                                                
𝐶 𝑠𝑖𝑛(𝑞𝑥) + 𝐷 𝑐𝑜𝑠(𝑞𝑥)                 

 𝐹𝑒−𝑖𝑘𝑛𝑥                                                               

                       (12) 

For a wave function to be symmetric there has to be even and odd solutions. 

For even solutions  

𝜓(𝑥)
+ =   

𝐵𝑒𝑖𝑘𝑛𝑥                                          
 𝐷 𝑐𝑜𝑠(𝑞𝑥)                                    

 𝐵𝑒−𝑖𝑘𝑛𝑥                                                          

                               (13) 

For odd solutions 

𝜓(𝑥)
− =   

−𝐵𝑒𝑖𝑘𝑛𝑥                                                   
 𝐶𝑠𝑖𝑛 𝑞𝑥                                            

   𝐵𝑒−𝑖𝑘𝑛𝑥                                                                      

 .                       (14) 

Applying boundary conditions (for even solutions)  

At x = a 

𝜓(𝑥)
+  = 𝜓(𝑥)

− .  And  𝜓(𝑥)
΄+  = 𝜓(𝑥)

΄− . 

 𝐵𝑒𝑖𝑘𝑛𝑎  = 𝐷𝑐𝑜𝑠(𝑞𝑎)                                                            (15) 

ikB𝑒𝑖𝑘𝑛𝑎  = -qDsin(qa)                                                          (16) 

Dividing equation 15 and 16 and after some algebra we have solution for even state as 

k = i𝑞𝑛 𝑡𝑎𝑛(𝑞𝑎)                                                                  (17) 
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Following the same procedure as above we have solution for odd state as   

-k = i𝑞𝑛 𝑐𝑜𝑡 𝑞𝑎                                        (18) 

Equations 17 and 18 are the two secular equations corresponding to the even and odd states. These equations are to be solved 

numerically with the help of Newton-Raphson procedure in MATLAB. Solutions to these are plotted in complex k-plane as 

shown in section 3 of this work.  

 

3.0 Result and Discussion 

3.1 Resonant states wave numbers 

Fig. 2 shows the plots of the complex wave numbers in equations (17) and (18). For α = 3 the graph has only bound states and 

resonant states within the spectrum while for α = 10 the graph shows all types of states (Bound states, antibound states and RSs) 

within the spectrum. 

Bound states are located at the position where Im k > 0 with positive imaginary axis [5, 6]. Antibound states are located at the 

region where Im k < 0 with negative real axis. The remaining states in the spectrum are resonant states. The resonant states are 

symmetric about the imaginary axis and contain symmetric pair of states.  

It has observed that irrespective of the quantum well depth there is at least one bound state in a square well potential. It can be seen 

from these figures that, for α = 3 we have only two bound states in the spectrum. However, increasing the depth of the potential will 

lead to an increase in the number of bound states and antibound states in the system (see Figure for α = 10). 

 

  
Figure 2: Eigen wavenumbers k plotted in the complex plane with α = 3 and α = 10. 

                                                                                                                                                                                                                     

4.0 Summary and Conclusion 

In this work, we consider a well-known problem in quantum mechanics, the finite square well to study the spectrum of resonant 

sates (RSs) in a finite square well potential. RSs were studied by seeking solutions to one-dimensional time independent 

Schrödinger equation. After application of boundary conditions to the Schrödinger’s wave equation, a system of equations was 

generated and written in form of secular transcendental equations. These equations were solved numerically with the help of 

Newton-Raphson procedure in MATLAB.  

We have demonstrated that for a finite square well the full set of RSs are obtained by applying the outgoing wave boundary 

conditions. We have also demonstrated that the decrease or increase in the number of bound/antibound states depends on the choice 

of parameter α. 
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