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Abstract 
 

The Greenberg Traffic flow model was modified and used to obtain a characteristics 

curve. We obtained the density when the flow will be maximized and also an equation 

for the maximum speed and flux, using our modified model. 
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1.0  INTRODUCTION 
The well celebrated macroscopic models introduced in the 1950s by the work of Lighthill and Witham and Richard, 

popularly abbreviated by LWR, have seen an extensive attention over the years [1,2]. These models are first-order 

nonlinear partial differential equations that describe traffic flow by the use of the relationship between the average 

quantities, like density and speed. Accordingly, the LWR model is mainly used for its simplicity since the density is the 

only dependend variable. Like other dynamic flow models, the LWR model is based on mass conservation, i.e traffic 

conservation, [3]. However, it was  discovered that the LWR model cannot explain the amplifications of small disturbances 

on heavy traffic. This is due to the fact that stop and go characteristics of traffic would require the relative vehicle velocities 

to allow some fluctuation. Realistically, not all vehicles travel at equilibrium velocity[4]. 

The Payne-Whitham model (P-W) is a two equation model which is based on the properties of the flow of gas 

particles[5,6]. This model is an improvement over the LWR model because it can describe the amplifications of small 

disturbances in heavy traffic and allow fluctuations of speed around the equilibrium values. The forcing term of the model, 

is an acceleration term that forces vehicle velocity towards equilibrium. This happens because when the traffic flow velocity 

is greater than the equilibrium velocity, the forcing term forces the traffic flow to decelerate. Likewise, when the traffic flow 

velocity is less than the equilibrium velocity, the forcing term forces the flow to accelerate. Thus the PW model is capable 

of modelling the formation of vehicle clusters. However, in the PW model, there exist a characteristic speed that is greater 

than the macroscopic flow velocity. This means that the future traffic conditions of a traffic flow will be affected by the 

traffic conditions behind the flow. This violates a fundamental principle of traffic flow, in that, vehicles only travel in one 

direction and respond only to frontal stimuli [4]. 

 

2.0 FORMULATION OF THE MODEL EQUATION 

Greenberg [7], proposed a single traffic flow model equation in which velocity is set to be inversely related to density. The 

model assumes that velocity of the flow can be very large for a low density with a traffic flow rate (flux) q(x,t), traffic 

speed v(x,t) and traffic density ρ(x,t) all of which are functions of space, 𝑥 ∈ 𝑅 and time, 𝑡 ∈ 𝑅+ . The model is expressed 

as; 
𝜕𝜌

𝜕𝑡
+

𝜕𝑞 (𝜌)

𝜕𝑥
= 0         (1) 

where the flux is given by 

𝑞(𝜌) = 𝜌𝑉(𝜌)         (2) 

with velocity as    

𝑉 𝜌 = 𝑣𝑚𝑎𝑥 ln  
𝜌𝑚𝑎𝑥

𝜌
 ,             0 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥      (3) 

where 𝑣𝑚𝑎𝑥  and and 𝜌𝑚𝑎𝑥  are constants 

In our investigation, we obtained a nonlinear velocity-density relationship as 
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𝑉 𝜌 = 𝑣𝑚𝑎𝑥 ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 ,             0 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥      (4) 

If in (4), we let  

𝛼1 =
𝜌𝑚𝑎𝑥

𝜌
         (5) 

It implies that  
𝜌𝑚𝑎𝑥

𝜌
 

2

= 𝛼1
2,  therefore we have  

𝛼2 =
1

2
𝛼1

2         (6) 

and differentiating (6) with respect to  𝛼1, we obtain 
𝑑𝛼2

𝑑𝛼1
= 𝛼1         (7) 

Equation (7) shows the following 

(i) a refinement of the Greenberg’s natural logarithm speed-density relation (3), 

(ii) a rate of change of the Greenberg’s  speed-density function and it is also the slope of equation (3) i.e. 
𝑑𝛼2

𝑑𝛼1
= 𝛼1. 

  

Now from (2) and (4), we have  

𝑞 𝜌 = 𝜌  𝑣𝑚𝑎𝑥 ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

   0 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥      (8) 

Therefore equation (1) becomes a nonlinear first order partial differential equation written as 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
 𝜌𝑣𝑚𝑎𝑥 ln  

1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

  = 0                   (9) 

Where the velocity-density relationship (4) satisfies the following qualitative physical properties 

𝑉 𝜌 = 0 = 𝑉𝑚𝑎𝑥          (10)            

𝑉 𝜌𝑚𝑎𝑥  = 0                                                                                                               (11) 

In the same vain, the flux-density relationship (2) satisfies the following qualitative properties 

𝑞 𝜌 = 0 = 0          (12) 

𝑞 𝜌𝑚𝑎𝑥  = 𝜌𝑚𝑎𝑥 𝑉 𝜌𝑚𝑎𝑥  = 0       (13) 

The solution of the non-linear PDE (9), can be obtained if we know the traffic density at a given initial time, i.e. given the 

traffic density at initial time 𝑡0, we can predict the traffic density for all future time 𝑡 ≥ 𝑡0, hypothetically. 

Hence, we consider the non-linear PDE (9) as an initial value problem (IVP) of the form 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
 𝜌𝑣𝑚𝑎𝑥 ln  

1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

  = 0       (14) 

With initial condition 

𝜌 𝑡0, 𝑥 = 𝜌0(𝑥)         (15) 

where 𝜌(𝑥, 𝑡) represents the traffic density which we are interested in, 𝑣𝑚𝑎𝑥 is the maximum traffic speed in the positive 𝑥 

direction, and 
𝜕𝜌

𝜕𝑡
 represents the time dependence of the traffic density 𝜌. 

 

3.0 SOLUTION OF THE MODEL EQUATION BY CHARACTERISTIC MTHOD 

We now solve the IVP  (14) and (15). 

Let 𝑞 𝜌 = 𝜌𝑣𝑚𝑎𝑥 ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

  

= 𝑣𝑚𝑎𝑥  𝜌 ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

          (16) 

If  m= ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

         (17) 

and u=
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

         (18) 

then 𝑚 = 𝑙𝑛𝑢         (19) 

and  
𝑑𝑚

𝑑𝑢
=

1

u
         (20)   

 
𝑑𝑢

𝑑𝜌
= −

𝜌𝑚𝑎𝑥
2

𝜌3            (21) 

⇒ 
𝑑𝑚

𝑑𝜌
= −

2

𝜌
         (22) 

therefore,   
𝑑𝑞

𝑑𝜌
= 𝑣𝑚𝑎𝑥  ln  

1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2       (23) 
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which is the rate of change of the flux and is called the characteristics speed. 

Differentiating  𝑞 𝜌 = 𝑞[𝜌 𝑥, 𝑡 ] partially with respect to x and substitute the result into (1), we get  

   
𝜕𝜌

𝜕𝑡
+

𝑑𝑞

𝑑𝜌

𝜕𝜌

𝜕𝑥
 =0         (24) 

Substituting equation (23) into (24), we obtain 
𝜕𝜌

𝜕𝑡
+ 𝑣𝑚𝑎𝑥  ln  

1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 
𝜕𝜌

𝜕𝑥
 =0      (25) 

Again, differentiating 𝑞 𝜌 = 𝑞[𝜌 𝑥, 𝑡 ]  partially with respect to t, we get 
𝑑𝜌

𝑑𝑡
=

𝜕𝜌

𝜕𝑡
+

𝜕𝜌

𝜕𝑥

𝑑𝑥

𝑑𝑡
= 0        (26) 

or  
𝜕𝜌

𝜕𝑡
+

𝜕𝜌

𝜕𝑥

𝑑𝑥

𝑑𝑡
= 0         (27) 

and 

 
𝑑𝑥

𝑑𝑡
= −

𝜕𝜌

𝜕𝑡

𝜕𝑥

𝜕𝜌
         (28) 

From equation (25), we have 

𝑣𝑚𝑎𝑥  ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 = −
𝜕𝜌

𝜕𝑡

𝜕𝑥

𝜕𝜌
      (29) 

Equating equation (28) and (29), we have 
𝑑𝑥

𝑑𝑡
= 𝑣𝑚𝑎𝑥  ln  

1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2        (30) 

Integrating equation (30) with respect to  t, we get 

𝑥 𝑡 = 𝑣𝑚𝑎𝑥   ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 dt  

⇒   𝑥 𝑡 = 𝑣𝑚𝑎𝑥  ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 𝑡 + 𝐴(𝑥)     (31) 

where A(x) is the constant of integration. 

Since the problem under consideration is an IVP, we now consider when 𝑡 = 0 in equation (31), then we shall have 

𝑥 0 = 𝑥0 = 𝐴(𝑥)        (32) 

∴ 𝑥 𝑡 = 𝑣𝑚𝑎𝑥  ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 𝑡 + 𝑥0, where 𝐴 𝑥 = 𝑥0       (33) 

Equation (33) is called the characteristics curve of the IVP (14) and (15) 

Next, we shall solve for the density, 𝜌 𝑥, 𝑡 . 
From equation (26),                                                                        
𝑑𝜌

𝑑𝑡
= 0  

∴  𝜌 𝑥, 𝑡 = 𝑐, where c = constant         (34) 

Since the characteristics 𝑥(𝑡), passes through any point (x,t), it therefore passes through  𝑥0, 0  and 𝜌 𝑥, 𝑡 = 𝑐 is constant 

on this curve, then 

𝑐 = 𝜌 𝑥, 𝑡 = 𝜌 𝑥0, 0 = 𝜌0(𝑥0)               (35) 

Making 𝑥0 the subject from equation (33), we have 

𝑥0 =  𝑥 𝑡 − 𝑣𝑚𝑎𝑥  ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 𝑡      (36) 

and also from equation (35), we have  

𝜌 𝑥, 𝑡 = 𝜌0 𝑥0          (37) 

Substituting equation (36) into (37), we have 

𝜌 𝑥, 𝑡 = 𝜌0  𝑥 𝑡 − 𝑣𝑚𝑎𝑥  ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 𝑡      (38) 

This is the analytic solution of the IVP (14) and (15) which is in its implicit form. 

From our modified model,  
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
 𝜌𝑣𝑚𝑎𝑥 ln  

1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

  = 0                    

Recall that 

 𝑞(𝜌) = 𝜌𝑉(𝜌)                    (39) 

where 𝑉 𝜌 = 𝑣𝑚𝑎𝑥 ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

                                                                              (40) 
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therefore 𝑞 𝜌 = 𝜌𝑣𝑚𝑎𝑥 ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

                                                                        (41) 

when the flow is at maximum,  
𝑑𝑞

𝑑𝜌
= 0.  

  
𝑑𝑞

𝑑𝜌
= 𝑣𝑚𝑎𝑥  ln  

1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2 = 0 

⇒   𝑣𝑚𝑎𝑥  ln  
1

2
 
𝜌𝑚𝑎𝑥

𝜌
 

2

 − 2  =0 

which reduces to 𝜌 =
𝜌𝑚𝑎𝑥

 2𝑒2
          (42)  

Equation (42) is the density when the flow will be maximized. Substituting (42) into (40) yields the speed at which the flow 

is maximum, i.e 

𝑉 𝜌 = 𝑣𝑚𝑎𝑥 ln  
1

2
 

𝜌𝑚𝑎𝑥
𝜌𝑚𝑎𝑥

 2𝑒2

 

2

   

=𝑣𝑚𝑎𝑥 ln  
1

2
 𝜌𝑚𝑎𝑥  ×  

 2𝑒2

𝜌𝑚𝑎𝑥
 

2

         (43) 

𝑉 𝜌 = 𝑣𝑚𝑎𝑥  ln(𝑒2)                                                                                                     (44) 

This indicates that the maximum flow occurs when traffic is flowing at twice its maximum speed (𝑣𝑚𝑎𝑥 ). Substituting the 

maximum speed and density into speed-flow-density relation (39), yields the maximum flow. 

𝑞 𝜌 =
𝜌𝑚𝑎𝑥 𝑣𝑚𝑎𝑥  ln(𝑒2)

 2𝑒2
         (45) 

 

4.0 Conclusion 
We extended the Greenberg model by modifying the speed-density function. The analytical solution of the extended model 

was given using the method of characteristics, which gives the solution in its implicit form. 

We recommend the use of numerical method, for the numerical solution of the IVP (14) and (15). We shall therefore take 

up this challenge in our next paper. 
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