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Abstract 
 

In this study we have incorporated a mixed parameter of the auxiliary variable to 

propose three new improved ratio estimators to enhance the mean ratio estimators for 

estimating the population mean. To enhance the efficiency of the proposed ratio 

estimators, a linear combination of the coefficient of kurtosis, first decile, quartile 

deviation, median and the population variance of the auxiliary variables have been 

harnessed. The properties related to the suggested estimators are assessed through 

constant, bias and mean square error. We have also provided empirical study for 

illustration and corroboration using two population data in evaluating the 

efficiencies of the proposed modified ratio estimators using percentage relative error 

(PRE). The suggested ratio estimators performed better than the other existing ratio 

estimators compared with in the study by emerging with a lesser mean squared error 

and should be preferred in application over the existing estimators, due to their 

smaller values of bias and Mean Square Error. 
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Nomenclature  

N - Population size    

n - Sample size     

f=𝑛
𝑁⁄  -   Sampling fraction    

Y - Study/ main variable    

X - Auxiliary/ supporting variable   

𝑋̅ -  mean of X 

𝑌̅ -  mean of Y 

𝑥̅ - Sample mean of x  

𝑦̅ - Sample mean of y 

x, y - Sample totals  

Sx, Sy - standard deviations of X & Y 

𝑆2
x, 𝑆2

y - variances of X & Y 

Sxy - covariance between variables X & Y 

Cx, Cy - coefficient of variation X & Y 

  - Correlation coefficient of X & Y 

𝛽(.) - Bias of the estimator  

MSE (.) -  Mean square error of the estimator  

PRE - Percentage relative efficiency 

 

𝑌̃i - abidet’al (2016) existing modified 

ratio estimator of 𝑌̅ 

𝑌̅ps -  Existing modified ratio estimator of 𝑌̅ 

𝑌̅pi -  Proposed modified ratio estimator of 𝑌̅ 

Md - median of X 

𝛽1 -  Population skewness 

𝛽2 - Population kurtosis  

D - Deciles 

DM - Decile mean 

QD - Quartile Deviation 

TM      - Tri-mean 

HL - Hodges-Lehmann estimator (Median) 

MR - Mid-range 

Kt - kurtosis 

Sk - Skewness 

Cv - Coefficient of variation 

Subscript   

i, j for existing estimators   
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1. INTRODUCTION 

Sampling is not just pure replacement of fractional coverage for a complete coverage. Sampling is the knowledge, art of 

governing and determining the consistency of useful statistical information through the concept of probability as given in 

[1]. The most common method of sampling is the simple random sampling, which is drawn fragment by fragment with the 

same chances of pool for each part at each draw. Ratio estimates makes use of well-known population totals of auxiliary 

variables to improve the weight of sample values for population estimations of interest. This is used to modify the sample 

estimate for the variable of concern. Most at times in sample surveys, information on auxiliary variable X , along with study 

variable Y  is collected in which the auxiliary variable X  is highly associated with the study variableY . This information on 

auxiliary variable X , may well be exploited to acquire a more effective estimator of the population mean. In such cases the 

ratio technique of estimation is introduced to explore the information of the auxiliary variable X  which is positively 

associated with the study variable 𝑌, this is imperative to reduce bias and increase the precision estimate of the population 

mean. This can be attained by presenting a large number of modified ratio estimators which exploits the information by 

well-known values of coefficient of variation, coefficient of skewness, coefficient of kurtosis, median, standard deviation 

etc. Likewise, the ratio weights are specified by X

x

 where X  is the recognized population total for the auxiliary variable 

and x  is the agreeing estimate of the total centered on all corresponding units in the sample. In [2] some modified ratio 

estimators were proposed using a linear mixture of coefficient of skewness, coefficient of kurtosis and standard deviation of 

the auxiliary variable X . This research work would propose some improved family of ratio estimators based on the linear 

mixture of the variance, conventional and non-conventional location parameters of the auxiliary variable X , adapted from 

existing methodology and to further compare its productivity with existing modified ratio estimators algebraically and 

empirically using a three population data. The population statistics of the data consist of the fixed capital which is denoted 

by X  (supporting variable) and output of 80 factories which are represented by Y  (study variable). The population statistics 

of the data can obtainable in [3].  

A colossal literature in the modification of ratio estimators are available in previous studies.  Some of these modified ratio 

estimators are given in [1-16], which all made use of the same methodology in deriving the constants, bias and mean square 

error of their proposed modified ratio estimators. 

Consider a finite population 
1 2 3{ , , ,..., }nZ Z Z Z Z of 𝑁 different and recognizable bounds. Let 𝑌 be the study variable with 

value 
iY of iz , 1,2,3,...,i N giving a vector

1 2 3{ , , ,..., }nY Y Y Y Y . The objective is to evaluate the population mean on the 

basis of a random sample. 

A new linear combinations of  ratio type estimators in simple random sampling by using non-conventional measures like 

Hodges Lehman estimator, population mid-range and population tri-mean as supporting information was introduced in [17].  

Another new linear combinations of ratio type estimators in simple random sampling by using non-conventional dispersion 

parameters like Hodges Downton’s method, Gini’s mean difference and probability weighted moment as supporting 

information which outperformed previous modified ratio estimators was given in [18]. In [19]a new linear combinations of 

ratio type estimators in simple random sampling by using deciles of the auxiliary variable which performed better than the 

compared estimators in the literature. 

In [5] a classical ratio type estimator for the estimation of finite population mean using one supporting variable under 

simple random sampling scheme was proposed. In [3] a product type estimator to calculate the population mean or total of 

the study variable by using supporting information when coefficient of correlation is negative was suggested. The historical 

development of the ratio method of estimation is given in [20]. These improved ratio estimators, although biased, have low 

mean squared errors as compared with the classical ratio estimator. In [8] some ratio type estimators with the use of 

coefficient of variation and coefficient of kurtosis of the auxiliary variable was proposed. In [10] a ratio type estimators for 

the population mean in the simple random sampling with the use of some known auxiliary information on coefficient of 

kurtosis and coefficient of variation was Proposed. They showed that their proposed estimators are more efficient than 

traditional ratio estimator in the estimation of the population mean. Also in [12] some modified ratio estimators using 

known values of coefficient of correlation, Kurtosis and coefficient of Variation was Proposed. The use of coefficient of 

Skewness and coefficient of Kurtosis, respectively and showed that it provides better estimates for the population mean in 

comparison to the usual ratio estimator and different existing estimators was studied in [14]. In [1] an estimator with the use 

of coefficient of skewness and quartile deviation of the auxiliary information in the simple random sampling for the 

estimation of the population mean was studied as well. An improved ratio estimator based on linear mixture of median, 

coefficients of skewness and kurtosis of the auxiliary variable, which outshone some of the ratio estimators it was 

compared with using a population data was suggested in [15].  Another ratio type estimator using the linear mixture of 

kurtosis, median and quartile deviation. They evaluated its performance using a population data and it performed better than 
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prevailing estimators was put forward in [16].  A new linear combination of  ratio type estimators in simple random 

sampling by using non-conventional measures like Hodges Lehman estimator, population mid-range and population tri-

mean, Downton’s, Gini’s mean difference, Probability weighted moment and deciles as supporting information which also 

outperformed previous existing estimators was introduced in [17-19]. 

Another new linear combinations of ratio type estimators in simple random sampling by using the standard deviation, 

coefficient of skewness, coefficient of kurtosis and coefficient of variation of the auxiliary variable in proposing new 

modified ratio estimators which outperformed the estimators in the study is given in [21]. 

In [22]a new linear combination of ratio type estimators in simple random sampling by using the deciles and quartile 

deviation of the concomitant variable as supporting information which also outperformed the estimators considered in the 

study was proposed. 

In [23]the variance of the auxiliary variable was incorporated to propose three improved ratio estimators of the population 

mean using a linear combination of the population coefficient of variation, kurtosis, skewness and the population variance 

of the auxiliary variable. The suggested improved ratio estimators performed better than other ratio estimators in the 

literature when compared using bias and mean square error. 

Many modified ratio estimators have been proposed in the past in order to reduce the mean square error as given in the 

literature above. However, the results obtained still shows some level of mean squared error. This research utilizes a linear 

combination of the coefficient of kurtosis, variance, quartile deviation, median and first decile of the auxiliary variable X  

to propose a new class of the modified ratio estimators to enhance the mean ratio estimators which is hoped to have reduced 

mean square error when compared to the existing ones.  

 

2. METHODOLOGY 

The classical mean ratio estimator for estimating the population mean Y of the study variable Y is given in [5] as  

r

y
Y X

x



            (1) 

The bias, constant and the mean square error of the ratio estimator are given by 

2(1 ) 1
( ) ( )r x x y

f
B Y RS S S

n Y





  ;
Y

R
X

  2 2 2(1 )
( ) ( 2 )r y x x y

f
MSE Y S R S R S S

n





      (2) 

The mean ratio estimator above is used to enhance the precision of the estimate of the population mean in comparison with 

the sample mean estimator whenever a positive correlation exists between the study variable and the auxiliary variable. 

  

Estimators proposed in [17]are given as: 

1

( )
( )

( )

y b X x
Y X TM

x TM


 

 


          (3) 

2

( )
( )

( )
x

x

y b X x
Y XC TM

xC TM


 

 


         (4) 

3

( )
( )

( )

y b X x
Y X TM

x TM





 

 


         (5)  

4

( )
( )

( )

y b X x
Y X MR

x MR


 

 


         (6) 

5

( )
( )

( )
x

x

y b X x
Y Xc MR

xc MR


 

 


         (7) 

6

( )
( )

( )

y b X x
Y X MR

x MR





 

 


         (8) 

  

7

( )
( )

( )

y b X x
Y X HL

x HL


 

 


         (9)  

8

( )
( )

( )
x

x

y b X x
Y XC HL

xC HL


 

 


         (10)  

9

( )
( )

( )

y b X x
Y X HL

x HL





 

 


         (11)  
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The biases, related constants and mean square (MSE) of the estimators given in [17] are respectively given by:  
2

2
1 1

(1 )
( ) ,xSf

B Y R
n Y

 


1 ;
( )

Y
R

X TM




2 2 2 2
1 1

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n


 
        (12) 

2
2

2 2

(1 )
( ) ,xSf

B Y R
n Y

 


2 ;
( )

x

x

YC
R

XC TM




2 2 2 2
2 2

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (13) 

2
2

3 3

(1 )
( ) ,xSf

B Y R
n Y





3 ;

( )

Y p
R

X TM




2 2 2 2
3 3

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (14) 

2
2

4 4

(1 )
( ) ,xSf

B Y R
n Y





4 ;

( )

Y
R

X MR




2 2 2 2
4 4

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (15) 

2
2

5 5

(1 )
( ) ,xSf

B Y R
n Y





5 ;

( )

x

x

YC
R

XC MR




2 2 2 2
5 5

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (16) 

2
2

6 6

(1 )
( ) ,xSf

B Y R
n Y





6 ;

( )

Y
R

X MR








2 2 2 2
6 6

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (17) 

2
2

7 7

(1 )
( ) ,xSf

B Y R
n Y





7 ;

( )

Y
R

X HL




2 2 2 2
7 7

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (18) 

2
2

8 8

(1 )
( ) ,xSf

B Y R
n Y





8 ;

( )

x

x

YC
R

XC HL




2 2 2 2
8 8

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (19) 

2
2

9 9

(1 )
( ) ,xSf

B Y R
n Y





9 ;

( )

Y
R

X HL








2 2 2 2
9 9

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (20) 

Estimators proposed in [18] are given as: 

10

( )
( )

( )

y b X x
Y X G

x G

  
 



          (21) 

11

( )
( )

( )

y b X x
Y X G

x G




  
 



          (22) 

12

( )
( )

( )
x

x

y b X x
Y XC G

xC G


 

 


         (23)  

13

( )
( )

( )

y b X x
Y X D

x D


 

 


          (24) 

14

( )
( )

( )

y b X x
Y X D

x D





 

 


         (25) 

15

( )
( )

( )
x

x

y b X x
Y XC D

xC D


 

 


          (26)  

16

( )
( )

( )
pw

pw

y b X x
Y X S

x S


 

 


          (27) 

17

( )
( )

( )
pw

pw

y b X x
Y X S

x S





 

 


         (28) 

18

( )
( )

( )
x pw

x pw

y b X x
Y XC S

xC S


 

 


         (29) 

    

The biases, related constants and mean square (MSE) of the estimators given in [18] are respectively given by:  
2

2
10 10

(1 )
( ) ,xSf

B Y R
n Y





10 ;

( )

Y
R

X G




 2 2 2 2
10 10

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (30) 
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2

2
11 11

(1 )
( ) ,xSf

B Y R
n Y





11 ;

( )

Y
R

X G








2 2 2 2
11 11

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (31) 

2
2

12 12

(1 )
( ) ,xSf

B Y R
n Y





12 ;

( )

x

x

YC
R

XC G




2 2 2 2
12 12

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (32) 

2
2

13 13

(1 )
( ) ,xSf

B Y R
n Y





13 ;

( )

Y
R

X D




2 2 2 2
13 13

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (33) 

2
2

14 14

(1 )
( ) ,xSf

B Y R
n Y





14 ;

( )

Y
R

X D








2 2 2 2
14 14

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (34) 

2
2

15 15

(1 )
( ) ,xSf

B Y R
n Y





15 ;

( )

x

x

YC
R

XC D




2 2 2 2
15 15

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (35) 

2
2

16 16

(1 )
( ) ,xSf

B Y R
n Y





16 ;

( )pw

Y
R

X S




 2 2 2 2
16 16

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





        (36) 

2
2

17 17

(1 )
( ) ,xSf

B Y R
n Y





17 ;

( )pw

Y
R

X S







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17 17
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( ) ( (1 ))x y

f
MSE Y R S S

n





       (37)  

2
2

18 18

(1 )
( ) ,xSf

B Y R
n Y





18 ;

( )

x

x pw

YC
R

XC S




2 2 2 2
18 18

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (38) 

Estimators proposed in [19] are given as: 

Case I 

( )
( )

( )
pk k

k

y b X x
Y X D

x D





 

 


 Where 1,2,...,10k         (39) 

Case II 

( )
( )

( )
pl x l

x l

y b X x
Y XC D

xC D


 

 


 Where 1,2,...,10l         (40) 

The biases, related constants and mean square (MSE) of the estimators given in [19] are respectively given by:  
2

2(1 )
( ) ,x

pk pk

Sf
B Y R

n Y




 ;
( )

pk

k

Y
R

X D








2 2 2 2(1 )
( ) ( (1 ))pk pk x y

f
MSE Y R S S

n





       (41) 

2
2(1 )

( ) ,x
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B Y R

n Y



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YC
R
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



2 2 2 2(1 )
( ) ( (1 ))pl pl x y

f
MSE Y R S S

n





       (42) 

Estimators proposed in [21]are given as:  

19

( )
( )

( )
x

x

y b X x
Y X S

x S





 
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                     (43) 

20 2

2
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x

y b X x
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




 
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21 1

1
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


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 


         (46) 

The biases, related constants and mean square error (MSE) of the estimators given in [21] are respectively given by:  
2

2
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
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n





       (50) 

Also [22] Proposed 20 estimators with the most performing estimator amongst all given by; 

23 10

10

( )
( )

( )
d

d

y b X x
Y XQ D

xQ D


 

 


         (51)  

The bias, related constant and mean square error (MSE) of the estimator given in [22] is respectively given as:  
2

2
23 23

(1 )
( ) ,xSf

B Y R
n Y





23

10

;
( )

d

d

YQ
R

XQ D




2 2 2 2
23 23

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (52) 

Estimators proposed in [23]are given as:  

2
24

2

( )
( )

( )
x x

x x

y b X x
Y XC S

xC S


 

 


         (53) 

2
25 22

2

( )
( )

( )
x

x

y b X x
Y X S

x S





 

 


         (54) 

  

2
26 12

1

( )
( )

( )
x

x

y b X x
Y X S

x S





 

 


         (55) 

       

The biases, related constants and mean square error (MSE) of the estimators given in [23] are respectively given by:  

2
2

24 24

(1 )
( ) ,xSf

B Y R
n Y





24 2

;
( )

x

x x

YC
R

XC S




2 2 2 2
24 24

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (56) 

2
2

25 25

(1 )
( ) ,xSf

B Y R
n Y




 2
25 2

2

;
( )x

Y
R

X S








2 2 2 2
25 25

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (57) 

2
2

26 26

(1 )
( ) ,xSf

B Y R
n Y




 1
26 2

1

;
( )x

Y
R

X S








2 2 2 2
26 26

(1 )
( ) ( (1 ))x y

f
MSE Y R S S

n





       (58) 

 

The Proposed Ratio Estimators 

Driven by the modified ratio estimators, proposed in [17-19] and [21-23] We suggest three new modified ratio estimators 

by adapting the methodology of the stated estimators, using the linear mixture of the coefficient of Kurtosis, quartile 

deviation, first decile and population variance of the auxiliary variable, on the assumption that the auxiliary variable is 

related to the study variable and any known information of the auxiliary variable can be utilized in modifying  new ratio 

estimators that can be used to estimate the population mean with the aim of  reducing MSE, the suggested modified ratio 

estimators given as follows: 

2
1 12

1

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


         (59)

2
2 22

2

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


          (60)

2
3 32

3

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


          (61) 

       

Where; 

1 1 2 2 2,D QD       and
3 2Md    

Where 1  is the combination of the first decile and the coefficient of kurtosis while  

2 is the combination of quartile deviation and kurtosis and  
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3 Is the combination of median and kurtosis all from the auxiliary variable 

The properties of the proposed estimators can be obtained as follows:  

MSE of these estimators can be gotten using Taylor’s series technique defined as  
( , ) ( , )

( , ) ( , ) | , ( ) | , ( )
h C d h C d

h x y h X Y X Y x X X Y y Y
c d

 
    

 

      (62) 

where ( , ) pih x y R


 and. ( , )h X Y R  

As shown in [24], equation (62) can be applied to the proposed estimators in order to obtain the bias, relative constants and 

MSEs of the proposed class of modified ratio estimators given above.     

For the mixture of first decile, coefficient of Kurtosis and Variance of the auxiliary variable. 

2 2

1 1
1

[( ( ))] [( ( ))]

( ) ( )
| , ( ) | , ( )x x

p

y b X x y b X x

x S x S
R R X Y x X X Y y Y

x y

 

   
 

 
    

 

      (63) 

2

11

2 2 2 2 2

1 1 1

( ) 1
| , ( ) | , ( )

( ) ( ) ( )

x

x x x

b X Sy
X Y x X X Y y Y

x S x S x S



  

 
      

   

      (64) 

2 2 2
2 1 1 1 1

1
2 4 2 3 2 2

1 1 1

( ( )) ( ( )) 1
( ) ( ) 2 ( , ) ( )

( ) ( ) ( )

x x
p

x x x

Y X S Y B X S
E R R V x Cov x y V y

X S X S X S

    

  

    
   

       

(65)

2 2 2

1 1 1 1

2 2 2 2 2

1 1 1

( ( )) ( ( ))1
( ) 2 ( , ) ( )

( ) ( ) ( )

x x

x x x

Y X S Y X S
V x Cov x y V y

X S X S X S

     

  

    
   

   

    (66)  

Where 
2 2

xy x y y

xx x

S S S S

SS S

 
    note we omit the difference of  ( ( ) )E b      (67) 

Because this assumes a line through the origin, as in the unbiased case for design-based ratio estimator. In [25] this 

condition for bias to ‘vanish’ for SRS makes sense because weighted least square (WLS) regression, and ordinary 

(homoscedastic) least squares (OLS) regression are both unbiased for b. a derivation of the design based ratio estimator 

which shows it is unbiased when we have a linear regression through the origin with the regression coefficient being 

homoscedastic is given in [25].   

 
2

2
2

11 1( ) pp xMSE y X S E R R
 

   
 

         (68) 

2 2 2

1 1 1 1
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1 1
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   
  

 
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 
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( )
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PRE
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
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
        (85) 

     

3. DATA PRESENTATION AND RESULTS 

To examine the efficiencies of the suggested estimators we are going to consider two natural population datasets. The 

descriptive statistics of the datasets are given below. 

Population I:  

The performances of the suggested ratio estimators are assessed and compared with the prevailing ratio estimators by using 

a population data given in [3] 

Fixed capital which is denoted by X (auxiliary variable)  

Output of 80 factories which are represented by Y (study variable) 

N=80; n=20; 
dM =757.5; 

yS =1835.659; 
xS =845.610;  =0.941; Y =5182.637; X =1126.463;  

1D =360; 
2 =-0.063386; 

1 =1.050002; 
xC =0.751; 

dQ  = 588.125; 
rM =1795.5; 

10D =3480; G=904.081  

Population II:  

The performances of the suggested ratio estimators are assessed and compared with the prevailing ratio estimators by using 

a population data given in [26], 

Y : Output 

X : fixed capital  

N=34; n=20; 
dM =150; 

yS =733.1407; 
xS =150.5059;  =0.4491; Y =856.4117; 

1D =70.3; 

X =208.8823;
2 =0.0978; 

1 =0.9782; 
xC =0.7205;

dQ  = 80.25; 
rM =284.5; 

10D =564.0;G=162.996. 

The best performing modified estimators amongst the existing proposed modified estimators for each class is selected for 

comparison with the new class of proposed modified estimators  

Population I 

Table 1: The Statistical Analysis of the Estimators for the Population I 

Estimators  Constant Bias MSE 

5

( )
( )

( )
x

x

y b X x
Y Xc MR

xc MR


 

 


 1.473 11.23 72582.52 

11

( )
( )

( )

y b X x
Y X G

x G





 

 


 2.224  

 

25.58  

 

146971.80  

 

* 10

10

( )
( )

( )
a

y b X x
Y X D

x D





 

 


 1.074 5.970 45412.23 

* 10

10

( )
( )

( )
b x

x

y b X x
Y XC D

xC D


 

 


 0.899 4.185 36162.07 

20 2

2

( )
( )

( )
x

x

y b X x
Y X S

x S





 

 


 -0.424 0.931 19298.56 
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23 10

10

( )
( )

( )
d

d

y b X x
Y XQ D

xQ D


 

 


 0.995 5.120 41005.92 

2
1 12

1

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


 -0.172 0.152 15260.00 

2
2 22

2

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


 -0.287 0.426 16680.28 

2
3 32

3

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


 -0.376 0.733 18271.50 

 

Table 1 shows results of the existing estimators and the proposed estimators when applied to the population data given in 

[3] the related constant, Bias and Mean Square Error (MSE) of the three proposed estimators are all smaller when compared 

to the existing ones. 

Population II 

Table 2: The Statistical Analysis of the Estimators for the Population II 

Estimators  Constant Bias MSE 

5

( )
( )

( )
x

x

y b X x
Y Xc MR

xc MR


 

 


 1.4185 1.096 9772.39 

11

( )
( )

( )

y b X x
Y X G

x G





 

 


 1.498 1.221 9880.25 

* 10

10

( )
( )

( )
a

y b X x
Y X D

x D





 

 


 0.585  

 

0.186 

 

8993.40 

 

* 10

10

( )
( )

( )
b x

x

y b X x
Y XC D

xC D


 

 


 0.864  

 

0.406  

 

9181.80 

 

20 2

2

( )
( )

( )
x

x

y b X x
Y X S

x S





 

 


 0.490 0.131 8946.13 

23 10

10

( )
( )

( )
d

d

y b X x
Y XQ D

xQ D


 

 


 4.081 9.070 16602.16 

2
1 12

1

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


 0.244 0.032 8862.02 

2
2 22

2

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


 0.277 0.041 8869.86 

2
3 32

3

( )
( )

( )
p x

x

y b X x
Y X S

x S





 

 


 0.489 0.129 8945.46 

Table 2 shows results of the existing estimators and the proposed estimators when applied to the population data given in 

[26] the related constant, Bias and Mean Square Error (MSE) of the three proposed estimators are all smaller when 

compared to the existing ones. 
 

Table 3: PREs of the New Class of Modified Ratio Estimators for Population I 

Estimators  
1pY



 2pY


 
3pY



 

5

( )
( )

( )
x

x

y b X x
Y Xc MR

xc MR


 

 


 475.64 435.14 397.24 

11

( )
( )

( )

y b X x
Y X G

x G





 

 


 963.12 881.11 804.38 

* 10

10

( )
( )

( )
a

y b X x
Y X D

x D





 

 


 297.59 272.25 248.54 

* 10

10

( )
( )

( )
b x

x

y b X x
Y XC D

xC D


 

 


 236.97 216.80 197.92 

20 2

2

( )
( )

( )
x

x

y b X x
Y X S

x S





 

 


 126.47 115.70 105.62 

23 10

10

( )
( )

( )
d

d

y b X x
Y XQ D

xQ D


 

 


 268.72 245.83 224.53 
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Table 3 shows the Percentage Relative Efficiency values of the proposed modified estimators to the existing ones when 

applied to the population data given in [3].The results shows that the new modified estimators are more efficient than the 

existing ones. 

Table 4:PREs of the New Class of Modified Ratio Estimators for Population II 

Estimators  
1pY



 2pY


 3pY


 

5

( )
( )

( )
x

x

y b X x
Y Xc MR

xc MR


 

 


 110.27 110.18 109.24 

11

( )
( )

( )

y b X x
Y X G

x G





 

 


 111.49 111.39 110.45 

* 10

10

( )
( )

( )
a

y b X x
Y X D

x D





 

 


 101.48 101.39 100.54 

* 10

10

( )
( )

( )
b x

x

y b X x
Y XC D

xC D


 

 


 103.61 103.52 102.64 

20 2

2

( )
( )

( )
x

x

y b X x
Y X S

x S





 

 


 100.95 100.86 100.01 

23 10

10

( )
( )

( )
d

d

y b X x
Y XQ D

xQ D


 

 


 187.34 187.17 185.59 

 

Table 4 shows the Percentage Relative Efficiency values of the proposed modified estimators to the existing ones when 

applied to the population data given in [6].The results shows that the new modified estimators are more efficient than the 

existing ones. 

 

4. DISCUSSION 

The accessibility of auxiliary data improves the productivity of the estimators. The mean ratio estimator has been suggested 

using well-known values of population variance, coefficient of kurtosis, first decile, quartile deviation and median of the 

auxiliary variable. The performance of the proposed modified mean ratio estimators and the existing estimators has been 

evaluated using the data given in [3] and [26]. The population statistics are shown in population I and II. The properties of 

the proposed and existing estimators have been studied through their related constants, bias and mean squared errors. The 

bias of the suggested estimators are approximately approaching zero which gives the suggested estimators an edge over the 

prevailing ones. The mean squared errors of the proposed estimators performed better than all the existing estimators 

proposed in [17-19] and [21-22] compared with in this study. The (PREs) of the suggested ratio estimators with respect to 

the existing estimators were calculated    in (Table 3 and 4). It is clearly seen that the suggested estimators outperformed all 

prevailing estimators compared with, which further shows the efficiency of the proposed estimator. Also, the percentage 

relative efficiency of the proposed estimator revealed some amount of percentage efficiency over the existing ratio 

estimators.  Practical studies revealed that the bias and the mean squared error of the suggested estimators are less than that 

of the existing estimators under the two different naturally occurring populations. Therefore, the new class of modified ratio 

estimators suggested in this study under simple random sampling should be used for improved and steadier results, and 

should be considered over the existing modified ratio estimators for empirical applications. 

 

5. CONCLUSION 

In this study, we proposed three new modified ratio estimators for estimation the population under simple random sampling 

when information on the auxiliary variable is known. The MSE of the proposed estimators were derived using the partial 

derivative method as given in [24]. Also the conditions for which the proposed estimators outperforms the existing ones 

have been provided theoretically and empirically. An empirical study was also carried out to evaluate the performance of 

the proposed estimators over some related existing estimators under simple random sampling using two different natural 

populations which are positively strongly related and positively moderately related respectively. Tables (1 to 4) shows the 

constants, bias, MSE and PRE of the proposed and existing estimators of which the proposed estimators outperforms the 

existing ones by emerging with the least mean squared errors and a higher percentage relative efficiency. Amongst the three 

proposed estimators, the one with the linear combination of the first decile, coefficient of Kurtosis and variance of the 

auxiliary variable performed best.   
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