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Abstract 

In the early literature of deteriorating items under trade credit financing, it was 

commonly assumed in most cases that the supplier offers the retailer a full trade 

credit period within which to settle the account. Later, the policy was extended to 

consider when the retailer also offers customers the benefit of the trade credit period. 

In this study, we develop two – warehouse inventory model for deteriorating items 

under two – level trade credit financing. We assume that the supplier offers the 

retailer full credit period (upstream) and the retailer passes it to his/her customer but 

requesting some portion of the consignment supplied be paid immediately they are 

received. A credit period is offered on the remaining portion of the goods supplied 

(partial downstream) in order to reduce the risk of failure in payments. We find the 

optimal replenishment cycle for the inventory system with the help of several cases 

and sub – cases. A numerical example is used to illustrate the application of the 

model and sensitivity analysis carried out to see the effect of parameter changes. 

Keywords: Partial Downstream, Trade Credit Financing, Upstream, Deteriorating, Failure. 

1. Introduction 

The Economic Order Quantity (EOQ) model deals with the study of what to order, when to order and the right quantity to 

order of an item at a given time,[1]. In the past few decades, there has been so much study in the inventory control of 

deteriorating item(s) as reviewed in[2] and later updated by [3]. The study of deteriorating items was first carried out by[4] 

who developed an EOQ model with constant rate of deterioration which was laterextended by[5] considering variable rate 

of deterioration. Papers that considered deterioration items include [6 – 10]and many more others.  

In the literature, it is commonly assumed that goods are paid for immediately they are delivered. However, this is not 

always the case. Some supplier give their retailer(s) grace period within which to settle their account(s), a phenomenon 

known as permissible delay in payments; as stated in[11]. The idea of permissible delay in payment has the advantage of 

making the retailer to order more quantity so as to make huge profit. Another importance of permissible delay is that it 

gives the supplier chance to make bulk supply to retailers. It also serves as alternative to price discount. It is a case whereby 

the retailer is given a grace period to settle the account within the allowed period without incurring any charges. After the 

allowed period, the retailer is charged an interest rate over the unsold items. In the literature of permissible delay in 

payment, [11] was the first, where he considered constant demand and fixed period within which the retailer is allowed to 

settle his/her account without incurring any charges. He mistakenly assumed the purchasing and selling prices to be the 

same as corrected by [12] which state the necessity of selling price to be higher than the purchasing cost. The study in [13] 

extended [11] to consider deteriorating items, while [9] extended [11] to consider different purchasing and selling prices. 

In some cases, if the retailer wants to attract more customers, then he/she has to also offer/pass the permissible delay in 

payment grace to the customer(s). This is termed as two – level trade credit financing; [14 – 15]. Though it reduces the 

retailers profit fortune but it helps in stimulating the sales volume and that in turn increases the turnover fortune. The 

literature that considered two – level trade credit financing include [14] whereby the retailer offers the customers a 

period 0 , 𝑁  within which to settle their individual account. In [15], the credit period was offered to the customer in form 

of N+t period from time t when the customer receives the consignment. The study in [16] considers trade credit financing 

for deteriorating items with maximum lifetime. On the other hand, apart from additional cost that trade credit period offers, 

it also provides additional dimension of default risk factor; Teng [15]. In [17], as an extension of[16]which considers partial  
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downstream trade credit financing where the customer is assumed to be a risk and so he/she must pay some amount when 

placing order to cover some portion of the total quantity of the consignment ordered before benefitting the grace 

permissible delay in payment. 

Due to permissible delay in payment or because of some other factors such as scarcity perception, seasonality of goods and 

so on, the retailer is motivated to order more quantity which may be in excess after storing the goods in his/her own 

warehouse. Thus, it will force the retailer to rent another warehouse where he/she will stock the remaining goods. As a 

result of this, researchers considered two – warehouse inventory policy to reflect the happenings and make proper 

replenishment policy. It is a case whereby the retailer has his/her own warehouse OW with limited capacity and rented 

another warehouse of unlimited capacity RW to keep the excess of the consignment ordered. It is commonly assumed in 

most of the papers that, the RW provides better preserving facilities than the OW, as a result of which deterioration rate in 

OW exceeds that in RW. The holding cost in RW is therefore assumed to be higher than that in OW. Due to economic 

reasons, it is assumed in most cases that, the dispatching policy is last – in first – out popularly known as LIFO. In the 

paper [18], the author looked at the two – warehouse model with constant demand and shortages under inflation. He/she 

compared the traditional model that starts with instant order and ends with shortages to a proposed model that starts with 

shortages and end without shortages. Yang found that, if the inflation rate is greater than zero, the proposed model is less 

expensive to run than the traditional model. If the inflation rate is equal to zero, both models have the same running costs. 

The study in[19] considers single deteriorating item under conditional permissible delay in payment with constant demand, 

constant deterioration and no shortages. Extension of the work in [19] to develop a two – warehouse model for deteriorating 

items partially backlogged, under permissible delay in payments and using time value of money approach was given in 

[20]. Also, [21] considered partial backlogged two – warehouse model for deteriorating items with permissible delay in 

payment under inflation/discounted cost. 

In this work, we seek to extend [19] work to the case of deteriorating item under two – level trade credit financing 

considering risk customers. In this situation, the retailer is given full trade credit period and the retailer passes the grace to 

his/her customers if they make deposit of a substantive amount to cover some portion γ of the quantity ordered. The 

remaining balance is to be paid at the expiration of the permissible trade credit period. The demand and deterioration in 

both warehouses are assumed constant. The deterioration in RW is assumed to be less than that in OW but charges higher 

rate of holding cost which necessitates the last in – first out dispatching policy due to economic reasons. 

The organization of the work is as follows: assumptions and notations are given in section 2, the model formulation in 

section 3. Section 4 gives analysis and optimization procedure whereas in section 5 a numerical example is given and 

sensitivity analysis carried out to see the effect of parameter changes and finally, in section 6 summary, conclusion and 

recommendations of area of further interest are given. 

2. Assumptions and Notations 

The following are assumptions made in building the model 

a. The model considers single deteriorating item stocked in two – warehouses. 

b. The demand and deterioration rates are constant in both warehouse. 

c. Deterioration in RW is less than that in OW, i.e. 𝛼 > 𝛽 due to higher preserving facilities in RW and charges higher 

holding cost in RW than in OW, i.e. 𝑟 > 𝑜 , and therefore assumed 𝑟 − 𝑜 > 𝑐 𝛼 − 𝛽 .  

d. The demand rate in the warehouse is greater than the deterioration rate at the warehouse. 

e. The dispatching policy is last – in first – out LIFO due to economic reasons. 

f. The model considers full upstream trade credit, i.e. the retailer will make payment at the expiration of the allowed 

period without any charges and thereafter pays charges for the unsold items at higher rate up to the end of the 

period, T. The model also considers partial downstream (i.e. the customer must pay some amount to cover a 

fraction of the goods when making order) trade credit financing. 

g. The downstream trade credit period considered in the model is Huang’s [14] view, i.e. the retailer provides fixed 

period 0  𝑁 , where 𝑁 ≤ 𝑡𝑤 (where 𝑡𝑤  is the time when the inventory at RW finishes) for the customers within 

which they must settle their account or be charged interest rate over the unsold items. 

h. Shortage is not allowed and lead time is assumed to be zero. 

i. The condition of 𝑀 > 𝑁 in Huang’s [14] is relaxed. 

j. 𝛽𝑀is assumed to be sufficiently small, i.e. 𝛽𝑀 ≪ 1. 
The following are the notations used in the work: 

𝐼𝑟 𝑡 ,𝐼𝑜 𝑡 re the inventory levels of the RW and OW respectively at time t. 

D is the constant demand rate of the item. 

𝑊is the maximum quantity that can be stored in OW. 

𝑡𝑤 is time at which inventory at RW drops to zero. 

T is the replenishment cycle for the model. 
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𝛼, 𝛽are the deterioration rates at OW and RW respectively with 𝛼 > 𝛽. 

𝑟 , 𝑜are the holding costs  (excluding interest charges) per unit per unit time of RW and OW respectively. 

A is the ordering cost per order. 

𝐼𝑝  , 𝐼𝑒  are the interest payable and interest earned return rates respectively. 

c, p are the purchasing cost and selling price of the item respectively. 

M the trade credit period offered to the retailer by the supplier (Upstream). 

N the trade credit period offered to the customer by the retailer (Downstream). 

γ the portion/fraction of the quantity ordered by the customer to be paid before giving the trade credit period  

TRC is the total relevant costs per unit of the model to be minimized. 

All other notations not defined here will be defined appropriately. 

 

 

 

                              𝐼𝑟(𝑡) 

W 

                                         

                                                     𝐼𝑜 (𝑡) 

 

 

 

      0                       𝑡𝑤                                                                             T 

Fig 1: graphical representation of the model 
 

3.  Mathematical Model Formulation 

Based on the model setup, we assume initially that at 𝑡 = 0, the two warehouses are stocked. Then the replenishment cycle 

begins, such that during the time period 𝑡 ∈  0, 𝑡𝑤 , depletion of inventory at RW is due to the combined effect of demand 

and deterioration. At 𝑡 = 𝑡𝑤 , the inventory at RW drops to zero. For the OW, the depletion of inventory is due to the effect 

of deterioration only. These are represented by the following differential equations: 
𝑑𝐼𝑟 (𝑡)

𝑑𝑡
+ 𝛽𝐼𝑟(𝑡) = −𝐷 ,                        0 ≤ 𝑡 ≤ 𝑡𝑤          (1) 

𝑑𝐼𝑜 (𝑡)

𝑑𝑡
+ 𝛼𝐼𝑜(𝑡) = 0    ,                         0 ≤ 𝑡 ≤ 𝑡𝑤                                        (2) 

The boundary and initial conditions for RW and OW are respectively given as follows: 

𝑎𝑡 𝑡 = 𝑡𝑤 , 𝐼𝑟 𝑡 = 0                                                                                 (3) 

𝑎𝑡 𝑡 = 0, 𝐼𝑜 𝑡 = 𝑊                                                                                (4)  

During the time period 𝑡 ∈ (𝑡𝑤  , 𝑇), no activity in RW as the items stocked are finished; depletion of inventory at OW is due 

to demand by the customers combined with the effect of deterioration. At 𝑡 = 𝑇, the inventory at OW drops to zero. From 

𝑡𝑤  to 𝑇, the situation in OW is represented by the following differential equation: 
𝑑𝐼𝑜 (𝑡)

𝑑𝑡
+ 𝛼𝐼𝑜 𝑡 = −𝐷    ,                           𝑡𝑤 ≤ 𝑡 ≤ 𝑇                                  (5) 

The boundary condition is given as  

𝑎𝑡 𝑡 = 𝑇, 𝐼𝑜 𝑡 = 0                                                                                  (6)  

The solutions to equations (1), (2) and (5) using (3), (4) and (6) respectively are  

𝐼𝑟 𝑡 =
𝐷

𝛽
 𝑒𝛽 𝑡𝑤 −𝑡 − 1                          0 ≤ 𝑡 ≤ 𝑡𝑤                                    (7) 

𝐼𝑜 𝑡 = 𝑊𝑒−𝛼𝑡                                            0 ≤ 𝑡 ≤ 𝑡𝑤                                    (8) 

𝐼𝑜 𝑡 =
𝐷

𝛼
 𝑒𝛼 𝑇−𝑡 − 1 𝑡𝑤 ≤ 𝑡 ≤ 𝑇                                                           (9)  

Due to physical deterioration and continuity of the model when  𝑡 = 𝑡𝑤 ,using (8) and (9) we get 

𝑇 = 𝑡𝑤 +
1

𝛼
ln  

𝛼𝑊

𝐷
𝑒−𝛼𝑡𝑤 + 1                                 (10) 

For us to get the Total Relevant Costs per unit time (TRC), we calculate the following elements 

1. Ordering Cost Per Unit Time, OC 
The ordering cost per unit time, i.e. annual ordering cost is given by 

𝑂𝐶 =
𝐴

𝑇
                        (11)  

2. Holding Cost Per Unit Time, HC 

Thetotal annual holding cost, HC,using (7), (8) and (9) is given by 

𝐻𝐶 =  
𝐷𝑟

𝛽2𝑇
 𝑒𝛽𝑡𝑤 − 𝛽𝑡𝑤 − 1 +

𝑊𝑜

𝛼𝑇
 1 − 𝑒−𝛼𝑡𝑤  +

𝐷𝑜

𝛼2𝑇
(𝑒𝛼 𝑇−𝑡𝑤  − 𝛼 𝑇 − 𝑡𝑤 − 1)     (12) 
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3. Deteriorating Cost Per Unit Per Unit Time, DC 

Thetotal annual deterioration cost,DC , using (7), (8) and (9) is  

𝐷𝐶 =
𝑐

𝑇
 

𝐷

𝛽
 𝑒𝛽𝑡𝑤 − 𝛽𝑡𝑤 − 1 + 𝑊 1 − 𝑒−𝛼𝑡𝑤  +

𝐷

𝛼
(𝑒𝛼 𝑇−𝑡𝑤  − 𝛼 𝑇 − 𝑡𝑤 − 1)   (13) 

4. Interest Payable and Interest Earned Opportunity Costs 𝐼𝑃&𝐼𝐸  

The supplier offers a permissible delay in payment period 𝑀 for the retailer to settle account, and the retailer also offers the customers a 

delay in payment permissible period 𝑁 ≤  𝑡𝑤  for 1 − 𝛾 fraction of the total placed order within which to settle their accounts. This is by 

first depositing an amount when placing order to cover a fraction, 𝛾, of the placed order. 

 

                𝐼𝑟(𝑡) 

 W  

 

 

                                         𝐼𝑜(𝑡) 
 

 

 

    0  M  N   M   𝑡𝑤    M                            T    M     T+N     M 

Figure 2: Graphical representation showing the positions of N and M in the model. 
 

Based on the values of N, M, 𝑡𝑤 ,T and T+N, we have two main cases to consider (1) 𝑁 ≤ 𝑀  and (2) 𝑁 > 𝑀. From case 1 

however, we have four sub – cases as follows: 

(1.1) 0 ≤ 𝑀 ≤ 𝑡𝑤  (1.2) 𝑡𝑤 ≤ 𝑀 ≤ 𝑇(1.3) 𝑇 ≤ 𝑀 ≤ 𝑇 + 𝑁and (1.4) 𝑇 + 𝑁 ≤ 𝑀.  

In all these sub-cases, 𝑁 ≤ 𝑀 and 𝑁 ≤ 𝑡𝑤  

 

Case 1: 𝑁 ≤ 𝑀 (when upstream permissible period is longer than the downstream permissible period). 

Sub – case 1.1: 0 ≤ 𝑀 ≤ 𝑡𝑤  

At time N, the retailer had obtained cash payments from the customers and also start to receive credit payment from them. 

The retailer must finance all items sold after M on cash and credit. Therefore the annual interest payable by the retailer is 

given by 

𝐼𝑃 =
𝑐𝐼𝑝

𝑇
 𝛾   𝐼𝑟 𝑡 𝑑𝑡

𝑡𝑤

𝑀

+  𝐼𝑜 𝑡 𝑑𝑡

𝑇

𝑀

 +  1 − 𝛾   𝐼𝑟 𝑡 𝑑𝑡

𝑡𝑤 +𝑁

𝑀

+  𝐼𝑜 𝑡 𝑑𝑡

𝑇+𝑁

𝑀

   

Using Equations (7), (8) and (9) we get 
𝐼𝑃 =

𝑐𝐼𝑝

𝑇
 

𝐷

𝛽2
 𝛾 𝑒𝛽(𝑡𝑤 −𝑀) − 𝛽(𝑡𝑤 − 𝑀) − 1 +  1 − 𝛾  𝑒𝛽(𝑡𝑤 −𝑀) − 𝛽(𝑡𝑤 + 𝑁 − 𝑀) − 𝑒−𝛽𝑁  +

𝑊

𝛼
 𝑒−𝛼𝑀 − 𝑒−𝛼𝑡𝑤  +

𝐷

𝛼2
 𝛾(𝑒𝛼 𝑇−𝑡𝑤  −

𝛼𝑇−𝑡𝑤−1)+1−𝛾𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇+𝑁−𝑡𝑤−𝑒−𝛼𝑁                    (14) 

On the other hand, the retailer accumulates revenue and earns interest from the cash payments made from the beginning 

time 0 through to M and credit payment beginning from time N through to M. Therefore the annual interest earned is given 

by  

𝐼𝐸 =
𝑝𝐼𝑒

𝑇
 𝛾  𝐷𝑡𝑑𝑡

𝑀

0
+ (1 − 𝛾)  𝐷 𝑡 − 𝑁 𝑑𝑡

𝑀

𝑁
 =

𝐷𝑝𝐼𝑒

2𝑇
 𝛾𝑀2 +  1 − 𝛾  𝑀 − 𝑁 2      (15) 

The Total Annual Relevant Costs per Unit Time TRC is 

𝑇𝑅𝐶1.𝑖 = 𝑂𝐶 + 𝐻𝐶 + 𝐷𝐶 + 𝐼𝑃 − 𝐼𝐸        𝑖 = 1,2,3,4           (16) 

Therefore, putting Equations (11), (12), (13), (14) and (15) into equation (16) and simplifying, we get for 𝑖 = 1 i.e. for sub 

– case 1.1, 

𝑇𝑅𝐶1.1 =
1

𝑇
 𝐴 +

𝐷

𝛽2   𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 𝛽𝑡𝑤 − 1 + 𝑐𝐼𝑝  𝛾 𝑒𝛽 𝑡𝑤 −𝑀 − 𝛽 𝑡𝑤 − 𝑀 − 1 +  1 − 𝛾  𝑒𝛽(𝑡𝑤 −𝑀) − 𝛽(𝑡𝑤 + 𝑁 − 𝑀) −

𝑒−𝛽𝑁+𝑊𝛼𝑜+𝛼𝑐1−𝑒−𝛼𝑡𝑤+𝑐𝐼𝑝𝑒−𝛼𝑀−𝑒−𝛼𝑡𝑤+𝐷𝛼2𝑜+𝛼𝑐+𝛾𝑐𝐼𝑝𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇−𝑡𝑤−1+1−𝛾𝑐𝐼𝑝𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇+𝑁−𝑡𝑤−𝑒−𝛼𝑁−12𝑝𝐼
𝑒𝐷𝛾𝑀2+1−𝛾𝑀−𝑁2         (17)  

Sub – case 1.2: 𝑡𝑤 ≤ 𝑀 ≤ 𝑇 
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No unsold items in RW as at the time M, but the retailer will pay interest on unsettled payments from the customer for the 

credit period 𝑡𝑤 , 𝑡𝑤 + 𝑁  only when 𝑡𝑤 + 𝑁 ≥ 𝑀 otherwise no interest payable for the unsettled payments of goods sold 

in RW. For the items in OW, the retailer will pay interest for all items sold after M on cash and credit basis up to the time 

the last customer will settle the account. Hence, the annual interest payable is given by  

𝐼𝑃 =
𝑐𝐼𝑝

𝑇
 𝛾   𝐼𝑜 𝑡 𝑑𝑡

𝑇

𝑀

 +  1 − 𝛾   𝐼𝑟 𝑡 𝑑𝑡

𝑡𝑤 +𝑁

𝑀

+  𝐼𝑜 𝑡 𝑑𝑡

𝑇+𝑁

𝑀

   

Using Equations (7), (8) and (9), we get 

𝐼𝑃 =
𝑐𝐼𝑝

𝑇
 𝛾

𝐷

𝛼2
 𝑒𝛼 𝑇−𝑀 − 𝛼 𝑇 − 𝑀 − 1 +  1 − 𝛾  

𝐷

𝛽2
 𝑒𝛽(𝑡𝑤 −𝑀) − 𝛽(𝑡𝑤 + 𝑁 − 𝑀) − 𝑒−𝛽𝑁  +

𝐷

𝛼2
(𝑒𝛼 𝑇−𝑡𝑤  − 𝛼 𝑇 + 𝑁 − 𝑡𝑤 −

𝑒−𝛼𝑁)                        (18)                                           

Also, for the interest earned, the retailer will accumulate revenue and obtain interest from the cash payment starting from 0 

to M and credit payment starting from N to M. Therefore the annual interest earned by the retailer is given by 

𝐼𝐸 =
𝑝𝐼𝑒

𝑇
 𝛾  𝐷𝑡𝑑𝑡

𝑀

0
+ (1 − 𝛾)  𝐷 𝑡 − 𝑁 𝑑𝑡

𝑀

𝑁
 =

𝐷𝑝𝐼𝑒

2𝑇
 𝛾𝑀2 +  1 − 𝛾  𝑀 − 𝑁 2        (19) 

Therefore, substituting (11), (12), (13), (18) and (19) into (16)and simplifying, we get for 𝑖 = 2 

𝑇𝑅𝐶1.2 =
1

𝑇
 𝐴 +

𝐷

𝛽2   𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 𝛽𝑡𝑤 − 1 + 𝑐𝐼𝑝 1 − 𝛾  𝑒𝛽 𝑡𝑤 −𝑀 − 𝛽 𝑡𝑤 + 𝑁 − 𝑀 − 𝑒−𝛽𝑁   +
𝑊

𝛼
 𝑜 + 𝛼𝑐  1 − 𝑒−𝛼𝑡𝑤  +

𝐷𝛼2𝑜+𝛼𝑐𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇−𝑡𝑤−1+𝑐𝐼𝑝𝛾𝑒𝛼𝑇−𝑀−𝛼𝑇−𝑀−1+1−𝛾𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇+𝑁−𝑡𝑤−𝑒−𝛼𝑁−12𝛾𝑝𝐼𝑒𝐷𝑀2−121−𝛾𝑝𝐼𝑒𝐷𝑀−𝑁2    
      (20) 

 
Sub – case 1.3: 𝑇 ≤ 𝑀 ≤ 𝑇 + 𝑁 
For all the items sold on cash payments by the retailer up to the time T, there is no interest charged. But the retailer will pay interest for the items sold on 
credit up to the time the last customer will settle the account, and is given by 

𝐼𝑃 =
𝑐𝐼𝑝

𝑇
 (1 − 𝛾)   𝐼𝑜 𝑡 𝑑𝑡

𝑇+𝑁

𝑀

   

Using Equation (9) we see that 

𝐼𝑃 =  1 − 𝛾 
𝐷𝑐𝐼𝑝

𝛼2𝑇
 𝑒𝛼 𝑇−𝑀 − 𝛼 𝑇 + 𝑁 − 𝑀 − 𝑒−𝛼𝑁                                        (21)  

Likewise, the retailer accumulates revenue and earn interest from the cash payment starting from 0 to M and credit payment starting from N to M. 

Therefore the annual interest earned is given by 

𝐼𝐸 =
𝑝𝐼𝑒

𝑇
 𝛾   𝐷𝑡𝑑𝑡

𝑇

0
+ 𝐷𝑇 𝑀 − 𝑇  + (1 − 𝛾)   𝐷 𝑡 − 𝑁 𝑑𝑡 + 𝐷𝑇(𝑀 − 𝑇)

𝑇

𝑁
  =

𝐷𝑝𝐼𝑒

2𝑇
 𝛾𝑇2 +  1 − 𝛾  𝑇 − 𝑁 2 + 2𝑇 𝑀 − 𝑇            

        (22)  

Therefore, putting (11), (12), (13), (21) and (22) into (16) we get for 𝑖 = 3 

𝑇𝑅𝐶1.3 =
1

𝑇
 𝐴 +

𝐷

𝛽2   𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 𝛽𝑡𝑤 − 1  +
𝑊

𝛼
  𝑜 + 𝛼𝑐  1 − 𝑒−𝛼𝑡𝑤   +

𝐷

𝛼2
  𝑜 + 𝛼𝑐  𝑒𝛼 𝑇−𝑡𝑤  − 𝛼 𝑇 − 𝑡𝑤 − 1 +  1 − 𝛾 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑀 −

𝛼𝑇+𝑁−𝑀−𝑒−𝛼𝑁−12𝑝𝐼𝑒𝐷𝛾𝑇2+1−𝛾𝑇−𝑁2+2𝑇𝑀−𝑇                   (23) 

Sub – case 1.4: 𝑇 + 𝑁 ≤ 𝑀 

In this case, the retailer had received all cash and credit payments before the allowed period given by the supplier, hence incurs no 

interest. Therefore, annual interest payable is given by 

𝐼𝑃 = 0                            (24) 

For the interest earned, the retailer accumulates revenue and earn interest from the cash payment starting from time 0 to M and 

credit payment beginning from N to T+N. therefore the annual interest earned is given by  

𝐼𝐸 =
𝑝𝐼𝑒

𝑇
 𝛾   𝐷𝑡𝑑𝑡

𝑇

0
+ 𝐷𝑇 𝑀 − 𝑇  + (1 − 𝛾)   𝐷(𝑡 − 𝑁)𝑑𝑡

𝑇

𝑁
+ 𝐷𝑇 𝑇 + 𝑁 − 𝑇 + 𝐷 𝑇 + 𝑁  𝑀 − 𝑇 − 𝑁   =

𝑝𝐼𝑒𝐷

𝑇
 𝛾  𝑀𝑇 −

1

2
𝑇2 + (1 − 𝛾)  

1

2
𝑇2 +

1

2
𝑁2 +  𝑇 + 𝑁  𝑀 − 𝑇 − 𝑁                                     (25) 

Substituting (11), (12), (13), (24) and (25) into (16), we get for 𝑖 = 4 

𝑇𝑅𝐶1.4 =
1

𝑇
 𝐴 +

𝐷

𝛽2
 𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 𝛽𝑡𝑤 − 1 +

𝑊

𝛼
 𝑜 + 𝛼𝑐  1 − 𝑒−𝛼𝑡𝑤  +

𝐷

𝛼2   𝑜 + 𝛼𝑐  𝑒𝛼 𝑇−𝑡𝑤  − 𝛼 𝑇 − 𝑡𝑤 − 1  − 𝑝𝐼𝑒𝐷  𝛾  𝑀𝑇 −

12𝑇2+(1−𝛾)12𝑇2+12𝑁2+𝑇+𝑁𝑀−𝑇−𝑁            (26) 
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Case 2: 𝑁 > 𝑀 (when upstream permissible period is shorter than the downstream permissible period) 

In this scenario, the only case that will occur is when 𝑀 < 𝑁 ≤ 𝑡𝑤  due to the restriction of the period N in the assumptions. In this 

case, the retailer must finance all items sold in cash from time M to T and all items sold on credit payments from M to T+N. 

Therefore the annual interest payable is given by 

𝐼𝑃 =
𝑐𝐼𝑝

𝑇
 𝛾   𝐼𝑟 𝑡 𝑑𝑡 +

𝑡𝑤

𝑀

 𝐼𝑜 𝑡 𝑑𝑡

𝑇

𝑀

 + (1 − 𝛾)   𝐼𝑟 𝑡 𝑑𝑡

𝑡𝑤 +𝑁

𝑀

+  𝐼𝑜 𝑡 𝑑𝑡

𝑇+𝑁

𝑀

   

Using Equations (7), (8) and (9) we see that 

𝐼𝑃 =
𝑐𝐼𝑝

𝑇
 

𝐷

𝛽2
 𝛾 𝑒𝛽 𝑡𝑤−𝑀 − 𝛽 𝑡𝑤 − 𝑀 − 1 +  1 − 𝛾  𝑒𝛽 𝑡𝑤 −𝑀 − 𝛽 𝑡𝑤 + 𝑁 − 𝑀 − 𝑒−𝛽𝑁  +

𝐷

𝛼2
 𝛾 𝑒𝛼 𝑇−𝑡𝑤  − 𝛼 𝑇 − 𝑡𝑤  −

1+1−𝛾𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇+𝑁−𝑡𝑤−𝑒−𝛼𝑁+𝑊𝛼𝑒−𝛼𝑀−𝑒−𝛼𝑡𝑤 (27) 

Likewise, since the retailer gives the customers trade credit period more than what was given by the supplier, then no interest 

earned on the  1 − 𝛾  proportion of the quantity given to the customers but will generate revenue from the γ proportion of the 

quantity for the period, 0 to M, therefore the annual interest earned is given by 

𝐼𝐸 =
𝑝𝐼𝑒

𝑇
𝛾  𝐷𝑡𝑑𝑡

𝑀

0
=

1

2𝑇
𝛾𝐷𝑝𝐼𝑒𝑀

2                   (28) 

Substituting (11), (12), (13), (27) and (28) into (16), we get 

𝑇𝑅𝐶2 =
1

𝑇
 𝐴 +

𝐷

𝛽2   𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 𝛽𝑡𝑤 − 1 + 𝑐𝐼𝑝  𝛾 𝑒𝛽 𝑡𝑤−𝑀 − 𝛽 𝑡𝑤 − 𝑀 − 1 +  1 − 𝛾  𝑒𝛽 𝑡𝑤 −𝑀 − 𝛽 𝑡𝑤 + 𝑁 − 𝑀 −

𝑒−𝛽𝑁+𝑊𝛼𝑜+𝛼𝑐1−𝑒−𝛼𝑡𝑤+𝑐𝐼𝑝𝑒−𝛼𝑀−𝑒−𝛼𝑡𝑤+𝐷𝛼2𝑜+𝛼𝑐𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇−𝑡𝑤−1+𝑐𝐼𝑝𝑒𝛼𝑇−𝑡𝑤−𝛾𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇−𝑡𝑤−1+1−𝛾
𝑒𝛼𝑇−𝑡𝑤−𝛼𝑇+𝑁−𝑡𝑤−𝑒−𝛼𝑁−12𝛾𝐷𝑝𝐼𝑒𝑀2   (29) 

 

4.  Optimization and Analysis 

The necessary conditions for TRC1.1 to be minimized are 
𝜕𝑇𝑅𝐶1.1

𝜕𝑡𝑤
= 0 and 

𝜕𝑇𝑅𝐶1.1

𝜕𝑇
= 0 

Using Equation (17), we get 
𝜕𝑇𝑅𝐶1.1

𝜕𝑡𝑤
=

1

𝑇
 
𝐷

𝛽
  𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 1 + 𝑐𝐼𝑝 𝑒𝛽(𝑡𝑤 −𝑀) − 1  + 𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡𝑤 −

𝐷

𝛼
  𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝  𝑒𝛼 𝑇−𝑡𝑤  − 1   =

0                              (30) 

So also 
𝜕𝑇𝑅𝐶1.1

𝜕𝑇
=

1

𝑇
 

𝐷

𝛼
 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝  𝑒𝛼(𝑇−𝑡𝑤 ) − 1 − 𝑇𝑅𝐶1.1 = 0                                  (31) 

To obtain the solutions 𝑡𝑤
11∗ and 𝑇11

∗  of the highly non - linear equations (30) and (31) respectively, we use the optimization 

technique, Newton – Raphson method. 

To prove that 𝑡𝑤
11∗ and 𝑇11

∗ exist and unique, we show it satisfy the sufficient condition for a minimum, i.e. the determinant of 

Hessian matrix H evaluated at the point  𝑡𝑤
11∗ , 𝑇11

∗   is positive definite. Hence, evaluating the gradients of the H at the 

point 𝑡𝑤
11∗ , 𝑇11

∗  , we have; 

Taking the second derivative of (17) with respect to𝑡𝑤 , and evaluating at the point  𝑡𝑤
11∗ , 𝑇11

∗  we see that  

 𝜕
2𝑇𝑅𝐶1.1

𝜕𝑡𝑤
2  

 𝑡𝑤
11∗ ,𝑇11

∗  
=  1

𝑇
 𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 + 𝑐𝐼𝑝𝑒𝛽(𝑡𝑤−𝑀) − 𝛼𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡𝑤 + 𝐷 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑡𝑤    

 𝑡𝑤
11∗ ,𝑇11

∗  
>

 1
𝑇
 𝐷 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑡𝑤    

 𝑡𝑤
11∗ ,𝑇11

∗  
> 0        (32) 

If and only if 

𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 + 𝑐𝐼𝑝𝑒𝛽(𝑡𝑤 −𝑀) − 𝛼𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡𝑤 > 0 

 

Lemma 1:- Given that 𝐷 > 𝛼𝑊 and 𝑟 − 𝑜 > 𝑐 𝛼 − 𝛽  as in assumption 2(c), then 

𝐷 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝𝑒−𝛽𝑀 𝑒𝛽𝑡 > 𝛼𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡    𝑓𝑜𝑟 𝑡 > 0 

Proof  

Let 𝑓 𝑡 = 𝐷 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝𝑒−𝛽𝑀 𝑒𝛽𝑡 − 𝛼𝑊 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝 𝑒−𝛼𝑡     𝑡 ≥ 0 

𝑓 0 = 𝐷 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝𝑒−𝛽𝑀  − 𝛼𝑊 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝 =  𝐷 − 𝛼𝑊  𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝 𝐷𝑒−𝛽𝑀 − 𝛼𝑊  

But from series expansion at origin, i.e. McLaurin series, we get 

𝑒−𝛽𝑀 = 1 − 𝛽𝑀 +
 𝛽𝑀 2

2!
− ⋯ 

⟹1 − 𝛽𝑀 < 𝑒−𝛽𝑀  
 

Journal of the Nigerian Association of Mathematical Physics Volume 54, (January 2020 Issue), 51– 62   



57 
 

Two-Warehouse Inventory…                  Zaharaddeen and Babangida                        J. of NAMP 

 
 

Therefore, 𝑓 0 =  𝐷 − 𝛼𝑊  𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝 𝐷𝑒−𝛽𝑀 − 𝛼𝑊 >  𝐷 − 𝛼𝑊  𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝 𝐷 1 − 𝛽𝑀 − 𝛼𝑊 > 0 

Since from assumption 2(d) and 2(j) 𝐷 − 𝛼𝑊 > 0 and 𝛽𝑀 is assumed to be sufficiently small respectively. 

𝑓 ′ 𝑡 = 𝛽𝐷 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝𝑒−𝛽𝑀 𝑒𝛽𝑡 + 𝛼2𝑊 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝 𝑒−𝛼𝑡 > 0 

Since 𝑓 ′ 𝑡 > 0 for all 𝑡 > 0, implies 𝑓(𝑡) is an increasing function of 𝑡. 

Also, from assumption 2(c), 𝑟 + 𝑐𝛽 > 𝑜 + 𝛼𝑐 since 𝑟 > 𝑜  and 0 ≤ 𝛽 ≤ 𝛼 ≤ 1 

⟹ 𝐷 𝑟 + 𝑐𝛽 + 𝑐𝐼𝑝𝑒−𝛽𝑀 𝑒𝛽𝑡 > 𝛼𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0   proved 

 

Taking the second derivative of (17) with respect to T, and evaluating at the point  𝑡𝑤
11∗ , 𝑇11

∗  we see that  

 𝜕
2𝑇𝑅𝐶1.1

𝜕𝑇2
 
 𝑡𝑤

11∗ ,𝑇11
∗  

=  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒𝛼(𝑇−𝑡𝑤 )   

 𝑡𝑤
11∗ ,𝑇11

∗  

> 0,                                       (33) 

Also using Equation (17), after simplification and evaluation at the point 𝑡𝑤
11∗ , 𝑇11

∗  we find that 

 𝜕
2𝑇𝑅𝐶1.1

𝜕𝑡𝑤𝜕𝑇
 
 𝑡𝑤

11∗ ,𝑇11
∗  

= −  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑡𝑤     

 𝑡𝑤
11∗ ,𝑇11

∗  

=  𝜕
2𝑇𝑅𝐶1.1

𝜕𝑇𝜕 𝑡𝑤
 
 𝑡𝑤

11∗ ,𝑇11
∗  

     (34) 

Using (32), (33) and (34), we find that the Hessian matrix has determinant greater than zero, i.e.  

  
𝜕2𝑇𝑅𝐶1.1

𝜕𝑡𝑤
2

𝜕2𝑇𝑅𝐶1.1

𝜕𝑇2 −
𝜕2𝑇𝑅𝐶1.1

𝜕𝑡𝑤 𝜕𝑇

𝜕2𝑇𝑅𝐶1.1

𝜕𝑇𝜕 𝑡𝑤
  

 𝑡𝑤
11∗ ,𝑇11

∗  
> 0 implying that it is positive definite. Proved 

Theorem 1: The cost function, TRC1.1, represented by Equation (17) is a convex function. 

Proof. 

The proof follows from the fact that the solutions to the cost function, TRC1.1, satisfy the sufficiency condition as shown in 

Lemma 1 and the explanation before it. 
 

The necessary conditions for TRC1.2 to be minimized are 
𝜕𝑇𝑅𝐶1.2

𝜕𝑡𝑤
= 0 and 

𝜕𝑇𝑅𝐶1.2

𝜕𝑇
= 0 

Using Equation (20) we get 
𝜕𝑇𝑅𝐶1.2

𝜕𝑡𝑤
=

1

𝑇
 
𝐷

𝛽
  𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 1 +  1 − 𝛾 𝑐𝐼𝑝 𝑒𝛽(𝑡𝑤−𝑀) − 1  + 𝑊 𝑜 + 𝑐𝛼 𝑒−𝛼𝑡𝑤 +

𝐷

𝛼
 𝑜 + 𝛼𝑐 +  1 − 𝛾 𝑐𝐼𝑝  1 −

𝑒𝛼(𝑇−𝑡𝑤)=0                                                            (35) 

Also,  
𝜕𝑇𝑅𝐶1.2

𝜕𝑇
=

1

𝑇
 
𝐷

𝛼
  𝑜 + 𝛼𝑐 +  1 − 𝛾 𝑐𝐼𝑝  𝑒𝛼(𝑇−𝑡𝑤 ) − 1 + 𝛾𝑐𝐼𝑝 𝑒𝛼(𝑇−𝑀) − 1  − 𝑇𝑅𝐶1.2 = 0     (36) 

To obtain  𝑡𝑤
12∗ and𝑇12

∗ , the optimal solutions of equations (35) and (36) respectively, we use the optimization technique Newton – 

Raphson method. 

To prove that 𝑡𝑤
12∗ and𝑇12

∗  satisfy the sufficient condition for minimum, we show the Hessian matrix H evaluated at the point 

 𝑡𝑤
12∗ , 𝑇12

∗   is positive definite.  

Taking the second derivative of Equation (20) with respect to𝑡𝑤 , and evaluating at the point  𝑡𝑤
12∗ , 𝑇12

∗  we see that 

 𝜕
2𝑇𝑅𝐶1.2

𝜕𝑡𝑤
2  

 𝑡𝑤
12∗ ,𝑇12

∗  
=

 1
𝑇
 𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 +  1 − 𝛾 𝑐𝐼𝑝𝑒𝛽(𝑡𝑤−𝑀) − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 + 𝐷 𝑜 + 𝛼𝑐 +  1 − 𝛾 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑡𝑤    

 𝑡𝑤
12∗ ,𝑇12

∗  
> 0    (37) 

If and only if 

𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 +  1 − 𝛾 𝑐𝐼𝑝𝑒𝛽(𝑡𝑤−𝑀) − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 > 0   ∀ 𝑡𝑤  

Lemma 2: Given 𝐷 > 𝛼𝑊 then 

𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 +  1 − 𝛾 𝑐𝐼𝑝𝑒𝛽(𝑡𝑤−𝑀) − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 > 0   ∀ 𝑡𝑤  

Proof  

The proof follows from Lemma 1, since 𝑟 + 𝑐𝛽 > 𝑜 + 𝛼𝑐 and 𝛽 ≤ 𝛼⟹−𝛼 ≤ −𝛽 < 𝛽 because 𝛽 is positive. 

 

Taking the second derivative of equation (20) with respect to T, and evaluating at the point  𝑡𝑤
12∗ , 𝑇12

∗  we see that  

 𝜕
2𝑇𝑅𝐶1.2

𝜕𝑇2  
 𝑡𝑤

12∗ ,𝑇12
∗  

=
𝐷

𝑇
   𝑜 + 𝛼𝑐 +  1 − 𝛾 𝑐𝐼𝑝 𝑒𝛼(𝑇−𝑡𝑤 ) + 𝛾𝑐𝐼𝑝𝑒𝛼(𝑇−𝑀)  

 𝑡𝑤
12∗ ,𝑇12

∗  
> 0    (38) 

Also from Equation (20), after simplification we find that 

 𝜕
2𝑇𝑅𝐶1.2

𝜕𝑡𝑤𝜕𝑇
 
 𝑡𝑤

12∗ ,𝑇12
∗  

= −  𝐷
𝑇

  𝑜 + 𝛼𝑐 +  1 − 𝛾 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑡𝑤    
 𝑡𝑤

12∗ ,𝑇12
∗  

=  𝜕
2𝑇𝑅𝐶1.2

𝜕𝑇𝜕 𝑡𝑤
 
 𝑡𝑤

12∗ ,𝑇12
∗  

   (39) 

Using (37), (38) and (39), we find that the Hessian matrix has determinant greater than zero, i.e. 

  
𝜕2𝑇𝑅𝐶1.2

𝜕𝑡𝑤
2

𝜕2𝑇𝑅𝐶1.2

𝜕𝑇2 −
𝜕2𝑇𝑅𝐶1.2

𝜕𝑡𝑤 𝜕𝑇

𝜕2𝑇𝑅𝐶1.2

𝜕𝑇𝜕 𝑡𝑤
  

 𝑡𝑤
12∗ ,𝑇12

∗  
> 0 and so it is positive definite. Proved□ 
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Theorem 2: The cost function, TRC1.2, represented by Equation (20) is a convex function. 

Proof.  

The proof follows from the fact that the solutions to the cost function, TRC1.2, satisfy the sufficient condition for minimum as 

shown in Lemma 2 and the explanation before it. 

 

The necessary conditions for TRC1.3 to be minimized are 
𝜕𝑇𝑅𝐶1.3

𝜕𝑡𝑤
= 0 and 

𝜕𝑇𝑅𝐶1.3

𝜕𝑇
= 0 

Using Equation (23), we have 
𝜕𝑇𝑅𝐶1.3

𝜕𝑡𝑤
=

1

𝑇
 
𝐷

𝛽
 𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 1 + 𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 +

𝐷

𝛼
 𝑜 + 𝛼𝑐  1 − 𝑒𝛼 𝑇−𝑡𝑤    = 0     (40) 

Also,  
𝜕𝑇𝑅𝐶1.3

𝜕𝑇
=

1

𝑇
 
𝐷

𝛼
  𝑜 + 𝛼𝑐  𝑒𝛼(𝑇−𝑡𝑤 ) − 1 +  1 − 𝛾 𝑐𝐼𝑝 𝑒𝛼(𝑇−𝑀) − 1  − 𝑝𝐼𝑒𝐷( 𝛾 − 1 𝑁 + 𝑀 − 𝑇) − 𝑇𝑅𝐶1.3 = 0(41)  

To obtain 𝑡𝑤
13∗ and 𝑇13

∗  the optimal solutions of equations (40) and (41) respectively, we use the optimization technique, Newton – 

Raphson method. 

To prove that 𝑡𝑤
13∗ and 𝑇13

∗ exist and unique, we show they satisfy the sufficient condition for minimum, that is, we show the 

determinant of Hessian matrix H evaluated at the point  𝑡𝑤
13∗ , 𝑇13

∗   is positive definite.  

Differentiating Equation (23) twice with respect to𝑡𝑤  and evaluating at the point  𝑡𝑤
13∗ , 𝑇13

∗  we see that 

 𝜕
2𝑇𝑅𝐶1.3

𝜕𝑡𝑤
2  

 𝑡𝑤
13∗ ,𝑇13

∗  
=  1

𝑇
 𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 + 𝐷 𝑜 + 𝛼𝑐 𝑒𝛼 𝑇−𝑡𝑤    

 𝑡𝑤
13∗ ,𝑇13

∗  
>

 1
𝑇
𝐷 𝑜 + 𝛼𝑐 𝑒𝛼 𝑇−𝑡𝑤   

 𝑡𝑤
13∗ ,𝑇13

∗  
> 0                  (42) 

If and only if 

𝐷   𝑟 + 𝛽𝑐 𝑒𝛽𝑡𝑤  − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 > 0  ∀𝑡𝑤  

 

Lemma 3: Given 𝐷 > 𝛼𝑊 then 

𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡 − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡 > 0  𝑖𝑓 𝑡 > 0 

Proof  

Let 𝑔 𝑡 = 𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡 − 𝛼𝑊 𝑟 + 𝑐𝛽 𝑒−𝛼𝑡  for all 𝑡 > 0 

𝑔 0 =  𝐷 − 𝛼𝑊  𝑟 + 𝑐𝛽 > 0 From assumption in 2(d)  

𝑔′ 𝑡 = 𝛽𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡 + 𝛼2𝑊 𝑟 + 𝛼𝑐 𝑒−𝛼𝑡 > 0 

Since 𝑔′ 𝑡 > 0 , for all 𝑡 > 0, we can conclude that 𝑔(𝑡) is an increasing function of 𝑡. 

Using assumption 2(c), 

⟹ 𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡 − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡 > 0 proved□  

 

Differentiating Equation (23) twice with respect to T, and evaluating at the point  𝑡𝑤
13∗ , 𝑇13

∗  we see that  

 𝜕
2𝑇𝑅𝐶1.3

𝜕𝑇2  
 𝑡𝑤

13∗ ,𝑇13
∗  

=  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 𝑒𝛼(𝑇−𝑡𝑤 ) +  1 − 𝛾 𝑐𝐼𝑝𝑒𝛼(𝑇−𝑀) + 𝑝𝐼𝑒   

 𝑡𝑤
13∗ ,𝑇13

∗  

> 0 (43) 

Using Equation (23), after simplification we find that 

 𝜕
2𝑇𝑅𝐶1.3

𝜕𝑡𝑤𝜕𝑇
 
 𝑡𝑤

13∗ ,𝑇13
∗  

= −  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 𝑒𝛼 𝑇−𝑡𝑤     

 𝑡𝑤
13∗ ,𝑇13

∗  

=  𝜕
2𝑇𝑅𝐶1.3

𝜕𝑇𝜕 𝑡𝑤
 
 𝑡𝑤

13∗ ,𝑇13
∗  

     (44) 

Using (42), (43) and (44), we find that the Hessian matrix has determinant greater than zero, i.e. 

  
𝜕2𝑇𝑅𝐶1.3

𝜕𝑡𝑤
2

𝜕2𝑇𝑅𝐶1.3

𝜕𝑇2 −
𝜕2𝑇𝑅𝐶1.3

𝜕𝑡𝑤 𝜕𝑇

𝜕2𝑇𝑅𝐶1.3

𝜕𝑇𝜕 𝑡𝑤
  

 𝑡𝑤
13∗ ,𝑇13

∗  
> 0 and so is positive definite. Proved□ 

 

Theorem 3: The cost function, TRC1.3, represented by Equation (23) is a convex function. 

Proof. 

The proof follows from the fact that the solutions to the cost function, TRC1.3, satisfy the sufficient condition as shown in Lemma 

3 and the explanation before it. 

The necessary conditions for TRC1.4 to be minimized are 
𝜕𝑇𝑅𝐶1.4

𝜕𝑡𝑤
= 0 and 

𝜕𝑇𝑅𝐶1.4

𝜕𝑇
= 0 

Using Equation (26), we have 
𝜕𝑇𝑅𝐶1.4

𝜕𝑡𝑤
=

1

𝑇
 
𝐷

𝛽
  𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 1  + 𝑊  𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤  +

𝐷

𝛼
 𝑜 + 𝛼𝑐  1 − 𝑒𝛼(𝑇−𝑡𝑤 )  = 0 (45) 

Also,  
𝜕𝑇𝑅𝐶1.4

𝜕𝑇
=

1

𝑇
 
𝐷

𝛼
  𝑜 + 𝛼𝑐  𝑒𝛼(𝑇−𝑡𝑤 ) − 1  − 𝑝𝐼𝑒𝐷 𝑀 − 𝑇 − 2(1 − 𝛾)𝑁 − 𝑇𝑅𝐶1.4 = 0           (46) 

To obtain solutions 𝑡𝑤
14∗ and 𝑇14

∗  to equations (45) and (46) respectively which are non – linear, we use the optimization technique 

Newton – Raphson Method. 
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To prove that  𝑡𝑤
14∗ and 𝑇14

∗ exist and unique, we show they satisfy the sufficient conditions for minimum, that is, we show 

the determinant of Hessian matrix H evaluated at the point  𝑡𝑤
14∗ , 𝑇14

∗   is positive definite.  

Taking the derivative of (26) twice with respect to 𝑡𝑤  and evaluating at the point  𝑡𝑤
14∗ , 𝑇14

∗  we see that 

 𝜕
2𝑇𝑅𝐶1.4

𝜕𝑡𝑤
2  

 𝑡𝑤
14∗ ,𝑇14

∗  
=  1

𝑇
 𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 + 𝐷 𝑜 + 𝛼𝑐 𝑒𝛼 𝑇−𝑡𝑤    

 𝑡𝑤
14∗ ,𝑇14

∗  
>  1

𝑇
𝐷 𝑜 + 𝛼𝑐 +

1−𝛾𝑐𝐼𝑝𝑒𝛼𝑇−𝑡𝑤𝑡𝑤14∗ , 𝑇14∗>0             (47) 

If and only if 

𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 > 0,   ∀ 𝑡𝑤  
 

Lemma 4: Given that 𝐷 > 𝛼𝑊 then 

𝐷 𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 − 𝛼𝑊 𝑜 + 𝛼𝑐 𝑒−𝛼𝑡𝑤 > 0,   ∀ 𝑡𝑤  

Proof  
The proof is obvious from Lemma 3□ 

 

Differentiating (26) twice with respect to T, and evaluating at the point 𝑡𝑤
14∗ , 𝑇14

∗  we see that  

 𝜕
2𝑇𝑅𝐶1.4

𝜕𝑇2  
 𝑡𝑤

14∗ ,𝑇14
∗  

=  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 𝑒𝛼(𝑇−𝑡𝑤 ) + 𝑝𝐼𝑒 )   

 𝑡𝑤
14∗ ,𝑇14

∗  
> 0      (48) 

Using Equations (26), and after simplification we find that 

 𝜕
2𝑇𝑅𝐶1.4

𝜕𝑡𝑤 𝜕𝑇
 
 𝑡𝑤

14∗ ,𝑇14
∗  

= −  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 𝑒𝛼 𝑇−𝑡𝑤   +

𝜕𝑇𝑅𝐶1.4

𝜕𝑡𝑤
  

 𝑡𝑤
14∗ ,𝑇14

∗  
=  𝜕

2𝑇𝑅𝐶1.4

𝜕𝑇𝜕 𝑡𝑤
 
 𝑡𝑤

14∗ ,𝑇14
∗  

  (49) 

Using (47), (48) and (49), we found that the Hessian matrix has determinant greater than zero, i.e.   
𝜕2𝑇𝑅𝐶1.4

𝜕𝑡𝑤
2

𝜕2𝑇𝑅𝐶1.4

𝜕𝑇2 −

𝜕2𝑇𝑅𝐶1.4𝜕𝑡𝑤𝜕𝑇𝜕2𝑇𝑅𝐶1.4𝜕𝑇𝜕𝑡𝑤𝑡𝑤14∗ , 𝑇14∗>0 is positive definite. Proved□ 

 

Theorem 4: The cost function, TRC1.4, represented by Equation (26) is a convex function. 

Proof. 

The proof follows from the fact that the solution to the cost function, TRC1.4, satisfy the sufficient condition for minimum 

as shown in Lemma 4 and the explanation before it. 

 

The necessary conditions for TRC2 to be minimized are 
𝜕𝑇𝑅𝐶2

𝜕𝑡𝑤
= 0 and 

𝜕𝑇𝑅𝐶2

𝜕𝑇
= 0 

Using Equation (29), we get 
𝜕𝑇𝑅𝐶2

𝜕𝑡𝑤
=

1

𝑇
 
𝐷

𝛽
  𝑟 + 𝑐𝛽  𝑒𝛽𝑡𝑤 − 1 + 𝑐𝐼𝑝 𝑒𝛽 𝑡𝑤 −𝑀 − 1  + 𝑊   𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡𝑤  +

𝐷

𝛼
  𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝  1 −

𝑒𝛼(𝑇−𝑡𝑤)=0                (50)      

Also,  
𝜕𝑇𝑅𝐶2

𝜕𝑇
=

1

𝑇
 
𝐷

𝛼
  𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝  𝑒𝛼(𝑇−𝑡𝑤 ) − 1  − 𝑇𝑅𝐶2 = 0                                        (51)  

To obtain the optimal solutions 𝑡𝑤
2∗ and 𝑇2

∗ to equations (50) and (51) respectively, we use the optimization technique 

Newton – Raphson method. 

To prove that 𝑡𝑤
2∗ and 𝑇2

∗exist and unique, we show they satisfy the sufficient condition for minimum, that is, we show the 

determinant of Hessian matrix H evaluated at the point  𝑡𝑤
2∗ , 𝑇2

∗  is positive definite.  

Differentiating (29) twice with respect to 𝑡𝑤  and evaluating at the point  𝑡𝑤
2∗ , 𝑇2

∗ we see that 

 𝜕
2𝑇𝑅𝐶2

𝜕𝑡𝑤
2  

 𝑡𝑤
5∗ ,𝑇5

∗ 
=

 1
𝑇
 𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 + 𝑐𝐼𝑝𝑒𝛽 𝑡𝑤 −𝑀  − 𝛼𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡𝑤 + 𝐷 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑡𝑤    

 𝑡𝑤
2∗ ,𝑇2

∗ 
>  1

𝑇
𝐷 𝑜 +

𝛼𝑐+𝑐𝐼𝑝𝑒𝛼𝑇−𝑡𝑤𝑡𝑤2∗ , 𝑇2∗>0              (52) 

If and only if 

𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 + 𝑐𝐼𝑝𝑒𝛽 𝑡𝑤 −𝑀  − 𝛼𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡𝑤 > 0, ∀𝑡𝑤  
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Lemma 5: given that 𝐷 > 𝛼𝑊 and 𝑟 − 𝑜 > 𝑐 𝛼 − 𝛽  then 

𝐷   𝑟 + 𝑐𝛽 𝑒𝛽𝑡𝑤 + 𝑐𝐼𝑝𝑒𝛽 𝑡𝑤 −𝑀  − 𝛼𝑊 𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒−𝛼𝑡𝑤 > 0 

Proof. 

The proof follows from Lemma 1. 

 

Taking second derivative of (29) with respect to T, and evaluating at the point  𝑡𝑤
2∗ , 𝑇2

∗ we see that  

 𝜕
2𝑇𝑅𝐶2

𝜕𝑇2  
 𝑡𝑤

2∗ ,𝑇2
∗ 

=  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒𝛼(𝑇−𝑡𝑤 )   

 𝑡𝑤
2∗ ,𝑇2

∗ 
> 0                 (53) 

Using Equation (29), after simplification we find that 

 𝜕
2𝑇𝑅𝐶2

𝜕𝑡𝑤 𝜕𝑇
 
 𝑡𝑤

2∗ ,𝑇2
∗ 

= −  1
𝑇
 𝐷   𝑜 + 𝛼𝑐 + 𝑐𝐼𝑝 𝑒𝛼 𝑇−𝑡𝑤     

 𝑡𝑤
2∗ ,𝑇2

∗ 
=  𝜕

2𝑇𝑅𝐶2

𝜕𝑇𝜕 𝑡𝑤
 
 𝑡𝑤

2∗ ,𝑇2
∗ 

         (54) 

Using (52), (53) and (54), we found that the Hessian matrix has determinant greater than zero, i.e.   
𝜕2𝑇𝑅𝐶2

𝜕𝑡𝑤
2

𝜕2𝑇𝑅𝐶2

𝜕𝑇2 −

𝜕2𝑇𝑅𝐶2𝜕𝑡𝑤𝜕𝑇𝜕2𝑇𝑅𝐶2𝜕𝑇𝜕𝑡𝑤𝑡𝑤2∗ , 𝑇2∗>0 implying that it is positive definite. Proved□ 

Theorem 5: The cost function, TRC2, represented by Equation (29) is a convex function. 

Proof. 

The proof follows from the fact that the solutions to the cost function, TRC2, satisfy the sufficient condition as in Lemma 5 

and the explanation before it. 

 

5. Numerical Example  

Example: we consider the situation when we have the following inventory parameters, 

𝐴 = 1500, 𝐷 = 2000, 𝑊 = 100, 𝑐 = 10, 𝑝 = 15, 𝑟 = 3, 𝑜 = 1, 𝛽 = 0.06, 𝛼 = 0.1, 𝛾 = 0.6, 𝑀 = 0.5, 𝑁 = 0.25, 

𝐼𝑒 = 0.12, 𝐼𝑝 = 0.15. 

Using the Newton-Raphson iterative method for multivariable non-constraints optimization problem, we get 

Empirical Solution Table 5.1 

Cases  𝑡𝑤  𝑇 𝑓𝑖(𝑡𝑤  , 𝑇) 

Case 1.1 0.28 0.70 3023.1 

Case 1.2 0.48 1.27 5711.4 

Case 1.3 0.17 0.53 2942.8 

Case 1.4 0.20 0.61 3116.4 

Case 2 0.45 0.5 1859.1 

 

Therefore, 𝑡𝑤
∗ = 0.17, 𝑇∗ = 0.53 and 𝑓𝑖 𝑡𝑤  , 𝑇 = 2942.8 

Sensitivity Analysis 

The sensitivity analysis is given in Table 5.2 below by adjusting the values of the ordering cost, A, the demand, D, and the capacity of the 

own – warehouse, W. the values  

Discussion of the result: 

a. In all the cases, when the ordering cost, A, the demand, D and the capacity of the own warehouse are increased, the cost 

function also increase and vice versa except in case 1.3, when the cost function decrease while D and W are increased. 

b.  The effect of each of A, W and D is very significant in the study as any slight change will either result in increase or decrease 

of the cost function. 
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Sensitivity Analysis on the optimal solution Table 5.2 
Cases Parameters Values of the major 

parameters 
𝑡𝑤  𝑇 𝑓𝑖 𝑡𝑤  , 𝑇  

  1000 0.58 0.63 3153.0 

 A 1500 0.28 0.70 3023.1 
  2000 0.33 0.83 3583.3 

  1500 0.32 0.83 2709.8 

Case 1.1 D 2000 0.28 0.70 3023.1 
  2500 0.58 0.62 4350.1 

  50 0.29 0.71 2982.0 

 W 100 0.28 0.70 3023.1 

  150 0.58 0.65 3918.2 

  1000 0.48 1.26 5316.6 

 A 1500 0.48 1.27 5711.4 

  2000 0.48 1.27 6106.9 

  1500 0.48 1.27 4598.6 

Case 1.2 D 2000 0.48 1.27 5711.4 

  2500 0.48 1.26 6825.6 

  50 0.48 1.26 5676.3 
 W 100 0.48 1.27 5711.4 

  150 0.48 1.27 5750.1 

  1000 0.17 0.53 2002.2 
 A 1500 0.17 0.53 2942.8 

  2000 0.25 0.73 3565.0 

  1500 0.25 0.73 2689.3 

Case 1.3 D 2000 0.17 0.53 2942.8 
  2500 0.20 0.59 2932.9 

  50 0.23 0.67 2814.4 

 W 100 0.17 0.53 2942.8 
  150 0.22 0.67 2881.0 

  1000 0.19 0.56 2267.8 

 A 1500 0.20 0.61 3116.4 

  2000 0.20 0.61 3936.1 

  1500 0.20 0.61 2968.3 

Case 1.4 D 2000 0.20 0.61 3116.4 

  2500 0.20 0.60 3261.6 

  50 0.20 0.61 3083.9 
 W 100 0.20 0.61 3116.4 

  150 0.20 0.61 3148.9 

  1000 0.49 0.97 1436.5 

 A 1500 0.45 0.50 1859.1 

  2000 0.49 0.97 2467.4 

  1500 0.49 0.97 1877.8 
Case 2 D 2000 0.45 0.50 1859.1 

  2500 0.45 0.49 1546.4 

  50 0.45 0.47 1842.5 

 W 100 0.45 0.50 1859.1 

  150 0.45 0.52 1881.9 

 

5. Summary, Conclusion and Recommendation 

In the study, partial downstream trade credit financing were considered when the customers are assumed to be not credit 

worthy to reduce the effect of failure in payments. The sensitivity analysis were carried out on the obtained result. It is 

recommended that this work be looks at when the retailers are also credit – risk. Ramp type demand and linear trend in 

demand can also be look at to observe the effect of demand especially for newly introduced items for this kind of models. 
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