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Abstract 

In this study, we present a deterministic model on the effect of vaccination and 

treatment in controlling the spread of hepatitis b virus with infective migrants. The 

disease free equilibrium state is obtained and we compute the effective reproduction 

number from which we establish the endemic equilibrium state of the model. The 

global stability of endemic equilibrium state was analyzed using a lyapunov function 

and found to be stable. The public health implication is that HBV will be sustained if 

infective migrants are allowed and also, there is improper or no vaccination 

regiment, under steady state conditions. Hence the governing model can be applied 

for predicting the spread of HBV. However, effort should be undertaken that will 

help to maximize the long-term effectiveness of vaccination and treatment program 

in curtailing the spread of HBV with infective migrants.  

Keywords: Hepatitis B Virus, migrant, vaccination, treatment, stability, Endemic equilibrium state. 
 

1.0 Introduction 

Hepatitis B virus (HBV) is one of the greatest and deadly global health concerns of modern times.  It was estimated that 2 

billion people acquire the disease resulting in 350 million cases of chronic active hepatitis [1] and 780,000 deaths per year 

[2]. This infection is accountable for 80% of all cases of primary liver cancer, which is one of the principal causes of death 

in Asia and Africa [3]. Therefore, HBV have created a global and security threat and have drawn the attention of WHO to 

declare war against the disease. 

The disease can be transmitted through unprotected sex, accidental needle injury, birth among others [4, 5]. Moreover, the 

spread might become faster due to porous borders and risky practices of migration process. Therefore, as the epidemic 

spreads wider, the bond between migration and the spread of HBV is becoming stronger. Thus, prevention of transmission 

of HBV between infective migrants and the resident population appears to be an important step in reducing the global 

burden of HBV infection.  

The prevention and control effort should be aimed at promoting optimum use of available therapy, where the disease is 

evident and vaccines for those susceptible to infection. Hence, cleaving to HBV therapies has > 95% effectiveness for 

sustaining utmost suppression [6, 7, and 8]. In additional, above 1.1 million deaths could be avoided by 2030, if global 

vaccination coverage improves [9, 10]. Unfortunately, many are not aware of the infection and as such they have no access 

to preventive or therapeutic interventions.   

Sub-Saharan Africa and East Asia have being categorized among regions of the world that is highly endemic for hepatitis B 

virus infection. It is estimated that 2-5% of the general population are reportedly likely to be chronically infected 

[11].Considering the number of migrants from these regions who travel around the world on a daily basis. This is not just 

these regions public health problems but has a global consequence since HBV is not isolated geographically. Therefore, the 

prevalence rate also stands to hinder successes recorded by other regions (countries) on preventing chronic liver disease 

[12]. 

The prevalence of the disease due to population growth, drug- resistant strains, co-infection with HIV, re-infection and 

relapse, cultural factors, the collapse of public health programs [13, 14] is on the increase globally and is a challenge for 

health care services worldwide. 
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Therefore, vaccination and treatment of HBV are needed to reduce the incidence rate and the total burden of liver disease worldwide. Vaccination helps to 
provide protection against HBV infection [15]. However, despite successes associated with the use of vaccines and supportive therapies for acute 

infection, the devastating effect of HBV has increased. Also, since vaccination alone does not eliminate infectivity or block the route of transplacental 

(vertical) transmission, the call for vaccination in conjunction with effective treatment becomes necessary. 
Nevertheless, treatment as a control approach helps to reduce viral load depending on medication and genotype [16]. Most commonly used drugs include 

interferon and nucleoside such as lamivudine, adefovir dipivoxil, telbivudine [17]. Though, most patients with chronic HBV infection need long–term 

therapy [18]. However, treatment should be modified if failure to attain decline in viral load after 12weeks of therapy is identified. When using drugs with 
a low barrier to resistance, good adherence to anti-HBV therapies is important for sustaining maximal suppression of HBV replication. Notwithstanding, 

therapeutic efficacy of treatment can be hampered by development of adverse effects, poor patient compliance, previous treatment with suboptimal 

regimens, infection with drug- resistance viral strains, inadequate drug exposure because of pharmacologic properties of particular drug(s) and individual 
genetic variation [19,16,20,18and 21].   

To improve better understanding on the dynamics of HBV infection, several mathematical models have been used extensively to study the transmission 

dynamics of HBV (see [22, 23, 24, 25] and the references therein).  
This study is motivated by the work of [25], on the transmission model of hepatitis B virus with the migration effect. Their result suggests that migrants 

for short visit and students should be subjected to test to reduce the number of migrants with the disease.  Therefore, guided by the work in [25] as 

mentioned above, the present study intends to extend their work by incorporating treatment class and its relapse effect. Hence, this study intends to 
investigate the global stability analysis of the effect of vaccination and treatment on HBV transmission with infective migrants. 

 

2.0       Model Formulation 

2.1 The Existing Model 

We consider the following assumptions of the existing model in [25] below. 

i. The population is compartmentalized into six groups namely: Susceptible individuals, S(t), Exposed individuals E(t), Acutely infected 
individuals, A(t), Chronic carriers, C(t), Immunised individuals,  V(t), and Migrated individuals, M(t), all at time t. 

ii. The population is mixed homogeneously, that is, all people are equally likely to be infected by the infectious individuals in case of contact. 
iii. The newborns to carrier mothers infected at birth are latently infected individual. 

iv. A proportion of susceptibles is vaccinated per unit time and the vaccinated individuals do not acquire permanent immunity. 

v. They also considered 𝛾3 ,as the rate at which chronic carriers acquire immunity and move to the immunized class. 

vi. There is a transmission rate from exposed to migrated class and vise–visa. 

vii. There is a transmission rate from migrated class to susceptible class and migrated class to acutely infected class. 

viii.  There is a stable population with equal percapita birth and death rate (as disease- induced death rate is not considered in the system). 

  

Table 1:   Parameters of the Existing Model 

The existing model in [25] has the following parameters: 

Parameters Description 

𝛿  Equal per capita birth and death rate (as disease-induced death rate is not 
  considered in the system)  

𝜋 The proportion of failure immunization or proportion without immunization  

𝛾1 Rate at which exposed individuals become infectious and move to the acute 
   infected class.  

𝛾2 Rate at which acutely infected individuals move to the chronic carrier class 

𝛾3  Rate at which carriers acquire immunity and move to the immunized class 

𝛽  The transmission coefficient 

𝑘  The infectiousness of carrier relative to acute infections. 

𝑞  Proportion of acute infected individual that become carrier. 

1 − 𝑞      Proportion of acute infected individuals that move to the immunity class 

 𝛿0  The loss of immunity from the immunized class to susceptible class. 

𝑃  Proportion of vaccinated susceptible per unit time. 

𝜉  The rate of flow from exposed to migrated class. 

𝛼  The flow from migrated to susceptible class. 

𝜇1  The transmission rate from migrated class to exposed class. 

𝜇2  The transmission rate from migrated class to acute infected class 

𝜂  Proportion of the unimmunized children born to carrier mothers 

𝛿 1 − 𝜋   The newborns that are successfully immunized 

𝛿𝜋 1 − 𝜂𝐶(𝑡)   Births flux into the susceptible class 

 

 
Figure 1: Flow diagram of HBV transmission dynamics for the existing model  
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With the above assumptions, parameters and flow diagram by [25], the following model equations were derived. 
𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝑘𝐶 𝑆 + 𝛿0𝑉 − 𝑝𝑆 + 𝛼𝑀                                              

𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝑘𝐶 𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 + 𝜇1𝑀− 𝜉𝐸                                                       

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀                                                                                                 (1)

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 − 𝛿𝐶 − 𝛾3𝐶                                                                                                             

𝑑𝑉

𝑑𝑡
= 𝛾3𝐶 +  1 − 𝑞 𝛾2𝐴 − 𝛿0𝑉 − 𝛿𝑉 + 𝛿 1 − 𝜋 + 𝑝𝑆                                                   

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 𝑀 − 𝛿𝑀 − 𝛼𝑀                                                                                    

 

 

2.2     The Extended Model 

In addition to the assumptions of the existing model, we make the following assumptions. 

i. We assume that the chronic carriers do not acquire immunity accept they are treated [26]    and recruited into the treated class. 

Whereas, not all treated individuals recovers and progress to the recovery class, some relapse to chronic if drug resistant mutants 

are present[27]. In addition, we change the notation of the immune class to vaccinated class and redefined the parameters of the 

extended model in table 2. 

 

Table 2:  Parameters of the Extended Model. 

Parameters Description 

𝑇(𝑡) 

𝑅(𝑡) 

Number of treated individuals at time 𝑡 
Number of recovered individuals at time 𝑡 

𝛿0 The loss of immunity from the vaccinated  class to susceptible class 

𝛼𝑜  Proportion of chronic carriers that are treated per unit time. 

𝛾3 

𝜑 

 

1 − 𝑞 

Rate of recovery of the treated individuals  

Rate at which treated individual relapse and proceed to the chronic class 

Proportion of acute infected individual that move to the recovered class 

 

The flow diagram for the existing model is now amended to obtain the flow diagram for the extended model as follows; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow Diagram of HBV transmission Dynamics for the Extended Model 
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The extended model equations are derived based on the above assumptions, parameters and flow diagram in figure 2. 
𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝑘𝐶 − 𝑝𝑆 + 𝛿0𝑉 + 𝛼𝑀                                             

𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝑘𝐶 𝑆 −  𝛿 + 𝜉 + 𝛾1 𝐸 + 𝛿𝜋𝜂𝐶 + 𝜇1𝑀                                                       

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀                                                                                              

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 +  𝜑𝑇 −  𝛿 + 𝛼0 𝐶                                                                                            (2)

𝑑𝑇

𝑑𝑡
= 𝛼0𝐶 −  𝛿 + 𝜑 + 𝛾3 𝑇                                                                                                

𝑑𝑅

𝑑𝑡
=  1 − 𝑞 𝛾2𝐴 + 𝛾3𝑇 − 𝛿𝑅                                                                                         

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝑀                                                                                       

𝑑𝑉

𝑑𝑡
= 𝛿 1 − 𝜋 + 𝑝𝑆 −  𝛿 + 𝛿0 𝑉,                                                                                   

 

𝑆 0 > 0,𝐸 0 ≥ 0,𝐴 0 ≥ 0,𝐶 0 ≥ 0,𝑇 0 ≥ 0,𝑅 0 ≥ 0,𝑀 0 ≥ 0,𝑉 0 ≥ 0 
 

The total population𝑁 𝑡 , therefore becomes  
𝑑𝑁

𝑑𝑡
= 𝛿 1 − 𝑁                                                                                                             (3)    

  

Using variable separable method, we have  
𝑑𝑁

 1 − 𝑁 
= 𝛿𝑑𝑡                         

Integrating both side yield 

 
𝑑𝑁

 1−𝑁 
=  𝛿𝑑𝑡

 −𝐼𝑛 1 − 𝑁 = 𝛿𝑡 + 𝐶         
Multiplying through by -1 

𝐼𝑛 1 − 𝑁 = −𝛿𝑡 − 𝐶                                                                                                                         
Taking exponential of both side                           

1 −𝑁 = 𝐴𝑒−𝛿𝑡 , where 𝐴 = 𝑒−𝑐  

𝑁 𝑡 = 1 − 𝐴𝑒−𝛿𝑡 ,                                                                                                                               
At time 𝑡 = 0, we have   

𝑁 0 = 𝑁0 = 1 − 𝐴                                                                                                                             
𝐴 = 1 − 𝑁0                                                                                                                                                                                                     

𝑁 𝑡 = 1 −  1 − 𝑁0 𝑒
−𝛿𝑡 ,                                                                                                                

𝑁 𝑡 → 1  as t → ∞, it means that 

Since 𝑆 + 𝐸 + 𝐴 + 𝐶 + 𝑇 + 𝑅 + 𝑀 + 𝑉 = 1 , we have  

𝑅 = 1 − 𝑆 − 𝐸 − 𝐴 − 𝐶 − 𝑇 −𝑀 − 𝑉                                                                                               (4) 

 Hence, the governing equation becomes 
𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝑘𝐶 𝑆 + 𝛿0𝑉 − 𝑝𝑆 + 𝛼𝑀,                                      

𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝑘𝐶 𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 − 𝜉𝐸 + 𝜇1𝑀,                                                   

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀,                                                                                            

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 + 𝜑𝑇 −  𝛿 + 𝛼0 𝐶 ,                                                                                                           (5)

𝑑𝑇

𝑑𝑡
= 𝛼0𝐶 −  𝛿 + 𝜑 + 𝛾3 𝑇                                                                                                

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝑀.                                                                                       

𝑑𝑉

𝑑𝑡
= 𝛿 1 − 𝜋 + 𝑝𝑆 −  𝛿 + 𝛿0 𝑉,                                                                                        
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The initial conditions for the extended model are non-negative. 𝑆 0 ≥ 0,𝐸 0 ≥ 0,𝐴 0 ≥ 0,𝐶 0 ≥ 0,𝑇 0 ≥
0,𝑀 0 ≥ 0,𝑉 0 ≥ 0, 
 

3   Model Analysis  

The governing model equation  5  is biologically meaningful, epidemiologically well posed and has solutions which are 

contained in the region             

Ω =   𝑆,𝐸,𝐴,𝐶,𝑇,𝑀,𝑉 :𝑁 𝑡 ≤ 1 𝜖𝑅+
7  

Hence Ω is attracting and all the feasible solution of the model with initial condition in 𝑅+
7  enters or stays in the region Ω. 

 

3.1   The disease free equilibrium state 

The disease-free equilibrium state when solved gives: 

𝑋0 =  𝑆𝑂 ,𝐸𝑂 ,𝐴𝑂,𝐶𝑂 ,𝑇𝑂 ,𝑀𝑂 ,𝑉𝑂 =  
𝛿𝜋 + 𝛿0

𝛿 + 𝛿0 + 𝑝 
, 0,0,0,0,0,

 𝛿 + 𝜌 − 𝛿𝜋

𝛿 + 𝛿0 + 𝑝 
                             6  

 

3.2 The effective reproduction number, 𝑹𝒓𝒄  

The effective reproduction number is defined as the average number of new infection generated by a typical infectious individual in the 

presence of a control measure [28]. Effective reproduction number is the useful threshold for predicting outbreaks and evaluating control 

strategies that would reduce the spread of the disease in the population.  If 𝑅𝑟 𝑐 < 1, the disease can be eliminated, however, when 

𝑅𝑟 𝑐 > 1 it will persist or become endemic in the population. 

The effective reproduction number for the model  5  is calculated using the next generation operator approach as described in [28]. 

Applying this approach, we rearrange our model in equation (5) in order of infected compartments followed by uninfected compartment. 

This gives 
𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝑘𝐶 𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 − 𝜉𝐸 + 𝜇1𝑀,                                              

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀,                                                                                        

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 + 𝜑𝑇 −  𝛿 + 𝛼0 𝐶,                                                                                        

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝑀.                                                                                                       (7) 

𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝑘𝐶 𝑆 + 𝛿0𝑉  − 𝑝𝑆 + 𝛼𝑀,                                    

𝑑𝑇

𝑑𝑡
= 𝛼0𝐶 −  𝛿 + 𝜑 + 𝛾3 𝑇                                                                                              

𝑑𝑉

𝑑𝑡
= 𝛿 1 − 𝜋 + 𝑝𝑆 −  𝛿 + 𝛿0 𝑉,                                                                                 

 

From equation (7), we have the new infective and transfer terms from one compartment to another given as 

𝑓 =

 

 
 
𝛽 𝐴 + 𝐾𝐶 𝑆

0
0
0
0  

 
 

                                                                                                                                                   8  

and 

𝑣 =

 

 
 
 
 
 
 

 𝛿 + 𝜉 + 𝛾1 𝐸 − 𝛿𝜋𝜂𝐶 − 𝜇1𝑀

 𝛿 + 𝛾2 𝐴 − 𝜇2𝑀 − 𝛾1𝐸

 𝛿 + 𝛼0 𝐶 − 𝑞𝛾2𝐴 − 𝜑𝑇   

 𝛿 + 𝜑 + 𝛾3 𝑇 − 𝛼0𝐶

 𝜇1 + 𝜇2 + 𝛼 + 𝛿 𝑀 − 𝜉𝐸  

 
 
 
 
 
 

      (9) 

Therefore, taking the partial derivatives of (8) with respect to  𝐸,𝐴,𝐶,𝑇,𝑀  at disease free equilibrium휀0 = 𝑆0 , we obtain 

𝐹 = 𝐷𝑓 휀0 =

 

 
 
 
 
 
 

0 𝛽𝑆0 𝛽𝐾𝑆0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 

 
 
 
 
 
 

      10   
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Similarly, the partial derivatives of (9) with respect to  𝐸,𝐴,𝐶,𝑇,𝑀  at disease free equilibrium 휀0 gives 

𝑉 =

 

 
 
 
 
 
 

𝑚1 0 −𝑚2 0 −𝜇1

−𝛾1 𝑚3 0 0 −𝜇2

0 −𝑚4 𝑚5 −𝜑 0

0 0 −𝛼0 𝑚6 0

−𝜉 0 0 0 𝑚7  

 
 
 
 
 
 

                                                         (11) 

where , 𝑚1 =  𝛿 + 𝜉 + 𝛾1 ,  𝑚2 =  𝛿𝜋𝜂,𝑚3 =  𝛿 + 𝛾2 ,𝑚4 = 𝑞𝛾2,𝑚5 =  𝛿 + 𝛼0 , 
𝑚6 =  𝛿 + 𝜑 + 𝛾3  and 𝑚7 =  𝛼 + 𝛿 + 𝜇1 + 𝜇2  
Therefore, we have 

𝑉−1 =

 

 
 
 
 
 
 

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5

𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 

 
 
 
 
 
 

                                                                    (12) 

such that 

𝐹𝑉−1 =  𝑁1 𝑁2 ,                                                                                                                (13) 

where  

𝑁1 =

 

 
 
 
 
 
 

 𝛽𝑆0𝐶1 + 𝛽𝐾𝑆0𝐷1  𝛽𝑆0𝐶2 + 𝛽𝐾𝑆0𝐷2  𝛽𝑆0𝐶3 + 𝛽𝐾𝑆0𝐷3 

0 0 0

0 0 0

0 0 0

0 0 0  

 
 
 
 
 
 

                (14) 

𝑁2 =

 

 
 
 
 
 
 

 𝛽𝑆0𝐶4 + 𝛽𝐾𝑆0𝐷4  𝛽𝑆0𝐶5 + 𝛽𝐾𝑆0𝐷5 

0 0

0 0

0 0

0 0  

 
 
 
 
 
 

                                                              (15)  

From which we obtain 

𝑅𝑟𝑐 = 𝜌 𝐹𝑉−1 = 𝛽𝑆0𝐶1 + 𝛽𝐾𝑆0𝐷1    ,                                                                            (16)  
where  

𝐷1 =  
𝑚4𝑚6 𝛾1𝑚7 + 𝜉𝜇2 

𝜃
  

𝐶1 =  
 𝑚5𝑚6 − 𝜑𝛼0  𝛾1𝑚7 + 𝜉𝜇2 

𝜃
  

and  

𝜃 = 𝜑𝛼0𝑚3 𝑚1𝑚7 + 𝜉𝜇1 − 𝜉𝑚6 𝑚2𝑚4𝜇2 + 𝑚3𝑚5𝜇1 − 𝑚6𝑚7 𝑚2𝑚4𝛾1 −𝑚1𝑚3𝑚5  
 

Thus, the effective reproduction number (16)  can be rewritten as  

𝑅𝑟𝑐 =
 𝛽𝑆𝑂 𝑐 + 𝐾𝑞𝛾2 𝛿 + 𝜑 + 𝛾3  + 𝑒 𝛿 + 𝜑 + 𝛾3   𝜇2𝜉 + 𝛾1𝑎 + 𝜉𝜇1𝑏𝑐

𝑑𝑏𝑐𝑎
      (17) 

3.3    Existence of endemic equilibrium  

At endemic equilibrium the forth equation of the model  5  gives 
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𝐶 =
𝑞𝑦2𝐴 + 𝜑𝑇

𝛿 + 𝛼0

                                                                                                                       (18) 

From the third equation of the model system  5  we have 

𝐸 =
 𝛿+𝛾2 𝐴−𝜇2𝑀

𝛾1
           (19) 

Also, the sixth equation of the model  5  gives 

𝑀 =
𝜉𝐸

𝜇1 + 𝜇2 + 𝛿 + 𝛼
                                                                                                             (20) 

Substitute equation (19) into (20), we have 

𝑀 =
𝜉 𝛿+𝛾2 𝐴

𝜉𝜇2+𝛾1 𝜇1+𝜇2+𝛿+𝛼 
          (21) 

Substitute  21  in equation 19 , we have  

𝐸 =  
 𝛿 + 𝑦2 𝐴 −   

𝜉𝜇2 𝛿+𝛾2 𝐴

 𝜉𝜇2+𝛾1 𝜇1+𝜇2+𝛿+𝛼  

𝛾1

 

𝐸 =
 𝛿 + 𝛾2  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝐴

 𝜉𝜇2 + 𝛾1 𝜇1 + 𝜇2 + 𝛿 + 𝛼  
=  ∆1𝐴                                                                (22) 

At equilibrium state the fifth equation of the model (5) results to  

𝑇 =
𝛼0𝐶

𝛿 + 𝜑 + 𝛾3

                                                                                                                 (23)  

Substitute  18  in equation 23 , we have 

𝑇 =
𝛼0𝑞𝛾2 𝐴

 𝛿+𝛼0  𝛿+𝛾3 +𝛿𝜑
                  (24)  

Substitute  24  in equation 18 , we have 

𝐶 =
𝑞𝛾2 𝐴 𝛿 + 𝜑 + 𝛾3 

 𝛿 + 𝛼0  𝛿 + 𝛾3 + 𝛿𝜑
 =   ∆2𝐴                                                                                          (25) 

At equilibrium state the seventh equation of the model (5) results to 

𝑉 =
𝛿 1 − 𝜋 + 𝑝𝑆

 𝛿 + 𝛿0 
                                                                                                           (26) 

At equilibrium state the second equation of the model (5) is given by  

𝛽𝐴𝑆 + 𝛽𝑘𝐶𝑆 −  𝛿 + 𝜉 + 𝛾1 𝐸 + 𝛿𝜋𝜂𝐶 + 𝜇1𝑀 = 0 

where, 

𝐶 =
𝑞𝛾2 𝐴 𝛿 + 𝜑 + 𝛾3 

 𝛿 + 𝛼0  𝛿 + 𝛾3 + 𝛿𝜑
= ∆2𝐴,𝑀 =

𝜉 𝛿 + 𝛾2 𝐴

𝜉𝜇2 + 𝛾1 𝜇1 + 𝜇2 + 𝛿 + 𝛼 
= ∆3𝐴 ,𝐸 =

 𝛿 + 𝛾2  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝐴

 𝜉𝜇2 + 𝛾1 𝜇1 + 𝜇2 + 𝛿 + 𝛼  
= ∆1𝐴  

we have, 

𝛽𝐴𝑆 +
𝛽𝑘𝑆𝑞𝛾2  𝛿 + 𝜑 + 𝛾3 𝐴

 𝛿 + 𝛼0  𝛿 + 𝛾3 + 𝛿𝜑
−
 𝛿 + 𝜉 + 𝛾1  𝛿 + 𝛾2  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝐴

 𝜉𝜇2 + 𝛾1 𝜇1 + 𝜇2 + 𝛿 + 𝛼  

+
𝛿𝜋𝜂𝑞𝛾2  𝛿 + 𝜑 + 𝛾3 𝐴

 𝛿 + 𝛼0  𝛿 + 𝛾3 + 𝛿𝜑
+

𝜇1𝜉 𝛿 + 𝛾2 𝐴

𝜉𝜇2 + 𝛾1 𝜇1 + 𝜇2 + 𝛿 + 𝛼 
= 0

 

Let,  

𝑎 =  𝛼 + 𝛿 + 𝜇1 + 𝜇2 , 𝑏 =  𝛿 + 𝛾2 , 𝑐 =  𝛿 + 𝛼0  𝛿 + 𝛾3 + 𝛿𝜑,𝑑 =  𝛿 + 𝜉 + 𝛾1 ,           
and 𝑒 = 𝛿𝜋𝜂𝑞𝛾2 

By factorizing yields 

 𝛽𝑆 +
𝛽𝑘𝑆𝑞𝛾2 𝛿 + 𝜑 + 𝛾3 

𝑐
−

𝑑𝑏𝑎

𝜉𝜇2 + 𝛾1𝑎
+
𝑒 𝛿 + 𝜑 + 𝛾3 

𝑐
+

𝜇1𝜉𝑏

𝜉𝜇2 + 𝛾1𝑎
 𝐴 = 0        (27)             

Therefore, from equation (27), if  𝐴 ≠ 𝑜 it implies that 

𝑆∗ =
𝑑𝑏𝑐𝑎 −  𝑒 𝜉𝜇2 + 𝛾1𝑎

  δ + φ + 𝛾3 + 𝜉𝜇1𝑏𝑐 

𝛽 𝑐 + 𝑘𝑞𝛾2 δ + φ + 𝛾3   𝜉𝜇2 + 𝛾1𝑎 
                                               28  

 At endemic equilibrium the first equation of the model (5) is re-written as 

0 = 𝛿𝜋 1 − 𝜂∆2𝐴 − 𝑆∗𝛽𝐴∗ − 𝑆∗ 𝛿 + 𝛽𝑘∆2𝐴
∗ + 𝑝 + 𝛿0  

𝛿 1 − 𝜋 + 𝑝𝑆

 𝛿 + 𝛿0 
 + 𝛼∆3𝐴

∗ 

from which we obtain 

𝐴∗𝐾 = 𝛿 𝛿𝜋 + 𝛿0 − 𝑆∗ 𝛿 + 𝛿0 + 𝑝   
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giving as  

𝐴∗ =
𝛿 𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾
 
𝑆𝑂

𝑆∗
− 1  

with 

𝐾 =  𝛿𝜋𝜂∆2 + 𝑆∗𝛽 + 𝑆∗𝛽𝑘∆2 − 𝛼∆3  𝛿 + 𝛿0 , 𝐾 > 0                                                

Since𝑅𝑟
𝑐 =

𝑆𝑂

𝑆∗
> 1,  it follows that 

𝐴∗ =
𝛿 𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾
 𝑅𝑟

𝑐 − 1 , 𝑅𝑟
𝑐 > 1                                                                          (29) 

Therefore, at endemic equilibrium 휀1 =  𝑆∗,𝐸∗,𝐴∗,𝐶∗,𝑇∗,𝑀∗,𝑉∗ , substitute (29) in equation (22, 24 , 25 and 21) we have 

Therefore, 휀1 =  𝑆∗,𝐸∗,𝐴∗,𝐶∗,𝑇∗,𝑀∗,𝑉∗  is the endemic equilibrium state of the system  25  given by  

𝑆∗ =
𝑑𝑏𝑐𝑎 −  𝑒 𝜉𝜇2 + 𝛾1𝑎

  δ + φ + 𝛾3 + 𝜉𝜇1𝑏𝑐 

𝛽 𝑐 + 𝑘𝑞𝛾2 δ + φ + 𝛾3   𝜉𝜇2 + 𝛾1𝑎 
                                                              (30)   

𝐸∗ =
𝛿 𝛿 + 𝛾2  𝜇1 + 𝜇2 + 𝛿 + 𝛼  𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾 𝜉𝜇2 + 𝛾1 𝜇1 + 𝜇2 + 𝛿 + 𝛼  
 𝑅𝑟

𝑐 − 1 ,     𝑅𝑟
𝑐 > 1                            (31)   

𝐴∗ =
𝛿 𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾
 𝑅𝑟

𝑐 − 1 ,    𝑅𝑟
𝑐 > 1                                                                                (32)  

𝐶∗ =
𝛿𝑞𝛾2 δ + φ + 𝛾3  𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾( 𝛿 + 𝛼0  𝛿 + 𝛾3 + 𝛿𝜑)
 𝑅𝑟

𝑐 − 1 ,       𝑅𝑟
𝑐 > 1                                               (33)   

𝑇∗ =
𝛿𝛼0𝑞𝛾2  𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾  𝛿 + 𝛼0  𝛿 + 𝛾3 + 𝛿𝜑 
 𝑅𝑟

𝑐 − 1 ,      𝑅𝑟
𝑐 > 1                                                           (34)                

𝑀∗ =  
𝛿𝜉 𝛿 + 𝛾2  𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾(𝜉𝜇2 + 𝛾1 𝜇1 + 𝜇2 + 𝛿 + 𝛼 )
 𝑅𝑟

𝑐 − 1 ,      𝑅𝑟
𝑐 > 1                                                  (35)                            

𝑉∗ =
𝛿 1 − 𝜋 + 𝜌𝑠∗

 𝛿 + 𝛿0 
                                                                                                                      (36)                            

Therefore, at the endemic equilibrium state 휀1 =  𝑆∗,𝐸∗,𝐴∗,𝐶∗, 𝑇∗,𝑀∗,𝑉∗  of the system  5 ,  is given by equation 

 30 − 36 respectively. 

Thus, the following result is established 

Proposition 1: The endemic equilibrium state exists whenever 𝑅𝑟
𝑐 > 1 

 

3.4 Global Stability of the Endemic Equilibrium State  

We present the global stability of endemic equilibrium state of the model  5  by constructing the Lyapunov function. 

Though, there is no general method to construct a Lyapunov function which proves the stability of equilibrium. However, 

similar to the approach in [30], we state the following theorem. 

Proposition 2: The endemic equilibrium state 휀1 of the model  5  is globally asymptotically stable on Ω if  𝑅𝑟
𝑐 > 1 and 

given that  
𝐴∗

𝑇∗ =
𝜑

𝑞𝛾2
,
𝑀∗

𝐸∗
=

𝛾1

𝜇2
 and 𝛿0 = 𝛼 = 𝜌 = 0. 

Proof: The global stability of the endemic equilibrium can be determined by constructing a volterra-like Lyapunov 

function 𝐿 𝑡  similar to the one explored in [31] given by 𝐿 𝑡 =  𝑑𝑘 𝑥𝑘 − 𝑥𝑘
∗ ln 𝑥𝑘 

𝑛
𝑘=1  

Which is positive definite for all positive values of 𝑥. 

At endemic equilibrium,  휀1 =  𝑆∗,𝐸∗,𝐴∗,𝐶∗,𝑇∗,𝑀∗,𝑉∗ , we have 

𝐿 =  𝑑𝑘 𝑥𝑘 − 𝑥𝑘
∗ ln 𝑥𝑘 

7

𝑘=1

 

= 𝛼1 𝑥1 − 𝑥1
∗ln𝑥1 + 𝛼2 𝑥2 − 𝑥2

∗ln𝑥2 + 𝛼3 𝑥3 − 𝑥3
∗ln𝑥3 + 𝛼4 𝑥4 − 𝑥4

∗ln𝑥4  

+𝛼5 𝑥5 − 𝑥5
∗ln𝑥5  + 𝛼6 𝑥6 − 𝑥6

∗ln𝑥6 + +𝛼7 𝑥7 − 𝑥7
∗ln𝑥7  

Let 𝑥1 = 𝑆, 𝑥2 = 𝐸, 𝑥3 = 𝐴,𝑥4 = 𝐶, 𝑥5 = 𝑇, 𝑥6 = 𝑀, 𝑥7 = 𝑉  
Therefore,  

𝐿 𝑡 = 𝑑1 𝑆 − 𝑆∗ln𝑆 + 𝑑2 𝐸 − 𝐸∗ln𝐸 + 𝑑3 𝐴 − 𝐴∗ln𝐴 + 𝑑4 𝐶 − 𝐶∗ln𝐶 
  + 𝑑5 𝑇 − 𝑇∗𝐼𝑛𝑇  + 𝑑6 𝑀 −𝑀∗𝐼𝑛𝑀  

+ 𝑑7 𝑉 − 𝑉∗𝐼𝑛𝑉  
The time derivative of 𝑣 𝑡  along the solutions of the model  5  is given by 
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𝐿′ = 𝑑1  1 −
𝑆∗

𝑆
 𝑆 ′ + 𝑑2  1 −

𝐸∗

𝐸
 𝐸′ + 𝑑3  1 −

𝐴∗

𝐴
 𝐴′ + 𝑑4  1 −

𝐶∗

𝐶
 𝐶 ′

      +𝑑5  1 −
𝑇∗

𝑇
 𝑇 ′  + 𝑑6  1 −

𝑀∗

𝑀
 𝑀′ + 𝑑7  1 −

𝑉∗

𝑉
 𝑉 ′                                       (37)

 

At endemic equilibrium state  휀1 =  𝑆∗,𝐸∗,𝐴∗,𝐶∗,𝑇∗,𝑀∗,𝑉∗ ≠ 0, the model satisfy the following relation 

𝑆 ′ = 𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗ +  𝛿𝜋𝜂 𝐶∗ − 𝛿0𝑉 +  𝛿 + 𝑃 𝑆∗ − 𝛼𝑀∗ − 𝛽 𝐴 + 𝐾𝑆 

    − 𝛿𝜋𝜂 𝐶 + 𝛿0𝑉   −  𝛿 + 𝑃 𝑆 + 𝛼𝑀 = 0                                                               (38) 
 

𝐸′ = 𝛽 𝐴 + 𝐾𝑆 𝑆 + 𝛿𝜋𝜂𝐶 + 𝜇1𝑀 −  
𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗

𝐸∗
+
𝛿𝜋𝜂𝐶∗

𝐸∗
+
𝜇1𝑀

∗

𝐸∗
 𝐸      39  

𝐴′ = 𝛾1𝐸 + 𝜇2𝑀 −  
𝛾1𝐸

∗

𝐴∗
+
𝜇2𝑀

∗

𝐴∗
 𝐴                                                                             40  

𝐶 ′ = 𝑞𝛾2𝐴 + 𝜑𝑇∗ −  
𝑞𝛾2𝐴

∗

𝐶∗
+
𝜑𝑇∗

𝐶∗
 𝐶                                                                           (41) 

𝑇 ′ = 𝛼0 −
𝛼0𝐶

∗

𝑇∗
𝐶                                                                                                                 (42) 

𝑀′ = 𝜉𝐸 −  
𝜉𝐸∗

𝑀∗
 𝑀                                                                                                             43  

𝑉 ′ =  𝛿 + 𝛿0 𝑉
∗ − 𝑝𝑆∗ + 𝜌𝑆 −  𝛿 + 𝛿0 𝑉                                                                    44  

Substitute equations (38 − 44) into (37), we have 

 

𝐿′ = 𝑑1  1 −
𝑆∗

𝑆
  𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗ + 𝛿𝜋𝜂𝐶∗ + 𝛿0𝑉 +  𝛿 + 𝑃 𝑆∗ − 𝛼𝑀∗  

−𝛽 𝐴 + 𝐾𝐶 𝑆 − 𝛿𝜋𝜂𝐶  − 𝛿0𝑉 −  𝛿 + 𝑃 𝑆 +𝛼𝑀 

+𝑑2  1 −
𝐸∗

𝐸
  𝛽 𝐴 + 𝐾𝐶 𝑆 + 𝛿𝜋𝜂𝐶 + 𝜇1𝑀 −  

𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗

𝐸∗
+
𝛿𝜋𝜂𝐶∗

𝐸∗
+
𝜇1𝑀

∗

𝐸∗
 𝐸 

+𝑑3  1 −
𝐴∗

𝐴
  𝛾1𝐸 + 𝜇2𝑀 −  

𝛾1𝐸

𝐴∗
+
𝜇2𝑀

∗

𝐴∗
 𝐴 

 +𝑑4  1 −
𝐶∗

𝐶
  𝑞𝛾2𝐴 + 𝜑𝑇 −  

𝑞𝑦2𝐴
∗

𝐶∗
+
𝜑𝑇

𝐶∗
 𝐶 

+𝑑5  1 −
𝑇∗

𝑇
  𝛼0𝐶 −  

𝛼0𝐶
∗

𝑇∗
 𝑇 

    +𝑑6  1 −
𝑀∗

𝑀
  𝜉𝐸 −  

𝜉𝐸∗

𝑀∗
 𝑀                                                                     45 

+𝑑7  1 −
𝑉∗

𝑉
   𝛿 + 𝛿0  𝑉

∗ − 𝑉 + 𝜌 𝑆 − 𝑆∗  

 

Upon simplification of equation 45 , we have 

𝐿′ = − 𝛿 + 𝑃 𝑑1

 𝑆 − 𝑆∗ 2

𝑆
+ 𝑑1  1 −

𝑆∗

𝑆
  𝛽  𝐴∗𝑆∗  1 −

𝐴𝑆

𝐴∗𝑆∗
 + 𝐾𝐶∗𝑆∗  1 −

𝐶𝑆

𝐶∗𝑆∗
   

        +𝛿𝜋𝜂𝐶
∗  1 −

𝐶∗

𝐶
 + 𝛿0 𝑉 − 𝑉∗  +𝛼𝑀∗ 𝑀 −𝑀∗  + 𝑑5𝛼0𝐶

∗  1 −
𝑇∗

𝑇
  

𝐸

𝐸∗
−

𝑀

𝑀∗
 

       +𝑑2  1 −
𝐸

𝐸∗
  𝛽𝐴∗𝑆∗  

𝐴𝑆

𝐴∗𝑆∗
−

𝐸

𝐸∗
 + 𝛽𝐾𝐶∗𝑆∗  

𝐶𝑆

𝐶∗𝑆∗
−

𝐸

𝐸∗
 + 𝛿𝜋𝜂𝐶

∗  
𝐶

𝐶∗
−

𝐸

𝐸∗
  

         +𝜇1𝑀
∗  

𝑀

𝑀∗
−

𝐸

𝐸∗
  + 𝑑3  1 −

𝐴∗

A
  𝛾1𝐸  

𝐸

𝐸∗
−
𝐴

𝐴∗
 + 𝜇2𝑀

∗  
𝑀

𝑀∗
−
𝐴

𝐴∗
  

        +𝑑4  1 −
𝐶∗

𝐶
  𝑞𝛾2𝐴

∗  
𝐴

𝐴∗
−

𝐶

𝐶∗
 + 𝜑𝑇∗  

𝑇

𝑇∗
−

𝐶

𝐶∗
  + 𝑑7 𝛿 + 𝛿0 

 𝑉 − 𝑉∗ 2

𝑉

        +𝑑6  1 −
𝑀∗

𝑀
  휀𝐸∗  

𝐸

𝐸∗
−

𝑀

𝑀∗
  + 𝑑7𝜌  1 −

𝑉∗

𝑉
  𝑆 − 𝑆∗                               (46)
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where, 

𝐿′ = − 𝛿 + 𝑝 𝑑1

 𝑆 − 𝑆∗ 2

𝑆
+ 𝑑7 𝛿 + 𝛿0 

 𝑉 − 𝑉∗ 2

𝑉
+ 𝐹 𝑥, 𝑦, 𝑧,𝑤, 𝑝, 𝑞, 𝑣          47  

Setting 
𝑆

𝑆∗
= 𝑥,

𝐸

𝐸∗
= 𝑦,

𝐴

𝐴∗
= 𝑧,

𝐶

𝐶∗
= 𝑤,

𝑇

𝑇∗
= 𝑞 ,

𝑀

𝑀∗
= 𝑝,

𝑉

𝑉∗
= 𝑣                                                        

 Therefore upon simplification of 𝐹 𝑥, 𝑦, 𝑧,𝑤, 𝑝, 𝑞, 𝑣 , we have, 

 

𝐹 𝑥, 𝑦, 𝑧,𝑤, 𝑝, 𝑞, 𝑣 

= 𝛽𝐴∗𝑆∗  𝑑1  1 −
1

𝑥
+ 𝑧 − 𝑥𝑧 + 𝑑2  𝑥𝑧 − 𝑦 −

𝑥𝑧

𝑦
− 1  

+𝛿𝜋𝜂𝐶∗  𝑑1  1 −
1

𝑥
− 𝑤 + 𝑥𝑤  +𝑑2  1 + 𝑤 − 𝑦 −

𝑤

𝑦
  + 𝑑1𝛿0𝑉

∗  𝑣 − 1 −
𝑣

𝑥
+

1

𝑥
  

+𝑑1𝛼𝑀
∗  𝑝 − 1 −

𝑝

𝑥
+

1

𝑥
 + 𝑑2𝜇1𝑀

∗  𝑝 −
𝑝

𝑦
− 𝑦 + 1 + 𝑑3𝛾1𝐸

∗  𝑦 −
𝑦

𝑧
− 𝑧 + 1 

+𝑑3𝜇2𝑀
∗  𝑝 −

𝑝

𝑧
− 𝑧 + 1 + 𝑑4𝑞𝛾2𝐴

∗  𝑧 −
𝑧

𝑤
− 𝑤 + 1 + 𝑑4𝜑𝑇

∗  𝑞 −
𝑞

𝑤
− 𝑤 + 1 

+𝑑5𝛼0𝐶
∗  𝑤 −

𝑤

𝑞
− 𝑞 + 1 + 𝑑6𝜉𝐸

∗  𝑦 −
𝑦

𝑝
− 𝑝 + 1 + 𝑑7𝜌𝑠

∗  𝑥 −
𝑥

𝑣
+

1

𝑣
− 1 

                                                                                                                                                  (48)  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

From (48) we can obtain the coefficients of the variables 

𝑦 ∶ −𝑑2 𝛽𝑆
∗ 𝐴∗ + 𝐾𝐶∗ − 𝑑2𝛿𝜋𝜂𝐶

∗ + 𝜇1𝑀
∗ + 𝑑3𝛾1𝐸

∗ + 𝑑6𝜉𝐸
∗                         (49) 

 𝑤 ∶  𝛽𝐾𝐶∗𝑆∗𝑑1 − 𝑑1𝛿𝜋𝜂 𝐶
∗ + 𝑑2𝛿𝜋𝜂𝐶

∗ − 𝑑4𝑞𝛾2𝐴
∗ − 𝑑4𝜑𝑇

∗ + 𝑑5𝛼0𝐶
∗               (50) 

 𝑧 ∶ 𝛽𝐴∗𝑆∗𝑑1 − 𝑑3𝜇1𝑀
∗ − 𝑑3𝛾1𝐸

∗ + 𝑑4𝑞𝛾2𝐴
∗ 51  

𝑝 ∶ 𝑑1𝛼𝑀
∗ + 𝑑2𝜇1𝑀

∗ + 𝑑3𝜇2𝑀
∗ − 𝑑6𝜉𝐸

∗                                                                     (52) 

𝑞: 𝑑4𝜑𝑇
∗ − 𝑑5𝛼0𝐶

∗        (53) 

𝑥𝑧 ∶  𝛽𝐴∗𝑆∗ 𝑑2 − 𝑑1  54  
𝑥𝑤 ∶ 𝑑1𝛿𝜋𝜂𝐶

∗ −  𝛽𝐾𝐶∗𝑆∗𝑑1 + 𝛽𝐾𝐶∗𝑆∗𝑑2        55  

Therefore by setting the expression (49-55) to zero and solving yields 

𝑑2 = 𝑑1 ,𝑑3 = 𝑑1  
𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

∗
 ,𝑑4 = 𝑑1  

𝛽𝐾𝐶∗𝑆∗

𝑞𝛾2𝐴
∗
 ,𝑑5 = 𝑑1

𝜑𝑇∗

𝛼0𝐶
∗
 
𝛽𝐾𝐶∗𝑆∗

𝑞𝛾2𝐴
∗
  

𝑑6 = 𝑑1

𝑀∗

𝜉𝐸∗
 𝛼 + 𝜇1 +

𝜇2𝛽 𝐴∗+𝐾𝐶∗ 𝑆∗

 𝛾1𝐸
∗ + 𝜇2𝑀

∗ 
  

Furthermore   
𝐹 𝑥, 𝑦, 𝑧,𝑤, 𝑝, 𝑞, 𝑣 

 = 𝑑1𝛿𝜋𝜂𝐶
∗  2 −

1

𝑥 
−
𝑤

𝑦
 + 𝑑1𝛽𝐴

∗𝑆∗  2 −
1

𝑥
−
𝑥𝑧

𝑦
 + 𝑑1𝛽𝐾𝐶

∗𝑆∗  2 −
1

𝑥
−
𝑥𝑤

𝑦
 

+𝑑1𝛿0𝑉
∗  𝑣 − 1 −

𝑣

𝑥
+

1

𝑥
 + 𝑑1𝛼𝑀

∗  
1

𝑥
−
𝑝

𝑥
− 1 + 𝑑2𝜇1𝑀

∗  1 −
𝑝

𝑦
 

+𝑑3𝛾1𝐸
∗  1 −

𝑦

𝑧
 + 𝑑3𝜇2𝑀

∗  1 −
𝑝

𝑧
 + 𝑑4𝑞𝛾2𝐴

∗  1 −
𝑧

𝑤
 

+𝑑4𝜑𝑇
∗  1 −

𝑞

𝑤
 + 𝑑5𝛼0𝐶

∗  1 −
𝑤

𝑞
 + 𝑑6𝜉𝐸

∗  1 −
𝑦

𝑝
                                             (56)

+𝑑7𝜌𝑠
∗  𝑥 −

𝑥

𝑣
+

1

𝑣
− 1 

 

where, 

 𝐹 𝑥, 𝑦, 𝑧,𝑤, 𝑝, 𝑞, 𝑣 = 𝐹1 + 𝐹2 

and 

𝐹1 = 𝑑1𝛿𝜋𝜂𝐶
∗  2 −

1

𝑥 
−
𝑤

𝑦
 + 𝑑1𝛽𝐴

∗𝑆∗  2 −
1

𝑥
−
𝑥𝑧

𝑦
 + 𝑑1𝛽𝐾𝐶

∗𝑆∗  2 −
1

𝑥
−
𝑥𝑤

𝑦
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𝐹2 = 𝑑1𝛿0𝑉
∗  𝑣 − 1 −

𝑣

𝑥
+

1

𝑥
 + 𝑑1𝛼𝑀

∗  
1

𝑥
−
𝑝

𝑥
− 1 + 𝑑2𝜇1𝑀

∗  1 −
𝑝

𝑦
 

         +𝑑3𝛾1𝐸
∗  1 −

𝑦

𝑧
 + 𝑑3𝜇2𝑀

∗  1 −
𝑝

𝑧
 + 𝑑4𝜑𝑇

∗  1 −
𝑞

𝑤
 + 𝑑5𝛼0𝐶

∗  1 −
𝑤

𝑞
 

          +𝑑6𝜉𝐸
∗  1 −

𝑦

𝑝
 + 𝑑7𝜌𝑠

∗  𝑥 −
𝑥

𝑣
+

1

𝑣
− 1 

 

Further simplification gives 

𝐹2 = 𝑑1  
𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

  𝛾1𝐸
∗  1 −

𝑦

𝑧
 + 𝜇2𝑀

∗  1 −
𝑝

𝑧
   

        +𝑑1  
𝛽𝐾𝐶∗𝑆∗

𝑞𝛾2𝐴
∗
  𝑞𝛾2𝐴

∗  1 −
𝑧

𝑤
 + 𝜑𝑇∗  1 −

𝑞

𝑤
  +𝑑1

𝜑𝑇∗

𝛼0𝐶
∗
 
𝛽𝐾𝐶∗𝑆∗

𝑞𝛾2𝐴
∗
  𝛼0𝐶

∗  1 −
𝑤

𝑞
   

        +𝑑1

𝜉𝐸∗𝑀∗

𝜉𝐸∗
 1 −

𝑦

𝑝
  𝛼 + 𝜇1 +

𝜇2𝛽 𝐴∗+𝐾𝐶∗ 𝑆∗

 𝛾1𝐸
∗ + 𝜇2𝑀

∗ 
 + 𝑑7𝜌𝑠

∗  𝑥 −
𝑥

𝑣
+

1

𝑣
− 1  

        +𝑑1𝛿0𝑉
∗  𝑣 − 1 −

𝑣

𝑥
+

1

𝑥
 + 𝑑1𝛼𝑀

∗  
1

𝑥
−
𝑝

𝑥
− 1 + 𝑑1𝜇1𝑀

∗  1 −
𝑝

𝑦
  

= 𝑑1

𝜑𝑇∗𝛽𝐾𝐶∗𝑆∗

𝑞𝛾2𝐴
∗

 2 −
𝑞

𝑤
−
𝑤

𝑞
 + 𝑑1𝜇2𝑀

∗  
𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

  2 −
𝑝

𝑧
−
𝑦

𝑝
  

+𝑑1  
𝛽 𝐴∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

 𝛾1𝐸
∗  1 −

𝑦

𝑧
 +𝑑1𝛽𝐾𝐶

∗𝑆∗  1 −
𝑧

𝑤
 + 𝑑1𝑀

∗ 𝛼 + 𝜇1  1 −
𝑦

𝑝
  

    +𝑑1𝛿0𝑉
∗  𝑣 − 1 −

𝑣

𝑥
+

1

𝑥
 + 𝑑1𝛼𝑀

∗  
1

𝑥
−
𝑝

𝑥
− 1 + 𝑑1𝜇1𝑀

∗  1 −
𝑝

𝑦
 

+ 𝑑7𝜌𝑠
∗  𝑥 −

𝑥

𝑣
+

1

𝑣
− 1 = 𝑑1𝜑𝑇

∗𝛽𝐾𝐶∗𝑆∗  
1

𝑞𝛾2𝐴
∗
 2 −

𝑞

𝑤
−
𝑤

𝑞
 +

1

𝜑𝑇∗
 1 −

𝑧

𝑤
  

+
𝑑1𝛽 𝐴

∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

∗
 𝜇2𝑀

∗  2 −
𝑝

𝑧
−
𝑦

𝑝
 +      𝛾1𝐸

∗  1 −
𝑦

𝑧
  + 𝑑1𝜇1𝑀

∗  2 −
𝑝

𝑦
−
𝑦

𝑝
 

+ 𝑑1𝛼𝑀
∗  

1

𝑥
−
𝑝

𝑥
−
𝑦

𝑝
  +𝑑1𝛿0𝑉

∗  𝑣 − 1 −
𝑣

𝑥
+

1

𝑥
 +     𝑑7𝜌𝑠

∗  𝑥 −
𝑥

𝑣
+

1

𝑣
− 1  

If  
𝐴∗

𝑇∗ =
𝜑

𝑞𝛾2
,
𝑀∗

𝐸∗
=

𝛾1

𝜇2
 and 𝛿0 = 𝛼 = 𝜌 = 0 

𝐹2 = 𝑑1𝜑𝑇
∗𝛽𝐾𝐶∗𝑆∗  3 −

𝑞

𝑤
−
𝑤

𝑞
−
𝑧

𝑤
 +

𝑑1𝛽 𝐴
∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

∗
 3 −

𝑝

𝑧
−
𝑦

𝑝
−
𝑦

𝑧
   + 𝑑1𝜇1𝑀

∗  2 −
𝑝

𝑦
−
𝑦

𝑝
  

Thus,  
𝐹 𝑥, 𝑦, 𝑧,𝑤, 𝑝, 𝑞, 𝑣 = 𝐹1 + 𝐹2

= 𝑑1𝛿𝜋𝜂𝐶
∗  2 −

1

𝑥 
−
𝑤

𝑦
 + 𝑑1𝛽𝐴

∗𝑆∗  2 −
1

𝑥
−
𝑥𝑧

𝑦
 + 𝑑1𝛽𝐾𝐶

∗𝑆∗  2 −
1

𝑥
−
𝑥𝑤

𝑦
 

+𝑑1𝜑𝑇
∗𝛽𝐾𝐶∗𝑆∗  3 −

𝑞

𝑤
−
𝑤

𝑞
−
𝑧

𝑤
 +

𝑑1𝛽 𝐴
∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

∗
 3 −

𝑝

𝑧
−
𝑦

𝑝
−
𝑦

𝑧
 

+𝑑1𝜇1𝑀
∗  2 −

𝑝

𝑦
−
𝑦

𝑝
 

 

Now 

𝐿′ = −𝑑1𝛿
 𝑆 − 𝑆∗ 2

𝑆
− 𝑑7𝛿

 𝑉 − 𝑉∗ 2

𝑉
+ 𝑑1𝛿𝜋𝜂𝐶

∗  2 −
1

𝑥 
−
𝑤

𝑦
 + 𝑑1𝛽𝐴

∗𝑆∗  2 −
1

𝑥
−
𝑥𝑧

𝑦
 

       +𝑑1𝛽𝐾𝐶
∗𝑆∗  2 −

1

𝑥
−
𝑥𝑤

𝑦
 + 𝑑1𝜑𝑇

∗𝛽𝐾𝐶∗𝑆∗  3 −
𝑞

𝑤
−
𝑤

𝑞
−
𝑧

𝑤
 

      +
𝑑1𝛽 𝐴

∗ + 𝐾𝐶∗ 𝑆∗

𝛾1𝐸
∗ + 𝜇2𝑀

∗
 3 −

𝑝

𝑧
−
𝑦

𝑝
−
𝑦

𝑧
 + 𝑑1𝜇1𝑀

∗  2 −
𝑝

𝑦
−
𝑦

𝑝
                                     (57)

 

By arithmetic and geometric mean inequality [32], we have 

2 ≤
1

𝑥 
+
𝑤

𝑦
, 2 ≤

1

𝑥
+
𝑥𝑧

𝑦
, 2 ≤

1

𝑥
+
𝑥𝑤

𝑦
, 3 ≤

𝑞

𝑤
+
𝑤

𝑞
+
𝑧

𝑤
, 3 ≤

𝑝

𝑧
+
𝑦

𝑝
+
𝑦

𝑧
 𝑎𝑛𝑑 2 ≤

𝑝

𝑦
+
𝑦

𝑝
 

 

Journal of the Nigerian Association of Mathematical Physics Volume 54, (January 2020 Issue), 21– 32   



32 
 

Global Stability Analysis of the…               Nwaokolo, Kimbir, Onah and Aboiyar             J. of NAMP 
 

This implies that 𝐹 𝑥, 𝑦, 𝑧,𝑤, 𝑝,𝑞, 𝑣 ≤ 0 

Therefore, 𝐿′ ≤ 0 𝑖𝑛 Ω 𝑖𝑓 𝜌 = 𝛿0 = 𝛼 = 0  
The equality 𝐿′ = 0 holds only for 𝑥 = 𝑦 = 𝑧 = 𝑤 = 𝑝 = 𝑞 = 𝑣 = 1.Thus, the model system (5) has a unique endemic equilibrium state 

휀1which is the only positively invariant set in the feasible region Ω =  𝑆∗,𝐸∗,𝐴∗,𝐶∗,𝑇∗,𝑀∗,𝑉∗ Therefore, in [33], it implies that the 

endemic equilibrium state  is globally asymptotically stable in  if  𝑅𝑟 
𝑐 >1.  

 

Conclusion 
The endemic equilibrium state was found to be stable. The public health implication is that HBV will be sustained if susceptible migrants are restricted 

(that is, if infective migrants are allowed into the system), there is permanent immunity(improper vaccination) or no vaccination regiment and provided the 
transmission rate from migrated to acutely infected class is equal to that from exposed to acutely infected class; and the transmission from acutely infected 

class to chronic carrier class is equal to the rate at which the treated individual relapse to chronic carrier class (that is, under  steady state condition).Hence 

the governing model can be applied for predicting the spread of HBV. However, to attain the desired goal, further research on the effect of vaccination and 
treatment may convey existing new information in controlling the spread of hepatitis b virus with infective migrants. 
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