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Abstract 

The Modified Adomian decomposition method (MADM1) is a very reliable method 

that has been developed in an attempt to improve the accuracy and at the same time 

provide faster computation of series solutions. It is a very efficient tool used to solve 

different types of nonlinear differential equations which includes application to 

MHD stagnation-point flow of an upper-convected Maxwell fluid problem. In this 

study, we have extended the application of MADM1 by showing its ability to solve the 

nonlinear differential equation of the MHD stagnation-point flow of an upper-

convected Maxwell fluid problem. The results obtained show better agreement with 

existing work. 
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1.0  INTRODUCTION 

Recently, so many reliable modifications of the Adomian decomposition method that provide faster computation and more 

improved accuracy of solution series for nonlinear differential equations have been developed. They include, first and 

second modified decomposition method by Wazwaz (MADM1 and MADM2), the two step Adomian decomposition 

method (TSADM), the restarted Adomian decomposition method (RADM), Laplace Adomian decomposition method 

(LADM), Kamal Adomian decomposition modified (KADM) and modified Laplace Adomian decomposition method 

(MLADM). (Al-mazmumyet al., [1]; Alizadeh and Effati, [2]; Tomaizeh, [3]). The modified decomposition method in 

general requires only a slight variation from the standard decomposition method. It may also provide exact solutions by 

using few iterations and sometimes without theAdomian polynomials Xie, [4]. However, we will consider the first 

modification by Wazwaz (MADM1). 

The first modification form was established based on the assumption that the function 𝑓  can be divided into two parts 

namely, one assigned to the initial term of the series and the other to the second term. The remaining terms of the recursive 

relationship are obtained, thus resulting in a series that is different from the standard ADM being generated. The slight 

variation in reducing the number of terms of the initial component results in the reduction of the computational work and 

increases the accuracy of the series solution. It may also provide the exact series solution by using two iterations only. 

Hence, there may be no need to evaluate the Adomian polynomials required for the nonlinear equations. (Xie, [4]; Rach, 

[5];Alizadeh and Effati, [2]; Wazwaz, [6]). The MADM1 is therefore very efficient and saves time in computation while 

maintaining high accuracy of the series solution. 

Hence, we will apply the MADM1 on MHD stagnation flow of an upper convected Maxwell fluid. The UCM fluid are 

highly viscous and elastic. The stress tensor in this fluid have a nonlinear relationship with the deformation rate tensor. 

These nonlinear relationships giverise to complicated higher order differential equations that are difficult to solve. As a 

result of this, so many researchers are involved in finding solutions to the nonlinear differential equations governing the 

motion of these fluids using different methods. Sadeghyet al.,[7] theoretically obtained the solution of a two dimensional 

stagnation point flow of an upper–convected Maxwell fluid using the Chebyshev pseudo-spectral collocation-point method. 

Kumari and Nath, [8] investigated a steady two-dimensional mixed convection MHD stagnation-point flow of upper-

convected Maxwell fluid using the finite-difference method. Hayat, et al., [9] studied a steady two dimensional MHD flow  
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of an upper-convected Maxwell fluid near a stagnation point over a stretching surface using homotopy analysis method. 

The effects of magnetic field was examined. The result obtained showed that as the magnetic field parameter increases, the 

velocity of the flow decreased. Loket al., [10] numerically investigated the effects of elasticity, shrinking and suction 

parameters on a steady two-dimensional boundary layer stagnation-point flow and heat transfer of an upper-convected 

Maxwell fluid using the Keller-box method (an implicit finite-difference method with second-order accuracy) Mustaqet al., 

[11] examined the effects of thermal radiation on a laminar two-dimensional stagnation point flow of an upper-convected 

Maxwell fluid using fourth order Runge-Kutta integration technique. Rahman, [12] investigated the effects of second order 

slip and magnetic field on a nonlinear mixed convection stagnation point flow of an upper-convected Maxwell fluid 

towards a vertical permeable stretching sheet using the bvp4c function from MATLAB. Mustafa et al., [13] analyzed a non-

aligned MHD stagnation-point flow of upper-convected Maxwell fluid in the presence of a linear radiative flux and heat 

source/sink using the fifth order Runge-kutta with shooting technique and also a collocation method based MATLAB 

package bvp4c. Hayat et al., [14]studied the effects of mass transfer on a two-dimensional stagnation-point flow of an 

upper-convected Maxwell fluid using the homotopy analysis method. Hayat et al., [15] studied a rheological model of a 

steady laminar boundary layer stagnation-point flow of an upper-convected Maxwell fluid with heat transfer past a 

stretching sheet using the homotopy analysis method. The effects of melting parameter was examined. 

From literature, we observe that MHD stagnation flow of an upper-convected Maxwell fluid problem have been solved 

using homotopy analysis method. In this study therefore we will show the ability of theMADM1 to solve the nonlinear 

differential equations of the MHD stagnation-point flow of an upper convected Maxwell fluid. 

 

2.0  BASIC IDEA OF THE FIRST MODIFIED ADOMIAN DECOMPOSITION METHOD (MADM1) 

let us consider the nonlinear differential equation 

𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔,          (1) 

where, 

𝐿 −is invertible and is taken as the highest order derivatives, 

𝑅 −is the remainder of the linear operator. 

𝑁 𝑢 − represents the nonlinear terms, 

𝑔 − is the specified inhomogeneous term. 

To obtain 𝐿𝑢, we have, 

𝐿𝑢 = 𝑔 − 𝑁𝑢 − 𝑅𝑢.           (2) 

Applying the operator 𝐿−1, the equation (3.1.2) becomes 

𝐿−1𝐿𝑢 = 𝐿−1𝑔 − 𝑁𝐿−1𝑢 − 𝐿−1𝑅𝑢,        (3)  

where, 

The solution series 𝑢 is decomposed into a series of the form 

𝑢 =  𝑢𝑛
∞
𝑛=0              (4) 

And the nonlinear term 𝑁𝑢 is decomposed as, 

𝑁 𝑢 =  𝐴𝑛
∞
𝑛=0 .         (5)  

Substituting (3.1.4) and (3.1.5) into (3.1.3), we have 

 𝑢𝑛

∞

𝑛=0

= 𝜑 + 𝐿−1𝑔 − 𝐿−1𝑅 𝑢𝑛

∞

𝑛=0

− 𝐿−1  𝐴𝑛

∞

𝑛=0

,  

where 

𝜑 =

 
 
 
 

 
 
 𝑢 0                                                                                                                 𝑖𝑓 𝐿 =

𝑑

𝑑𝑥

𝑢 0 + 𝑥𝑢′ 0 ,                                                                                            𝑖𝑓 𝐿 =
𝑑2

𝑑𝑥 2

𝑢 0 + 𝑥𝑢′ 0 +
𝑥2

2!
𝑢′′  0  ,                                                                    𝑖𝑓 𝐿 =

𝑑3

𝑑𝑥 3

⋮

𝑢 0 + 𝑥𝑢′ 0 +
𝑥2

2!
𝑢′′  0 + ⋯+

𝑥𝑛

𝑛!
𝑢(𝑛) 0                                       𝑖𝑓 𝐿 =

𝑑𝑛+1

𝑑𝑥 𝑛+1 
 
 
 

 
 
 

 (6) 

Recall that the Adomian decomposition method (ADM) suggests that the zeroth component𝑢0 is usually defined by the 

function 𝑢0 = 𝜑 + 𝐿−1𝑔 = 𝑓. 

Thus   

𝑢0 = 𝑓,  

𝑢1 = −𝐿−1𝑅𝑢0 − 𝐿−1𝐴0, 
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𝑢𝑛+1 = −𝐿−1𝑅  𝑢𝑛
∞
𝑛=0 − 𝐿−1  𝐴𝑛

∞
𝑛=0 , 𝑛 ≥ 0.      (7) 

Under this assumption, we set 

𝑓 = 𝑦0 + 𝑦1.                                                                                   (8) 

The MADM1 recursive relation is formulated as follows; 

𝑢0 = 𝑦0, 

𝑢1 = 𝑦1 − 𝐿−1𝑅𝑢0 − 𝐿−1𝐴0, 
𝑢𝑛+1 = −𝐿−1𝑅  𝑢𝑛

∞
𝑛=0 − 𝐿−1  𝐴𝑛

∞
𝑛=0 ,     𝑛 ≥ 0.      (9) 

On comparing the recursive relation (7) of ADM with that of MADM1 (9), we observe that the zeroth component 𝑢0 is 

defined by a part 𝑦0 of 𝑓. The remaining part 𝑦1 of 𝑓 is added to the definition of the component 𝑢1 in (9).  

Hence ,we will use an example to illustrate that the reduction of terms of the zeroth component 𝑢0 will result in a reduction 

of the computational work. Also the slight variation in the definition of the components 𝑢0 and 𝑢1 may provide the solution 

by using two iterations only. Furthermore, our calculation will show that there is no need sometimes to evaluate the 

Adomian polynomials required for the nonlinear differential equations. 
 

3.0 APPLICATION 

Consider a steady MHD stagnation-point flow of upper convected Maxwell fluid problem of Hayat et al., [9]. The 

equations of motion of the flow are 
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0,         (10) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝜆1−  𝑢2 𝜕2𝑢

𝜕𝑥2 + 𝑣2 𝜕2𝑢

𝜕𝑦2 + 2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
 = 𝑎2𝑥 + 𝜇

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0

2𝑢

𝜌
,    (11)     

where 𝑢, 𝑣 − are the velocity components in the x and y directions respectively, 

𝜇 − is the kinematic viscosity of the fluid, 

𝜌 −  is the density,  

𝜆1− the relaxation time,   

𝜎 − the electrical conductivity of the fluid,  

𝐵0 − a constant magnetic field.                                                                   

Along with boundary conditions 

𝑢 𝑥, 0 = 𝑐𝑥 ;        𝑣 𝑥, 0 = 0;           aty = 0, 
𝑢 𝑥,∞ → 𝑎𝑥;     asη → ∞, 
Where 𝑐 -is the stretching rate.                                                                                 

Using the following similarity variables as given by Hayat et al., [9],  

𝜂 =  
𝑐

𝜇
𝑦           ;    𝑢 = 𝑐𝑥𝑓 ′ 𝜂     ;           𝑣 = − 𝜇𝑐 𝑓 𝜂 , 

the above governing equation is transformed as 

𝑓‴ −𝑀2𝑓 ′ − 𝑓 ′2 + 𝑓𝑓 ′′ + 𝜆2 + 𝛽(2𝑓𝑓 ′𝑓 ′′ − 𝑓2𝑓 ′′′ ) = 0,       (12) 

Subject to 

𝑓 0 = 0,   𝑓 ′ 0 = 1                     𝑎𝑡  η = 0 , 

𝑓 ′ ∞ = 𝜆                                       𝑎𝑠    η → ∞.      (13) 
 

with 𝑀2 =
𝜎𝐵0

2𝑥

𝜌∪∞
,  𝛽 = 𝜆1𝑐   and 𝜆 =

𝑎

𝑐.
 

 

4.0 METHOD OF SOLUTION 

Recall from ADM 

𝐿𝑓
−1𝑓 = 𝑀2𝐿𝑓

−1𝑓 ′ + 𝐿𝑓
−1𝑓 ′2 + 𝐿𝑓

−1 𝑓𝑓 ′′ − 𝐿𝑓
−1𝜆2 − 𝛽𝐿𝑓

−1(2𝑓𝑓 ′𝑓 ′′ − 𝑓2𝑓 ′′′ ), 

where 

𝐿𝑓
−1 =  𝑑𝜂𝑑𝜂𝑑𝜂,     ∶

𝜂𝜂𝜂

000

 

hence,  

𝑓 = 𝑓 0 + 𝜂𝑓 ′ 0 +
𝜂2

2
𝑓 ′′  0 − 𝐿𝑓

−1𝜆2 + 𝑀2𝐿𝑓
−1  𝑓𝑛

′

∞

𝑛=0

+ 𝐿𝑓
−1  𝑓𝑛

′2

∞

𝑛=0

+ 𝐿𝑓
−1  𝑓𝑛𝑓𝑛

′′

∞

𝑛=0

− 𝛽𝐿𝑓
−1  (2𝑓𝑛𝑓𝑛

′𝑓𝑛
′′ − 𝑓𝑛

2𝑓𝑛
′′′ )

∞

𝑛=0

. 

 

Journal of the Nigerian Association of Mathematical Physics Volume 54, (January 2020 Issue), 63– 68   



66 
 

MHD Stagnation-Point Flow…                        Uka and Olisa                                            J. of NAMP 

 
 

On substituting the boundary conditions (13), we have 

𝑓 = 𝜂 +
𝐴

2
𝜂2 −

𝜆2

6
𝜂3 + 𝑀2𝐿𝑓

−1  𝑓𝑛
′∞

𝑛=0 + 𝐿𝑓
−1  𝑓𝑛

′2∞
𝑛=0 + 𝐿𝑓

−1  𝑓𝑛𝑓𝑛
′′∞

𝑛=0 − 𝛽𝐿𝑓
−1  (2𝑓𝑛𝑓𝑛

′𝑓𝑛
′′ − 𝑓𝑛

2𝑓𝑛
′′′ )∞

𝑛=0 .  (14) 

By MADM1, 𝑓 = 𝑦0 + 𝑦1 ,where  𝑦0 = 𝜂 −
𝜆2

6
𝜂3 , 𝑦1 =

𝐴

2
𝜂2 

Thus,  

𝑓0 = 𝜂 −
𝜆2

6
𝜂3, 

𝑓1 =
𝐴

2
𝜂2 + 𝑀2𝐿𝑓

−1  𝑓𝑛
′∞

𝑛=0 + 𝐿𝑓
−1  𝐺𝑛

∞
𝑛=0 + 𝐿𝑓

−1  𝐶𝑛
∞
𝑛=0 − 𝛽𝐿𝑓

−1   2𝐷𝑛 − 𝐸𝑛 
∞
𝑛=0 ,  (15) 

𝑓𝑛+1 = 𝑀2𝐿𝑓
−1𝑓𝑛

′ + 𝐿𝑓
−1  𝐺𝑛

∞
𝑛=0 + 𝐿𝑓

−1  𝐶𝑛
∞
𝑛=0 − 𝛽𝐿𝑓

−1   2𝐷𝑛 − 𝐸𝑛 
∞
𝑛=0 ,     (16) 

 

where 𝐺𝑛 , 𝐶𝑛 ,  𝐷𝑛 , and  𝐸𝑛  are the Adomian polynomials and may be computed using the Adomian general formula 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
 𝑁  𝜆𝑖𝑛

𝑖=0 𝑢𝑖  𝜆=0,  𝑛 = 0, 1, 2, 3…          (17) 

Thus,  

 𝑓1 =
1

2
𝐴 𝜂2 +

𝑀2

6
𝜂3 −

𝑀2𝜆2

240
𝜂5 +

1

240
 1 + 𝜆2 𝜂5 −

𝜆2

630
𝜂7 −

𝜆4

2016
𝜂8 +

𝜆4

18144
𝜂9 +

𝜆2𝛽

30
𝜂5 −

𝜆4𝛽

210
𝜂7 −

𝜆4𝛽

630
𝜂7 +

𝜆6𝛽

3024
𝜂9 +

𝜆2𝛽

60
𝜂5 −

𝜆4𝛽

630
𝜂7 +

𝜆4

18144
𝜂9.       (18) 

In general, we have our series solution for two iterations as 

𝑓 = 𝜂 −
𝜆2

6
𝜂3 +

1

2
𝐴 𝜂2 +

𝑀2

6
𝜂3 −

𝑀2𝜆2

240
𝜂5 +

𝜂3

6
+

𝜆4

840
𝜂7 −

𝜆4

1470
𝜂7 +

𝜆2𝛽

30
𝜂5 −

𝜆4𝛽

210
𝜂7 −

𝜆4𝛽

630
𝜂7 +

𝜆6𝛽

3024
𝜂9 +

𝜆2𝛽

60
𝜂5 −

𝜆4𝛽

630
𝜂7 +

𝜆4

18144
𝜂9          (19) 

and 

𝑓 ′ = 1 −
𝜆2

2
𝜂2 + 𝐴 𝜂 +

𝑀2

2
𝜂2 −

𝑀2𝜆2

48
𝜂4 +

1

2
𝜂2 +

𝜆4

120
𝜂6 −

𝜆4

210
𝜂6 +

𝜆2𝛽

6
𝜂4 −

𝜆4𝛽

30
𝜂6 −

𝜆4𝛽

90
𝜂6 +

𝜆6𝛽

336
𝜂8 +

𝜆2𝛽

12
𝜂4 −

𝜆4𝛽

90
𝜂6 +

𝜆6𝛽

2016
𝜂8          (20) 

 

5.0 RESULTS AND DISCUSSION 

The results obtained from the variation of the resulting parameters such as magnetic field parameter 𝑀 , Deborah number 

(𝛽), (that is the dimensionless elastic parameter) and the stretching parameter (𝜆) on the velocity of the flow are presented 

graphically using Mathematical 8 to illustrate their effects on the flow. Results for the effects of 𝛽, 𝜆 𝑎𝑛𝑑 𝑀 variations on 

the skin friction coefficient are also shown . 

 
Figure 1: Effect of 𝛽 on Velocity 𝟏 

 
Figure 2: Effect of 𝛽 on Velocity 𝟐 

 
Figure 3: Effect of 𝜆 on Velocity 𝟏 

 
Figure 4: Effect of 𝜆 on Velocity 𝟐 
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Figure 5: Effect of 𝑀 on Velocity 𝟏 

 
Figure 6: Effect of 𝑀on Velocity 𝟐 

 

 

Table 1: The effect of (𝑴) variation on Skin 

Friction(𝑺𝒌) coefficient 

M 𝝀 𝛽 𝑺𝒌 

0.0 0.2 0.2 -9.66516 

0.5 0.2 0.2 -10.2641 

1.0 0.2 0.2 -12.061 

1.5 0.2 0.2 -15.0558 

 

Table 2: The effect of  (𝛽) variation on Skin 

Friction(𝑺𝒌) coefficient 

𝛽 𝑴 𝝀 𝑺𝒌 
0.0 0.5 0.5 -2.88432 

0.5 0.5 0.5 -3.00435 

1.0 0.5 0.5 -3.12439 

1.5 0.5 0.5 -3.24442 

 

Table 3: The effect of  (𝝀) variation on Skin 

Friction(𝑺𝒌) coefficient 

𝝀 𝑴 𝛽 𝑺𝒌 
0.005 0.5 0.2 -11.1783 

0.15 0.5 0.2 -10.7058 

0.25 0.5 0.2 -9.65304 

0.35 0.5 0.2 -7.80362 
 

Figures (1) and (2) represent the effects for varying values of𝛽 = 0.0, 0.5, 0.8, 1.0,at 𝑀 = 0.2 𝑎𝑛𝑑 𝜆 = 0.2 on the velocity. 

We notice that as the Deborah number increases, the velocity of the flow decreases. Figures (3) and (4) represent the effects 

for varying values of𝜆 = 0.0, 0.05, 0.1, 0.2, at𝑀 = 0.2 𝑎𝑛𝑑 𝛽 = 0.2on the velocity profile. It is observed that increase in 

the stretching parameter results to a corresponding increase in the flow velocity.The effects of magnetic field parameter is 

shown in figures (5) and (6) for 𝜆 = 0.2 𝑎𝑛𝑑 𝛽 = 0.2with decrease in the flow velocity as 𝑀 increases that is 𝑀 =
0.0, 0.5, 0.8, 1.0.These agrees with the results obtained by Hayat, et al., [9]. As  𝑀 𝑎𝑛𝑑 𝛽 increases from tables (1) and (2), 

the skin friction coefficient deceases whereas, 𝜆 increases as the skin friction coefficient decreases.  

6.0Conclusion 
In this study, we have discussed the first Modified Adomiandecompositioin method (MADM1) and then use it to 

effectively obtain the series solution of nonlinear differential equation of MHD stagnation-point flow of an upper-convected 

Maxwell fluid problem. The slight variation in reducing the number of terms of 𝑓0 resulted in the reduction of the 

computational work and increased the accuracy of the series solution. It also provided the exact series solution by using two 

iterations only. Hence, there was no need to evaluate the Adomian polynomials required for the nonlinear equations. 

Results show that the method is reliable, efficient and requires fewer computations. Comparison of the MADM1 with other 

methods such as HAM shows excellent agreement. 
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