COMPARATIVE ANALYSIS OF INITIAL FEASIBLE SOLUTIONS TO BALANCED TRANSPORTATION PROBLEMS

Akeremale O. C^{1}, AnthonyO. F. ${ }^{2}$ and Olaiju A. O. ${ }^{3}$
1,2 Department of Mathematics, Federal University Lafia, Nasarawa State, Nigeria ${ }^{3}$ Department of Mathematics, Federal Polytechnics, Ilaro Ogun State, Nigeria

Abstract

In this work, we compared three transportation approaches to find the most efficient transportation schedule and the best transportation route for the initial feasible solution in order to maximize profit. Excel solver as a tool was used to compute the optimal solution as a validation for the optimal test.

Keywords: transportation cost, transportation problem, initial basics feasible solution, excel solver, optimal solution

1. Introduction

One of the important applications of linear programming is in transportation problems. Transportation problem is a classical class optimization problem which involves moving goods from one location to another location depending on demand and supply of the goods at the various locations. Transportation problem was first formulated by [1] and [2]successfully developed efficient and robust method for the solution of the problem followed by [3]who later improved on the method of solution.
The simplified version of simplex method is transportation method and it can be used to solve linear programming problems. It is known as the transportation problem/model because in solving problems that involves several sources and destinations, transportation method is a major application. A transportation problem is said to be balanced if, total supply equals total demand, if there is a disparity between demand and supply, it is said to be unbalanced transportation problem. In this work, we will focus on balanced transportation problems
Many authors [4-12] hadworked on transportation problems with most of them laying emphasis on Vogel approximation method and northwest corner rule method for both the initial basic feasible solution and optimal solution. Though their results were found to be very good but, in this research, we intend to explore row minimal, column minimal and least square methods to obtain both the initial basic feasible solution and the optimal solution for possible comparison.

2. Problem Formulation

A firm produces goods at m locations, i.e. $i=1,2.3, \ldots, m$. The supply product at $i^{t h}$ location $=s i$, the demand for the goods is spread out at n different demand locations i.e. $j=1,2,3, \ldots, n$. The demand at the $j^{t h}$ demand location is D_{j}. The problem of the firm is to get goods from supply locations to demand locations at minimum cost. Assume that the cost of shipping one unit from supply locationi to demand location j is $C_{i j}$ and that shipping cost is linear, which means that if you shipped $X_{i j}$ unit from location i to demand location j, then, the cost would be $C_{i j} X_{i j}$.
Where $X_{i j}$ is the number of units shipped from supply locationi to demand location j the problem is to identify the minimum or maximum shipping cost schedule. The constraints being that supply must meet demand at each demand location, and cannot exceed supply at each supply location.
By the assumption of linearity, the schedule cost is as below
$\max \sum_{i=1}^{m} \sum_{j=1}^{n} C_{i j} X_{i j}$
The total amount shipped out of supply locationi is

[^0]$\sum_{i=1}^{m} X_{i j}$
i.e. $X_{i j}$ is the unit shipped from i to j. Also, from i amount of unit can be shipped to any demand location $(j=1,2,3, \ldots, n)$. The quantity cannot exceed the supply available, hence the constraint
$\sum_{j=1}^{n} X_{i j} \leq S_{i,} \quad i=1,2,3, \ldots m$
Similarly, the constraints that guarantee that the demand at each demand location is met is given by
$\sum_{j=1}^{n} X_{i j} \geq D_{j}, j=1,2,3, \ldots, n$
Thus, we assume that the total supply is equal to total demand that is if
$\sum_{j=1}^{n} D_{j}=\sum_{i=1}^{m} S_{i}$
The constraints in the problem holds as equations
With the establishment that total supply is equal to total demand, the standard transportation model formulation is given below with the objective to find a transportation plan denoted by $X_{i j}$ that satisfy (5) and solves
\[

\left.$$
\begin{array}{c}
\max \sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} C_{i j} \tag{6}\\
\text { ect to } \sum_{j=1}^{n} x_{i j}=S_{i}, \quad i=1,2,3, \ldots, m \\
\sum_{j=1}^{n} X_{i j}=D_{i}, \quad j=1,2,3, \ldots, n
\end{array}
$$\right\}
\]

In the problem it is natural to assume that the variable $X_{i j}$ takes on integer value (and non-negative ones). That is one can only ship items in whole number batches.
Then the standard mathematical model for this problem is:

$$
\left.\begin{array}{c}
\max Z=\sum_{i}^{m} \sum_{j}^{n} X_{i j} C_{i j} \\
\text { subject to } \sum_{j}^{n} X_{i j} \leq a_{i}, \quad i=1,2,3, \ldots m \tag{7}\\
\sum_{j}^{n} X_{i j} \geq b_{j}, \quad j=1,2,3, \ldots, n
\end{array}\right\}
$$

where
$m=$ number of sources
$n=$ number of destinations
$a_{i}=$ capacity of $i^{t h}$ source
$b_{j}=$ capacity of $j^{t h}$ destination
$C_{i j}=$ cost coefficient for materials shiped from $i^{\text {th }}$ source to $j^{\text {th }}$ destination
$X_{i j}=$ amount of materials shiped between $i^{t h}$ source to $j^{t h}$ destination

3.0 Methodology

In this section, we consider column minima, row minima and least square methods for the initial feasible solution of balanced transportation problems while we improve on each of the method for the optimality solution. The basic steps involved in solving a transportation problem are; (i) find an initial basic feasible solution, (ii) test the solution for optimality, (iii) improve the solution when it is not optimal at the initial feasible point. In a case where the solution is not
optimal at the initial feasible solution, steps (ii) and (iii) are repeated until an optimal solution is arrived at. Excel solver was also used for the optimality test.

4.0 Data Collection and Analysis

Data for this research work were collected from Pleasure Travels Limited, Peace Mass Transit, Blue Whales Transport Limited and Young Shall Grow Transport Limited and used for comparison of transportation algorithm(s) with the view of finding the most efficient transportation algorithm and the best transportation route for the benefit of the companies involved in order to maximise profit. Three methods of finding initial feasible solution (Column minima method, Row minima method and Least cost method) where employed
Excel solver was used to compute the optimal solution as a validation tool for the transportation problem.

4.1 Construction of Pleasure Travels Transportation Tableau

Consider a transportation company Pleasure Travels that allocates buses to different route on a daily bases and the total income generated on each per trip (to-fro) as well as the total passengers transported per trip (to-fro) as shown in table 4.1 below:

Table 1DataCollectedfromPleasureTravels Limited									
ROUTE	PASSENGERS BUS	PER	NO VEHICLE		OF	NO PASSENGERS CARRIED	OF	INCOME TRIP	PER
			TO	FRO					
ABUJA-CALABAR	14		2	2		56		\#380,800	
	13		1	1		26		N171,600	
ABUJA-OWERRI	36		2	2		144		\#1,022,400	
	13		1	1		26		N182,000	
ABUJA-LAGOS	42		1	1		84		N546,000	
	36		1	1		72		N460, 800	
ABUJA-IBADAN	42		1	1		84		N487,200	
	13		1	1		26		\#140,400	
TOTAL			10	10		518		\# 3,391,200	

Table1 is transformed into transportation tableau and the initial feasible solution of the transportation problem is computed as follows:
Table 2: Pleasure Travels Transportation Tableau

	A		B		C		D	Supply		
Abuja- Calabar		6800	28 年 6800		$26 \quad \mathbf{6 6 0 0}$		6800			
	28					82				
Abuja -Owerri	$72 \quad \mathbf{7 1 0 0}$		72 710				26 (7000		7100	170
Abuja - Lagos	42 l				 42 $\mathbf{6 5 0 0}$		72		6500	156
Abuja - Ibadan	42 42 5800		42	5800	26	5400	5800	110		
Demand		184			34		0		518	

Now, we compute the total number of passengers that uses bus A to all the routes from Abuja
Demand $=28+72+42+42=184$
Total number of passengers that uses bus B to all the routes
Demand $=28+72+42+42=184$
Total number of passengers that uses bus C to all the routes from Abuja
Demand $=26+26+72+26=150$
Total Demand= 518

Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

Number of passengers that moved from Abuja to Calabar using bus A to $D=82$
Number of passengers that moved from Abuja to Owerri using bus A to $D=170$
Number of passengers that moved from Abuja to Lagos using bus A to $\mathrm{D}=156$
Number of passengers that moved from Abuja to Ibadan using bus A to $D=110$
Total supply $=82+170+156+110=518$. This gives a balanced transportation problem hence; it satisfies the condition Total Demand = Total Supply
Total income generated is calculated below
6800 * 56 = ※ 380,800
$6600 * 26=$ \# 171,600
$7100 * 144=$ ※ $1,022,400$
7000 * 26 = 182,000
$6500 * 84=$ \# 546,000
$6400 * 72$ = $\# 460,800$
$5800 * 84=$ \# 487,200
$5400 * 26=$ 140,400
Total income =\# 3,391,200

4.2 Finding Initial Feasible Solution

4.2.1 Column Minima Method

The initial basic feasible solution is obtained using column minima method. Following the algorithm presented and starting from the least cell in the first column until all demand and supply are met as shown in table 3.
Table 3: Column Minima Method

Total income generated by the column minima method
$6800 * 82=\mathrm{A} 557,600$
$7100 * 20=$ \# 142,000
$7000 * 150=\mathrm{A} 1,050,000$
$6500 * 102=$ ※ 663,000
$6500 * 54=$ \# 351,000
$5800 * 110=$ ※ 638,000
Total income = $\mathrm{\#} 3,401,600$

4.2.2 Row Minima Method

The Row Minima Method is applied starting allocation to the cell with the minimum cost in the first row following the algorithm mentioned earlier as shown in Table 4
Table 4: Row Minima Method

Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

Total income generated using the Row Minima Method
$6600 * 82=\mathrm{\#} 541,200$
$7000 * 68=\mathrm{*} 476,000$
$7100 * 102=$ \# 724,200
$6500 * 156=$ ※ $1,014,000$
$5800 * 28=\mathrm{A} 162,400$
$5800 * 82=$ \# 475,600
TOTAL INCOME = $\mathbf{\# 3} \mathbf{3 9 3} \mathbf{3 9 0}$

4.2.3 Least Cost Method

The initial basic feasible solution is obtained using the least cost method following the algorithm presented earlier starting from the least cell until all demand and supply are met as shown in table 5
TABLE 5: Least Cost Method

	A	B	C	D	Supply
A	$82 \quad 680$	6800	6600	6800	
A					82
B	${ }_{20} 20 \quad \mathbf{7 1 0 0}$	7100	* ${ }^{*}$	7100	170
B			150		
C	82	74	6400	6500	156
C					
D	28		5400	5800	110
Demand	184	184	150		518

Total income generated using the least cost method is calculated below
$6800 * 82=$ \# 557,600
$7100 * 20=\mathrm{A} 142,000$
$7000 * 150=$ \# 1,050,000
$6500 * 82=\mathrm{\#} 533,000$
$6500 * 74=\mathrm{\#} 481,000$
$5800 * 110=\mathrm{N} 638,000$
Total income $=\mathbf{3 , 4 0 1 , 6 0 0}$

4.3Construction of Peace Mass Transit Transportation Problem

Table 6: Data Collected from Peace Mass Transit

ROUTE	PASSENGER BUS	PER	NO OF VEHICLE		TOTAL PASSENGER	INCOME
			TO	FRO		
ABUJA-	14		2	2	56	375,200
CALABAR	13		2	2	52	343,200
ABUJA-	13		3	3	78	468,000
PORTHHARCOUR T	14		1	1	28	170,800
ABUJA - OWERRI	36		1	1	72	489,600
	13		1	1	26	182,000
ABUJA-IBADAN	42		1	1	84	478,800
TOTAL	13		$\begin{array}{ll} \hline 2 & \\ & 13 \end{array}$	$\begin{array}{\|ll} \hline 2 & \\ & 13 \end{array}$	$\begin{aligned} & \hline 52 \\ & 448 \end{aligned}$	$\begin{aligned} & 291,200 \\ & 2,798,800 \end{aligned}$

Table 6 is transformed into a transportation tableau and the initial feasible solution of the transportation problem is computed as follows:

Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

Table 7: Peace Mass Transit Transportation Tableau

	A		B		C		D		Supply		
A	$28 \quad 6700$		$28 \quad 6700$		$26 \quad 660$		$26 \quad 6600$				
			108								
B	26 \% 6000				26 年 6000		$26 \quad 6000$		$28 \quad 6100$		106
C	$72 \quad 6800$		26 7000			6800		6800	98		
C											
D	84	5700			26	5600	26	5600		5600	136
Demand		210		106		78	54		448		

4.3.1 Column Minima Method

Table8: Column Minima Method

Total income generated by the column minima method
$6700 * 104=\mathrm{\#} 698,800$
$6600 * 4=\mathrm{\#} 26,400$
$6000 * 106=\mathrm{*} 636,000$
$7000 * 98=\mathrm{A} 686,000$
$5600 * 8=$ ※ 44,800
$5600 * 74=\mathrm{\#} 414,400$
$5600 * 54$ = \# 302,400
Total income $=\mathbf{\#} \mathbf{2 , 8 0 6 , 8 0 0}$
4.3.2 The Row Minima Method

Table9: Row Minima Method

Total income generated using the row minima method
$6600 * 78=\mathrm{N} 514,800$
$6600 * 30=\mathrm{A} 198,000$
Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

$$
\begin{aligned}
& 6000 * 106=\mathrm{\#} 636,000 \\
& 7000 * 98=\mathrm{F} 686,000 \\
& 5700 * 104=\mathrm{\#} 592,800 \\
& 5600 * 8=\mathrm{\#} 44,800
\end{aligned}
$$

Total income = $\mathbf{\#} \mathbf{2 , 8 0 6 , 8 0 0}$
4.3.3 The Least Cost Method

Table10: Least Cost Method

	A		B		C		D		Supply	
A	$104 \quad 6$		4	6700		6600		6600	108	
B		6000			6000		6000		6100	106
B	106									
C		6800	98 ${ }^{\text {9 }}$			6800		6800	98	
D	$104 \begin{aligned} & \text { 1700 }\end{aligned}$		4	5600	78	5600	54	5600	136	
Demand	210		106		78		54		448	

Total income generated using the least cost method
$6700 * 104=\mathrm{A} 696,800$
$6700 * 4=\mathrm{N} 26,800$
$6000 * 106=\mathrm{A} 636,000$
7000 * 98 = $\mathrm{A} 686,000$
$5600 * 4=$ ※ 22,400
$5600 * 78=\mathrm{\#} 436,800$
$5600 * 54$ = \# 302,400
Total income = \# 2,807,200

4.4 Construction of Bluewhales Transport Company Limited Transportation Problem

Table 11: Data Collected from BlueWhales Travels

ROUTE	VEHICLE MAKE	NO OF VEHICLE		NO OF PASSENGERS	INCOME
		TO	FRO		
Abuja - Lagos	22	2	2	88	506,000
	22	1	1	44	253,000
Abuja - Delta	22	1	1	44	233,200
	36	1	1	76	395,200
Abuja Yenagoa	42	1	1	84	638,400
	22	1	1	44	334,400
Abuja - Edo	22	3	3	132	871,200
	36	1	1	72	475,200
TOTAL		11	11	584	\#3,706,600

Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

Table 11 above can be transformed into transportation tableau as shown in the next table.
Table12: Blue Whales Travels Transportation Tableau

	A		B		C		D		Supply		
A	44 44		$44 \quad 5750$		$44 \quad 5750$			5750			
							132				
B	$44 \quad 5300$				76			5300		5300	120
C	$84 \quad \mathbf{7 6 0 0}$		$44 \quad \mathbf{7 6 0 0}$			7600		7600	128		
c											
D	$44 \quad 6600$				44	6600	44	6600	72	6600	204
D											
Demand		216		08		88	72		584		

4.4.1 Column Minima Method

Table 13: Column Minima Method

	A	B	C	D	Supply
A	132	5750	5750	5750	132
B	5300	5200	5300	5300	120
B	84	36			120
C	7600	7600	7600	7600	128
		128			
D	6600	6600	6600	6600	
D		44	88	72	204
Demand	216	208	88	72	584

Total income generated using the column minima method
$5750 * 132=$ \# 759,000
$5300 * 84=\mathrm{A} 445,200$
$7600 * 128=$ \# 972,800
$6600 * 80=$ A 528,000
$6600 * 88=$ \# 580,800
$6600 * 36=\mathrm{\#} 237,600$
$5300 * 36=\mathrm{A} 190,800$
Total income $=\$ 3,714,200$
4.4.2 Row Minima Method

Table 14: Row Minima Method

	A		B		C		D		Supply		
A		5750		5750		5750		5750			
	132								132		
B	84		$36 \quad 5200$			5300		5300	120		
C		7600			128 7600		 44 $\mathbf{7 6 0 0}$			7600	128
D	132	6600	44	6600	88	6600	72	6600	204		
Demand		216		208		88	72		584		

Total income generated using the row minima method
$5750 * 132=$ \# 759,000
$5300 * 84=$ 丹 445,200
Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

$$
\begin{aligned}
& 5200 * 36=\# 187,200 \\
& 7600 * 128=\mathrm{A} 972,800 \\
& 6600 * 44=\text { \# } 290,400 \\
& 6600 * 88=\text { A } 580,800 \\
& 6600 * 72=\text { \# } 475,200
\end{aligned}
$$

Total income $=\mathrm{A} 3,701,600$
4.4.3The Least Cost Method

Table15: Least Cost Method

Total income generated using the least cost method

$$
\begin{aligned}
& 5750 * 88=\vDash 506,000 \\
& 5750 * 44=\mathrm{A} 253,000 \\
& 5300 * 120=\mathrm{A} 636,000 \\
& 7600 * 96=\mathrm{F} 72,960 \\
& 7600 * 32=\mathrm{A} 243,200 \\
& 6600 * 176=\mathrm{A} 1,161,600 \\
& 6600 * 28=\mathrm{A} 184,800
\end{aligned}
$$

Total income $=\mathrm{\#} 3,714,200$

4.5 Construction of Young Shall Grow Transportation Tableau

Table 16: Data Collected from Young Shall Grow Transport

ROUTE	PASSENGER BUS	PER	NO OF VEHICLE		TOTAL PASSENGER	INCOME
			TO	FRO		
ABUJA-ENUGU	22		3	3	132	607,200
	50		1	1	100	450,000
ABUJA-	22		2	2	88	369,600
ONITSHA	50		2	2	200	820,000
ABUJA - ABA	22		1	1	44	233,200
	50		1	1	100	530,000
ABUJAUMUAHIA	22		2	2	88	440,000
	50		1	1	100	500,000
TOTAL			13	13	852	3,950,000

Table16 above can be transformed into transportation tableau as shown in the next table

Table 17: Young Shall Grow Transportation Tableau

	A		B		C		D		Supply		
A	$44 \quad 4600$		$44 \quad 4600$		$44 \quad 4600$		$100 \quad 4500$		123		
B	$44 \quad 4200$		44		100		$\mathbf{1 0 0}$		288		
C	44		100			5300		5300	144		
	44	5000			44	5000	100	5000		5000	188
D											
Demand		176		232		244	200		852		

4.5.1 Column Minima Method

Table18: Column Minima Method

Total income generated using the column minima method

$$
\begin{aligned}
& 4600 * 176=\mathrm{A} 809,600 \\
& 4600 * 56=\mathrm{A} 257,600 \\
& 4200 * 176=\mathrm{A} 739,200 \\
& 4100 * 112=\mathrm{A} 459,200 \\
& 5300 * 144=\mathrm{N} 763,200 \\
& 5000 * 132=\mathrm{\#} 660,000 \\
& 5000 * 56=\mathrm{A} 280,000
\end{aligned}
$$

Total income $=\mathrm{A} 3,968,800$

4.5.2 The Row Minima Method

Table19: Row Minima Method

Total income generated using row minima method
Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

```
4600* 176 = ^ 809,600
4600 * 56 = ^ 257,600
4200* 176= & 739,200
4100*112 = # 459,200
5300* 132 = # 699,600
5300* 12 = # 63,600
5000* 188 = ^ 940,000
```

Total income $=$ \# 3,968,800

4.5.3 The Least Cost Method

Table 20: Least Cost Method

	A	B	C	D	Supply
A	4600	4600	4600	4500	
A		120	112		232
	* 4200	4200	4100	4100	
B	176	112			288
C	5300	5300	5300	5300	144
			132	12	
	5000	5000	5000	5000	
D				188	188
Demand	176	232	244	200	852

Total income generated using least cost method
4600 * $120=$ \# 552,000
$4600 * 112=\mathrm{A} 515,200$
$4200 * 176=\mathrm{A} 739,200$
$4200 * 112=\mathrm{\#} 470,400$
$5300 * 132$ = $\mathrm{\#} 699,600$
$5300 * 12$ = \# 63,600
$5000 * 188=$ ※ 940,000

Total income $=\mathbf{\# 3} \mathbf{3 8 0 , 0 0 0}$

5 Result, Conclusion and Recommendation

5.1 Result

Using the excel solver application, the optimal solution for the four companies were obtained as follows:Pleasure Travels Limited $=\mathbf{N} \mathbf{3}, \mathbf{4 0 1}, \mathbf{6 0 0}$, Peace Mass Transit $=\mathbf{N 2}, \mathbf{8 2 3}, \mathbf{6 0 0}$, Blue Whales Transport Company Limited $=\mathbf{N 3} \mathbf{3} \mathbf{7 1 4 , 2 0 0}$, Young Shall Grow Motors Limited $=\mathbf{N 3} \mathbf{9 8 0} \mathbf{9 8 0 0 0}$. The table below shows the companies name, initial income generated by the companies, the initial basic feasible solution using the three (3) different methods of solving transportation problems, the optimal solution obtained using the excel solver, the difference between the optimal solution and the initial basic feasible solution methods and the percentage (\%) difference.

Table 21: Analysis of Results

COMPANY NAME COMPANY	INITIAL SOLUTION INITIAL	METHODS			OPTIMAL SOLUTION OPTIMAL	DIFFERENCE			\% DIFFERENCE		
		CMM	RMM	LCM		OPT-CMM	OPT-RMM	OPT-LCM	CMM	RMM	LCM
PT	3,391,200	3,401,600	3,393,400	3,401,600	3,401,600	0	8,200	0	0	0.24\%	0
PMT	2,798,800	2,806,800	2,806,800	2,807,200	2,823,600	16,800	16,800	16,400	0.59\%	0.59\%	0.58\%
BTL	3,706,600	3,714,200	3,710,600	3,714,200	3,714,200	0	3,600	0	0	0.09\%	0
YSGML	3,950,000	3,968,800	3,968,800	3,980,000	3,980,000	11,200	11,200	0	0.28\%	0.28\%	0

Difference $\quad=$ Optimal Solution - Initial Basic Feasible Solution

$$
\% \text { difference }=\frac{\text { optimal solution }- \text { initial basic feasible solution }}{\text { optimal solution }} \times 100
$$

From the table above it is clear that the column minima method generated the same income as that of the optimal solution for two companies (Pleasure Travels and Bluewhales Travels), and generated income less than that of the optimal solution for two companies(Peace Mass Transit and Young Shall Grow Motors Limited). However, the column minima method generates a higher income than the initial income for all the companies
The row minima method generated an income the same as the optimal solution for none of the companies. However, the row minima method also generates a higher income than the initial income for all the companies.
The least cost method yields the best initial basic feasible solution for all the companies as its income generated were found to be the same as that of optimal solution for three companies (Pleasure Travels, Blue whales Transport Company and Young Shall Grow Motors Limited) and generates an income less than that of the optimal solution for one company (Peace Mass Transit).
This could be achieved because it takes into consideration the least cost associated with each route alternatives. Although it takes a longer time to compute, this is something the Column Minima Method and RowMinima Method could not have achieved.
The above data is shown graphically below

Fig 1: income for peace mass transit

Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

Fig 3: income for young shall grow motors

5.2 Conclusion

An advantage of the transportation problem algorithm is that, the solution process involves only main variables, artificial variables are not required as in the case of simplex method. Large transportation problem could relatively be solved using the transportation algorithm. It was shown that solving balanced transportation problem was easier using the column minima method and row minima method using the transportation problem formulated for Pleasure Travels, Bluewhales Transport Co. Ltd, Peace Mass Transit and Young Shall Grow Motors Ltd. The least cost method was found to be a bit difficult to calculate, yet it always yields a better result near optimal if not optimal. It can therefore be concluded that the least cost method although not quite as easy as the other methods, facilitates a better initial basic feasible solution than the column minima method and the row minima method. The optimal solution obtained using the excel solver application for the four (4) companies were found to be $\mathbf{N} \mathbf{3}, \mathbf{4 0 1}, \mathbf{6 0 0 . 0 0}, \mathbf{N} 3,714, \mathbf{0 0 0 . 0 0}, \mathbf{N} \mathbf{2}, \mathbf{8 2 3}, \mathbf{6 0 0 . 0 0}$ and $\mathbf{~} \mathbf{3} \mathbf{3 , 9 8 0}, \mathbf{0 0 0 . 0 0}$ respectively. It should be noted that although the Least cost method facilitates an optimal or near optimal result, it is not too reliable since it did not yield an optimal result for all the companies.

5.2.1 Recommendation

The use of a scientific approach gives a systematic and transparent solution as compared with a haphazard method. Using the more scientific assignment problem model for a given transportation problem gives a better result and management may benefit from the proposed approach to guarantee optimal profits from them. We therefore recommend that the assignment problem model should be adopted by managements of transportation companies for maximum profits.
In general, the passenger population (demand) is always greater than the vehicle availability (supply). But this can only be verified (for an unbalanced transportation problem), if the actual data management and records are always available for researches to be carried out on them. Further research needs to be carried out in the area of bus services and maintenance looking at the number of times the buses could breakdown.

References

[1] Hitchcock, F.L. (1941) 'The Distribution of a Product from Several Sources to Numerous Localities' Journal of Mathematics and Physics, 20, 224-230. http://dx.doi.org/10.1002/sapm1941201224
[2] Dantzig, G.B. (1951) Application of the Simplex Method to a Transportation Problem, Activity Analysis of Production and Allocation. In: Koopmans, T.C., Ed., John Wiley and Sons, New York, 359-373.
[3] Charnes, A., Cooper, W.W. and Henderson, A. (1953) An Introduction to Linear Programming. John Wiley \& Sons,New York.
[4] Taghrid, I., Gaber, E., Mohamed, G., Iman, S. (2009) 'Solving transportation problems using object-oriented model' International Journal of Computer Science and Network Security, Vol. 9, No. 2, 353-361.
[5] Abdul S.S, Gurudeo A.T, Ghulam, M.B., (2014) 'A comparative study of initial feasible solution methods for transportation problems’ Mathematical Theory and Modelling Vol.4, No. 1 2014, ISSN 2225-0522, 134-136
[6] Abdul., Q., Shakeel., J., and Khalid., M.M., (2012) 'A new method for finding an optimal solution for transportation problems’ International Journal of Computer Science and Engineering, 1271-1274

Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102
[7] Veena, A., and Krysztof, K. (2009) 'Alternate solutions analysis for transportation problem'Journal of Business and Economic Research, 7(6), 6-9.
[8] Anthony, C., Zhong, Z., Piya, C., Seungkyu, R., Chao, Y. and Wong, S.C., (2011)'Transport network design problem under uncertainty: A review and new developments' Transport Reviews: A Transnational Transdisciplinary Journal, 31(6), 743-768.
[9] Odior, A.O., Charles-Owaba, O.E., and Oyawale, F.A., (2010) 'Determining feasible solutions of a multi-criteria assignment problem' Journal of Applied Science and nvironmental Management, 14(1), 35-38.
[10] Ashayeri, J and Gelders, L.F. (1985) 'Warehouse design optimization’ Journal of Operation Research, 21(1985), 285-294.
[11] Mollah., M.A.A., Aminur, R.K., Md. Sharif U., Faruque A. (2016) 'A new approach to solve transportation problems' Open Journal of Optimization 5(2016), 22-30.

[^0]: Corresponding Author: Akeremale O.C., Email: akere194@gmail.com, Tel: +2348062706593
 Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 89 - 102

