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Abstract 
 

This paper deals with the observability of dynamical system with multiple delays in 

the state using the software packages for computer aided control system design 

MATLAB and SIMULINK. We discuss how to choose the observers initial conditions 

and how to setup the observers gain. Sufficient conditions are proposed which 

guarantees the existence of a Luenberger-like observer for the general system. 

 
 

1. Introduction 

Differential equations with delays (DDEs) are equations were dependent variable is found in the state and output. 

Differential equation with delays is seen in science in the areas of physiology, biology, mathematics, economics, finance 

and in engineering. Basically in sciences of life like nervous system, a time delay is noted because of axonal transfer 

velocities. The distances interval between the neurons is determinate in biology (cell biology) for the reason that of 

maturation cell times, also in biology of molecular the reason been that the time taking for translation and transcription. 

These delays contributed in the formation of time oscillations in physics, robust in control system and are usual affect 

physiological functions.  The process of metallic cutting delays is accountable aimed at prattle uncertainties categorized in 

flamboyant noise, ferocious vibrations, and poor class of surface quality in manufacturing industry. For instant in laser, 

optical feedback defined as detrimental optical chain that has delayed feedback. There is a present feedback in laser when 

percentage of optical output is inserted in the device, as a result of optical elements in fiber-coupled modules like fiber 

combiners, fiber ends, micro-lenses, and particle emission from other bases and insignificant percentages of the reflected 

light that can knock off balance laser and yield not the same categories of irregular, regular energetic outputs in the system. 

Concerning the concepts of observability and observer for dynamical systems with multiple delays, a direct adaptation of 

existing results observability and observers from regular systems to multiple systems is not immediate due to the fact that 

they involve both differential and algebraic equations. We clarify the observability using the software packages for 

computer aided control system design MATLAB and SIMULINK. We discuss also how to choose the observer initial 

conditions and how to set up the observer gains. Most of the existing works are based on the simple case with multiple 

delay in the state, i.e�̇�(𝑡) = ∑ 𝐴𝑖
𝑚
𝑖=0 𝑥(𝑡 − ℎ𝑖), where the input could be also involved. For this simple case, a general 

solution was derived in [1], based on which a sufficient condition for exact observability in finite time. For such a 

presentation, there exist lots of applications, such as LC electrical lines [2] and so on. More concrete applications can be 

found in [3]. In general, observability analysis and observer design become more difficult. Recently, inspired by the well-

known Silverman and Molinari algorithm (see [4] and [5]) to analysis the observability for linear systems, a similar and 

sufficient condition was proposed in [6] to analysis the observability for this general multiple delay systems. 

The contributions of this paper are as follows. Firstly, the class of the studied systems is quite general (multiple delays on 

the state). Actually, there exist some methods to eliminate the delay was employed in[7], [8] and [9] that the elimination of 

delay via a bicausal transformation with the same dimension. To take the advantage of good features of feedback[10], it is 

often assumed that all state variables are available for feedback, meaning that a feedback control input can be constructed as 

𝑢(𝑥(𝑡)) = −𝐹𝑥(𝑡)                                   (1)  

Where F is a constant feedback matrix of dimension 𝑚 × 𝑛. There is a difficulty of full-state feedback controllers. This 

difficulty is in the fact that all state space variables must be available for feedback, which in the case of higher-order 

dimensional systems; the variables are not available for feedback. Instead, an output signal that represents a linear 

combination of the state space variables is available only as 
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𝑦(𝑡) = 𝐶𝑥(𝑡)                                  (2)       

The dimension of the output signal is much smaller than the dimension of the state space variable that is, 

𝑑𝑖𝑚{𝑦(𝑡)} = 𝑙 = 𝐶 < 𝑛 = 𝑑𝑖𝑚{𝑥(𝑡)}, 𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝑟𝑎𝑛𝑘{𝑐}. 

 

2. Notations and Problem Statement 

In this paper, we consider the following class of linear dynamical control systems with lumped, multiple, constant delays in 

the state described by the ordinary differential equation with a delay argument of the form: 
�̇�(𝑡) = ∑ 𝐴𝑖

𝑚
𝑖=0 𝑥(𝑡 − ℎ𝑖) + 𝐵𝑢(𝑡),   𝑡 ≥ 0

𝑦(𝑡) = 𝐶𝑥(𝑡)
}              (3) 

where 𝑥(𝑡) ∈ ℝ𝑛 is the instantaneous n-dimensional state vector, 𝑢(𝑡) ∈ ℝ𝑚 is the admissible control vector for the 

dynamical system (3), 𝑦(𝑡) ∈ ℝ is the output, 𝐴𝑖 , 𝑖 = 0,1, … … … 𝑚 𝑎𝑟𝑒 (𝑛 × 𝑛) −dimensional matrices with real elements, 

B, C are (n × n)-dimensional matrices with real elements, ℎ𝑖 , 𝑖 = 0,1, … … … 𝑚 denote constant delays satisfying the 

following inequalities: 

0 = ℎ0 < ℎ1 < ⋯ < ℎ𝑖 < ⋯ < ℎ𝑚−1 < ℎ𝑚                       (4) 

With the functional initial conditions 𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−ℎ𝑚 , 0], where 𝑥(0) ∈ ℝ𝑛 , 𝑢(0) ∈ ℝ and the Hilbert Space ℝ𝑛 ×
𝐿2([−ℎ𝑚, 0), ℝ𝑛) endowed with the scalar product defined by  

< {𝑥(𝑡), 𝑥𝑡}, {𝑦(𝑡), 𝑦𝑡} > = ∑ 𝑥𝑡
𝑛
𝑖=1 (𝑡)𝑦𝑖(𝑡) + ∫ <

0

−ℎ𝑚
𝑥𝑡(𝜏), 𝑦𝑡(𝜏) >ℝ𝑛 𝑑𝜏    (5) 

is denoted by 𝑀2([−ℎ𝑚 , 0], ℝ𝑛), where 𝑥𝑡(𝜏) = 𝑥(𝑡 + 𝜏) for 𝜏 ∈ [−ℎ𝑚, 0] is the segment of the trajectory of length hm, 

which is defined in the time interval  𝜏 ∈ [t − ℎ𝑚, t].  The symbol  ℤ represents the set of integers, 𝛪 is the field of real 

numbers and ℝ ≥ 0 is associated with positive numbers {0 < 𝑎 < +∞}, for 𝑎 ∈ ℝ 𝑜𝑟 ℂ. 

 

3. Definition 

In this section we shall give the definitions of the various types of observability for dynamical systems with delays in the 

state. We also quote the definition and the necessary and sufficient condition for the asymptotic observability of the 

dynamical system. 

Definition 1: The system (3) is said to be observable at𝑡0 if 𝑥(𝑡0) can be determined from the output function 𝑦[𝑡0,𝑡1] for 

𝑡0 ∈ 𝜏and 𝑡0 > 𝑡1, where 𝑡1 is some finite time belonging to 𝜏. If this is true for all 𝑡0and 𝑥(𝑡0), the system is said to be 

completely observable.    

Definition 2: The system (3) is said to be backward observable on [𝑡1, 𝑡2] if and only if, for each ∈ [𝑡1, 𝑡2] , there exist 

𝑡1̅and 𝑡2̅ < 𝜏 such that 𝑦(𝑡) = 0 for all 𝑡 ∈ [𝑡1̅, 𝑡2̅]  this implies that 𝑥(𝜏) = 0. These backward observability is related to 

final observability see [11]. 

Definition 3: the system (3) is said to be relatively observable in the time interval [0, 𝑡1] from the complete state 𝑦0 =
(𝑥(0), 𝑥0) ∈ 𝑀2([−ℎ𝑀, 0), ℝ𝑛) into set S if for every vector �̃� ∈ 𝑆 there exists an admissible control �̃� ∈ 𝐿2([0, 𝑡1], 𝑈) such 

that the corresponding trajectory 𝑥(𝑡, 𝑦0, �̃�) of the dynamical system (3) satisfies the condition 

𝑥(𝑡, 𝑦0 , �̃�) = �̃�. 
Definition 4: the system (3) is said to be relatively observable in the time interval [0, 𝑡1] into the set S if it is relatively 

observable in the interval [0, 𝑡1] into the set S for every initial complete state 𝑦0 = (𝑥(0), 𝑥0) ∈ 𝑀2([−ℎ𝑀, 0), ℝ𝑛). 

 

4. Assumptions and Preliminary Result 

According to Luenberger, any system driven by the output of the given system can serve as an observer for that system. 

The system output variables are available at all times and that information can be used to construct an artificial,  dynamic 

system of the same order as the system under consideration order n, which will estimate the system state space variables at 

all times. Since the matrices A, B, C are known in (3). 

�̇�(𝑡) = 𝐶�̇�(𝑡)                        (6) 

= 𝐶 ∑ 𝐴𝑖

𝑚

𝑖=0

𝑥(𝑡 − ℎ𝑖) + 𝐶𝐵𝑢(𝑡) 

One the other hand, for a given initial condition (𝑥(0), 𝛷(𝑡), 𝑡 ∈ [−ℎ𝑚 , 0]) and an admissible control 𝑢 ∈ ℝ𝑚, for 𝑡 ≥ 0 for 

the system (3), there exists a unique, absolutely continuous solution 𝑥 which is for the form 

𝑥(𝑡) = 𝑒𝐴0𝑡𝑥(0) + ∫ 𝑒𝐴0(𝑡−𝜏)𝑡

0
[∑ 𝐴𝑖𝑥

𝑚
𝑖=1 (𝜏 − ℎ𝑖) + 𝐵𝑢(𝜏)]𝑑𝜏     (7) 

Since the system matrices A, B and C in system (3) are known, it is rational to obtain the derivation of the output given by; 

�̂̇�(𝑡) = ∑ 𝐴𝑖
𝑚
𝑖=0 �̂�(𝑡 − ℎ𝑖) + 𝐵𝑢(𝑡),   𝑡 ≥ 0

�̂�(𝑡) = 𝐶�̂�(𝑡)
}        (8)  
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If we compare the outputs 𝑦(𝑡) and �̂�(𝑡), in general, they will be different since in the first case the initial condition of (3) 

is unknown, and the initial condition of the proposed observer (7) can be chosen arbitrarily by a control engineer. The 

difference between these two outputs defines an error signal 

𝑦(𝑡) − �̂�(𝑡) = 𝐶𝑥(𝑡) − 𝐶�̂�(𝑡) = 𝐶𝜀(𝑡)                 (9) 

Which can be used as the feedback signal to the observer such that the estimation (observation) error 𝜀(𝑡) = 𝑥(𝑡) − �̂�(𝑡) is 

reduced, theoretically goes to zero at steady state. The observer that takes into the account feedback information about the 

observation error given by [12]. 

�̂̇�(𝑡) = ∑ 𝐴𝑖

𝑚

𝑖=0

�̂�(𝑡 − ℎ𝑖) + 𝐵𝑢(𝑡) + 𝑘(𝑦(𝑡) − �̂�(𝑡)) 

�̂̇�(𝑡) = ∑ 𝐴𝑖
𝑚
𝑖=0 �̂�(𝑡 − ℎ𝑖) + 𝐵𝑢(𝑡) + 𝑘𝐶𝜀(𝑡)                  (10) 

Where k is the observer gain that has to be chosen such that the observation error tends to zero as time increases form (3) 

and (8) is used to get an expression for dynamics of the observation error as 

�̇�(𝑡) − �̂̇�(𝑡) = ∑ 𝐴𝑖

𝑚

𝑖=0

[𝑥(𝑡 − ℎ𝑖) − �̂�(𝑡 − ℎ𝑖)] + 𝐵𝑢(𝑡) + 𝑘𝐶𝜀(𝑡) 

𝜀̇(𝑡) = ∑ 𝐴𝑖

𝑚

𝑖=0

[𝜀(𝑡 − ℎ𝑖)] − 𝑘𝐶𝜀(𝑡) 

𝜀̇(𝑡) = (𝐴𝑖 − 𝐾𝐶)𝜀(𝑡),   𝜀(𝑡0) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛  𝑤ℎ𝑒𝑟𝑒 ℎ = 0          (11) 

If the observer gain k is chosen such that the feedback matrix 𝐴 − 𝑘𝐶 is asymptotically stable, then the estimation error 

𝜀(𝑡) will delay to zero for any initial condition 𝜀(𝑡0). This stabilization requirement can be achieved if the pair (𝐴, 𝐶) is 

observable. By taking the transpose of the estimation error feedback matrix, that is 𝐴𝑇 − 𝐶𝑇𝑘𝑇, it can be seen that the pair 

(𝐴𝑇 , 𝐶𝑇) must be controllable (6). The controllability of the pair (𝐴𝑇 , 𝐶𝑇) is equal to observability of the pair (𝐴, 𝐶), which 

is the condition needed for the observability(7). 

Theorem 1: the system of (3) is point-wise observable if and only if 

𝑟𝑎𝑛𝑘 [𝜑(0, 𝑡1) ≡ 𝑟𝑎𝑛𝑘 ∫ {∑ 𝐴𝑖𝑒
−𝑠ℎ𝑖𝑚

𝑖=0 }𝑇𝑡1

0
× 𝐶𝑇𝐶 ∑ 𝐴𝑖𝑒

−𝑠ℎ𝑖𝑚
𝑖=0 𝑑𝜏] = 𝑛            (12) 

Where 𝜑(0, 𝑡1) is the observabilityGramian of the system. 

With theorem 1 and (5), we can conclude the following. 

Corollary 1: The system of (3) is point-wise observable if and only if all columns of the matrix 

𝐶 ∑ 𝐴𝑖 𝑒−𝑠ℎ𝑖𝐶𝑖
𝑁                (13) 

are linearly independent. 

Since the Laplace transform is a one-to-one linear operator, we then obtain the following corollary. 

Corollary 2: The system of (3) is point-wise observable if and only if all columns of the matrix 

𝐶(𝑠𝐼 − 𝐴 − 𝐴𝑑𝑒−𝑠ℎ)−1                            (14) 

are linearly independent except at the roots of the characteristic equation of (3). 

Proof: In (5), in order to transfer 𝑥(𝑡)to 0 𝑎𝑡 𝑡1, substitute an input obtained with the inverse of the observabilityGramian in 

(10). 

𝑢(𝑡) = −𝐶𝑇{𝑘(𝑡2, 𝑡1)}𝑇𝜑−1(0, 𝑡1)𝑀(𝑡1, 𝑔, 𝑥0)                (15) 

where M is the free solution to (3) and comparing (5)and (15) yields 

𝑀(𝑡1, 𝑔, 𝑥0) ≡ ∑ 𝐴𝑖
𝑚
𝑖=0 𝑒−𝑠ℎ𝑖𝐶𝑖

𝑁(16) 

Then, 𝑥(𝑡1) = 0 

Necessity. Given any 𝑔and 𝑥0, suppose there exist 𝑡1 > 0 and a control 𝑢(0,𝑡1) such that 𝑥(𝑡1) = 0, but (10) does not hold. 

The latter implies that there exists a nonzero vector 𝑥1 ∈ ℝ𝑛 such that 𝑥1
𝑇𝑘(𝑡2, 𝑡1)𝐵 = 0, 0 ≤ 𝑡 ≤ 𝑡1 due to the following 

fact. Let F be an𝑛 × 𝑝 matrix. 

Define                    𝑃(𝑡2,𝑡1) ≡ ∫ 𝐹(𝑡)
𝑡2

𝑡1
𝐹𝑇(𝑡)𝑑𝑡                                  (17) 

Then, the rows of F are linearly independent on (𝑡2, 𝑡1) if and only if the 𝑛 × 𝑛 constant matrix 𝑃(𝑡2,𝑡1) is nonsingular (5). 

Then, from (5) 

𝑥1
𝑇𝑥(𝑡1) = 𝑥1

𝑇𝑀(𝑡1, 𝑔, 𝑥0) + ∫ 𝑥1
𝑇𝑡1

0
 𝑘(𝑡2, 𝑡1)𝐵𝑢(𝜏)𝑑𝜏                             (18) 

and  0 = 𝑥1
𝑇𝑀(𝑡1, 𝑔, 𝑥0). By hypothesis, however, 𝑔 and 𝑥0 can be chosen such that 𝑀(𝑡1, 𝑔, 𝑥0) = 𝑥1. Then, 𝑥1

𝑇𝑥1 = 0 

which contradicts the assumption that 𝑥1 ≠ 0. Complete. 

Having analyzed the existing system, it is now convenient for us to consider a particular problem and solve manually which 
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will serve as a general case for the method selected. We shall observe that during the process of applying Fault 

Detection Filter Design on a Delay Linear System, we have to determine a function whose Laplace transform is 

already known. This is the reverse of determining the Laplace transform. The fault detection filter design process for 

delay linear system consists of three ways; firstly, the state estimation error connected to the fault in the subspace that 

is detection. The fault detection filters determine which filters will detect and identify fault. The ability to 

differentiate a fault from another and identify needs an observable system independent of detection space. The size of 

the state space limit the number of faults detected and identified by the fault detection filter. The health monitoring 

system considers nine system faults which comprise of two actuator faults and seven sensor faults. The design fault 

detection uses eigenstructure assignment and eigenvectors embedded in the filter dynamics. The contribution of this 

paper lies in three aspects. First, we address the delay-dependent filtering problem for switched linear neutral systems 

with time-varying delays, which appear not only in the state, but also in the state derivatives. The resulting filter is of 

the Luenberger-observer type. Second, by using average dwell time approach and the piecewise Lyapunov function 

technique, we derive a delay-dependent sufficient condition, which guarantees exponential stability of the filtering 

error system. Then, the corresponding solvability condition for a desired filter satisfying a weighted performance is 

established. Here, to reduce the conservatism of the delay-dependent condition, we introduce some slack error 

dynamic and a new integral inequality recently proposed, So far the observers employed in the context of fault 

detection are either full order or reduced order observers, however, as can be seen in chapter three, only an output 

observer - that will estimate only the output of the system - is sufficient since the estimation of the remaining state 

variables are not required as far as fault - detection is concerned. It is obvious that full discuss only the application of 

output observer in the context of fault detection. Order observers for fault detection purposes are computationally 

expensive especially for high order systems the following theorem was prove. 

 

5. MODEL WITH DELAYS FOR OBSERVER SYSTEM 

We study the cascade connection completely filled mixers following from the input concentration to the mixer and so 

on according to the scheme obtainable in Fig1. But in each reactor a delay is observed as a result of pressure or heat 

present, where 𝑐𝑖𝑛1(𝑡), 𝑐𝑖𝑛2(𝑡) 𝑎𝑛𝑑 𝑐𝑖𝑛3(𝑡)are the input concentrations of the product 𝑄1
∗, 𝑄2

∗ 𝑎𝑛𝑑 𝑄3
∗ which 

represent the constant flow of concentrations. Then 𝑉1, 𝑉2 𝑎𝑛𝑑  𝑉3 are the volumes of the mixers 1, 2 and 3. 𝑐1(𝑡),

𝑐2(𝑡) 𝑎𝑛𝑑 𝑐3(𝑡)represent the strength of solutions in mixers 1, 2 and 3 respectively. The length of the reactor is 𝐿 and 

ℎ𝑖 is the multiple delays in the reactors. 

Assuming𝑉1 = 𝑉2 = 𝑉3 = 𝑉, the state equations of the above chemical system is in the form of: 

𝑉
𝑑𝑐1(𝑡)

𝑑𝑡
= 𝑄1

∗𝑐𝑖𝑛1(𝑡) − 𝑄1
∗𝑐1(𝑡) 

𝑉
𝑑𝑐2(𝑡)

𝑑𝑡
= 𝑄1

∗𝑐1(𝑡 − ℎ1) + 𝑄2
∗𝑐𝑖𝑛2(𝑡) + 𝑐2(𝑡 − ℎ2) − (𝑄1

∗ + 𝑄2
∗)𝑐2(𝑡) 

𝑉
𝑑𝑐3(𝑡)

𝑑𝑡
= 𝑄2

∗𝑐2(𝑡 − ℎ2) + 𝑄3
∗𝑐𝑖𝑛3(𝑡) + 𝑐3(𝑡 − ℎ3) − (𝑄1

∗ + 𝑄2
∗ + 𝑄3

∗)𝑐3(𝑡) 
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Fig.1 Scheme of a cascade connection of three mixers 

After a transformation, we  
𝑑𝑐1(𝑡)

𝑑𝑡
=

𝑄1
∗

𝑉
𝑐𝑖𝑛1(𝑡) −

𝑄1
∗

𝑉
𝑐1(𝑡), 

𝑑𝑐2(𝑡)

𝑑𝑡
=

𝑄2
∗

𝑉
𝑐𝑖𝑛2(𝑡) +

𝑄1
∗

𝑉
𝑐1(𝑡 − ℎ1) +

𝑄2
∗

𝑉
𝑐2(𝑡 − ℎ2) −

(𝑄1
∗ + 𝑄2

∗)

𝑉
𝑐2(𝑡) 

𝑑𝑐3(𝑡)

𝑑𝑡
=

𝑄3
∗

𝑉
𝑐𝑖𝑛3(𝑡) +

𝑄2
∗

𝑉
𝑐2(𝑡 − ℎ2) +

𝑄3
∗

𝑉
𝑐3(𝑡 − ℎ3) −

(𝑄1
∗ + 𝑄2

∗ + 𝑄3
∗)

𝑉
𝑐3(𝑡) 

Taking 𝑐1(𝑡) = 𝑥1(𝑡), 𝑐2(𝑡) = 𝑥2(𝑡), 𝑐3(𝑡) = 𝑥3(𝑡), 𝑐𝑖𝑛1(𝑡) = 𝑢1(𝑡), 𝑐𝑖𝑛2(𝑡) = 𝑢2(𝑡) 𝑎𝑛𝑑 𝑐𝑖𝑛3(𝑡) = 𝑢3(𝑡) the 

mathematical model of the dynamical system with delay in the state is express in the following linear differential equation: 

�̇�(𝑡) = 𝐴0𝑥(𝑡) + 𝐴1𝑥(𝑡 − ℎ1) + 𝐴2𝑥(𝑡 − ℎ2) + 𝐴3𝑥(𝑡 − ℎ3) + 𝐵𝑢(𝑡), 
Where 

𝑥(𝑡) = [

𝑥1(𝑡)
𝑥2(𝑡)

𝑥3(𝑡)
]                             𝑢(𝑡) = [

𝑢1(𝑡)
𝑢2(𝑡)

𝑢3(𝑡)
] 

And       𝐴0 = [

−
𝑄1

∗

𝑉
0        0

0
0

−
(𝑄1

∗+𝑄2
∗)

𝑉

0

0

−
(𝑄1

∗+𝑄2
∗+𝑄3

∗)

𝑉

]                      𝐴1 = [

0 0 0
𝑄1

∗

𝑉

0

0
0

0
0

] 

 

𝐴2 = [

0 0 0

0
0

𝑄2
∗

𝑉
0

0
0

] 𝐴2 = [

0 0 0

0
0

0
0

𝑄2
∗

𝑉
0

]           𝐵 = [

0
0

𝑄3
∗

𝑉

] 
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𝐶𝑖𝑛3(𝑡) 𝐶2(𝑡) 

𝑄1 + 𝑄2 + 𝑄3 

𝑄3 

Q1 

Cin1(t) 

𝐶1(𝑡) 

Mixer1 
𝐶1 (𝑡) 

Rector 

𝐶1(𝑡
− ℎ1)
− ℎ1) 

𝑄2 

Q1+Q2 

𝐶𝑖𝑛2(𝑡) 

𝐶2(𝑡) 

Mixer2 

𝐶3(𝑡) 

Mixer3 

Rector 

     𝐶2(𝑡
− ℎ2) 

𝐶3(𝑡) 
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5.1   NUMERICAL EXAMPLE 

A = [
2 1 3
3 1 4
1 0 1

] ;         𝐵 = [
1
2
0

] ;          𝐶 = [1 0 1] 

Frist eigenvalue/ vector decomposition 

[𝜆𝐼 − 𝐴] = [
𝜆 0 0
0 𝜆 0
0 0 𝜆

] − [
2 1 3
3 1 4
1 0 1

] = 0 

= [
𝜆 − 2 −1 −3

−3 𝜆 − 1 −4
−1 0 𝜆 − 1

] 

The eigenvalue 𝜆 = 4.24, −0.24, 0 

[𝐴 − 𝜆𝐼]𝑊 ⇒ 𝑊 = [
−0.6

−0.78
−0.18

] 

          
Fig2.Shows the observability of the system.   Fig3.Shown the observability of the State. 

Used eigenvalue/vector decomposition to introduce concepts of observability which means the ability to determine 𝑥(𝑡) from the 

available measurements (3) with 𝑊 ∧∨. The solve problem above shown matrix CW no zero columns which mean the system is 

observable. 

 

5.3   Conclusion 
Care should be taken on the types of inputs signal applied when considering a fault detection problem. Similarly, in the case of filter 

design, special care should be taken when choosing the filter gains depending on the stability of the signal generator. Again, one of the 

main reasons why output observers are almost inexistent in the literature is that the state space representation dose not easily lends itself 

to the design of such observers so therefore standard Luenberger or Kalman type of observer dose not seems suitable. By directing 

development of the project components in parallel and seeing significant progress in all areas, we are able to identify several important 

areas for future work: model refinement, robust fault detection filter design, health monitoring system evaluation, residual processing and 

delay network development, and platoon health monitoring. 
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