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Abstract 

 

In the study of dynamical systems with lumps, multiple delay in the state, some basic 

definitions of admissible control, attainable set, asymptotic stability and a system 

being proper in the Euclidean space were stated and went further to establish  

theorems concerning Euclidean Null controllability of the system under study. 

Finally, numerical examples were used as a means of illustration to analyze the 

theorem. 
 

  
1. INTRODUCTION. 

Control theory is the area of application-oriented mathematics that deals with the basic principles of , analysis and design of 

control systems. Controlling an object has to do with influencing the object's behaviour so as to achieve a desired goal. This 

theory was first developed to satisfy the design needs of servomechanism known as "automatic control theory". Controllability of 

dynamical systems is one of the key areas in control theory. Controllability of delay dynamical systems affect large areas in 

control theory as it is not farfetched that most physical systems comes with delay especially in the fields of science. 

In this paper, we study dynamical systems with delay in the state, linear systems with lumps multiple constant delay. However we 

concentrate on the Euclidean null controllability of the dynamical system (1). Chukwu [1]  introduced the notion of proper control 

systems of linear delay systems with limited controls noting that controllability is equivalent to the system being proper for delay 

systems with unlimited power. Beata [2] in his study of linear stationary dynamical systems with multiple constant delay in the 

state, discoursed relative and approximate controllability properties with constrained controls. Several authors [3-4] and [9-12] 

analyzed criteria for relative and approximate controllability for linear stationary dynamical systems with single delay in the state 

concerned mainly on unconstrained controls. 

Finally, numerical examples were shown following the theorems in the paper to show Euclidean null controllability of system (1). 

 

2. MATHEMATICAL MODEL AND PRELIMINARIES. 

Considering the dynamical system with lumped, multiple constant delay in the state by an ordinary differential equation: 

𝑥̇ = ∑ 𝐴𝑖𝑥(𝑡 − ℎ𝑖) +  𝐵𝑢(𝑡)𝑀
𝑖=0          (1) 

𝑥(0) =  𝑥0,         𝑢(0) =  𝑢0    𝑡 ≥ 0  

𝑥(𝑡) =  𝜑(𝑡),    𝑡𝜖[−ℎ, 0], ℎ > 0  

Where 𝑥(𝑡) ∈ 𝐑𝑛 stand for the instantaneous n-dimensional state vector, 𝑢(𝑡) ∈ 𝐿𝑙𝑜𝑐
2 ([0,∞), 𝑹𝑚) is the control, 𝐴𝑖 , 𝑖 =

0,1,2,3, … . . , 𝑀 are (𝑛 × 𝑛)-dimensional matrices with real elements, 𝐵 is an (𝑛 × 𝑚)-dimensional matrices with real elements 

and ℎ𝑖 , 𝑖 = 0,1,2,3, … . , 𝑀 denote the constant delays satisfying the inequalities 

 0 = ℎ0 < ℎ1 < ℎ2 < ℎ3 … < ℎ𝑀−1 < ℎ𝑀,      

with initial conditions 𝜑 = (𝑥(0), 𝑥0) ∈ 𝐑𝑛 × 𝐿2([−ℎ𝑀, 0), 𝐑n), where 𝑥(0) ∈ 𝐑𝑛 is the instantaneous state vector at 𝑡 = 0, and 

𝑥0 is a function given in the time interval [−ℎ𝑀, 0), 𝑖. 𝑒. , 𝑥0(𝑡) = 𝑥(𝑡) for 𝑡 ∈ [−ℎ𝑀, 0). 

 The Hilbert space 𝐑𝑛 × 𝐿2([−ℎ𝑀, 0), 𝐑𝑛) endowed with the scalar product defined by: 

〈{𝑥(𝑡), 𝑥𝑡}, {𝑦(𝑡), 𝑦𝑡} 〉 = ∑ 𝑥𝑖(𝑡)𝑦𝑖(𝑡) +  ∫ 〈𝑥𝑡(𝜏), 𝑦𝑡(𝜏)〉𝐑𝑛
0

−ℎ𝑀

𝑛
𝑖=1 𝑑𝜏,  is denoted by 𝑀2([−ℎ𝑀, 0], 𝐑𝑛) where 𝑥𝑖(𝜏) = 𝑥(𝑡 + 𝜏) 

for 𝜏 ∈ [−ℎ𝑚, 0) is the segment of the trajectory of length ℎ𝑚 which is defined in the time interval [𝑡 − ℎ𝑚, 0). 

𝜑 is continuous. The control 𝑢 is a measurable m-vector-valued function with values 𝑢(𝑡) constrianed to lie in an m-dimensional 

unit cube 𝐵𝑚 where 𝐵𝑚 = {𝑢 ∈ 𝐸𝑚: |𝑢𝑗| ≤ 1, 𝑗 = 1,2,3, … 𝑚}. 𝑢 of this form is called admissible. 

Let 𝑊2
(1)

 denote the sobolev space, 𝑊2
(1)

([−ℎ, 0], 𝐸𝑛) of function 

 
 

Corresponding Author: Ateke R.C.I., Email: tokwitroyal@yahoo.com, Tel: +2348183555837 
 

Journal of the Nigerian Association of Mathematical Physics Volume 53, (November 2019 Issue), 29 –32  



30 
 

Euclidean Controllability of…                        Ateke, Davies and Akuro                  J. of NAMP 
 

 

 𝜑: [−ℎ, 0] → 𝐸𝑛 whose derivatives are square integrable. 

If 𝑥: [−ℎ, 𝑡1] → 𝐸𝑛, then for 𝑡 ∈ [𝑜, 𝑡1], the symbol 𝑥𝑡 denotes the function on [−ℎ, 0) defined by 

𝑥𝑡(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−ℎ, 0]. 
 

3. BASIC DEFINITIONS 

Definition 1: The system (1) is Euclidean controllable if for each 𝜑 ∈ 𝑊2
(1)

, 𝑥1 ∈ 𝐸𝑛, there exist a 𝑡𝑖 > 0, and an admissible 

control 𝑢 such that the solution 𝑥(𝑡, 𝜑, 𝑢) of system (1) satisfies 𝑥0(𝜑, 𝑢) = 𝜑 and 𝑥(𝑡1, 𝜑, 𝑢) = 𝑥1. 

The system (1) is Euclidean null-controllable if 𝑥1 = 0 in the above definition. 
 

Let 𝑈 ⊂ 𝐑𝑚 be a non-empty, convex and compact set such that 0 ∈ 𝑈. Any control 𝑢 ∈ 𝐿𝑙𝑜𝑐
2 ([0,∞)𝑈) is called an admissible 

control for system (1). 

The pair 𝜑1 = (𝑥(𝑡), 𝑥𝑡) ∈ 𝐑𝑛 × 𝐿2([−ℎ𝑀, 0), 𝐑𝑛) = 𝑀2([−ℎ𝑀, 0], 𝐑𝑛), where 𝑥(𝑡) ∈ 𝐑𝑛 is the vector of the current state and 

𝑥𝑖(𝜏) = 𝑥(𝑡 + 𝜏) for 𝜏 ∈ [−ℎ𝑀, 0) is the segment of the trajectory of lengthℎ𝑀, that is defined in the time interval [𝑡 − ℎ𝑀, 𝑡), is 

called the complete state of system (1) for 𝑡 ≥ 0. 

For a given initial condition 𝜑0 = (𝑥(0), 𝑥0) ∈ 𝑀2([−ℎ𝑀, 0], 𝐑𝑛) and an admissible control 𝑢 ∈ 𝐿2([0, 𝑡], 𝑈), for every 𝑡 ≥ 0, 

there exist a unique, absolutely continuous solution 𝑥(𝑡, 𝜑0, , 𝑢) of system (1). [6] and [5]. 

𝑥(𝑡, 𝜑0, 𝑢) = 𝑥(𝑡, 𝜑0, 0) + ∫ 𝑋(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
           (2) 

Where 𝑋(𝑡) is the (𝑛 × 𝑛)-dimensional transition matrix is the solution of the following linear matrix integral equation: 

𝑥̇ = ∑ 𝐴𝑖𝑥(𝑡 − ℎ𝑖),𝑀
𝑖=0           (3)                                                     

𝑋(𝑡) = 𝐼 + ∑ ∫ 𝑋(𝜏)𝐴𝑖𝑑𝜏
𝑡−ℎ1

0
𝑀
𝑖=0               (4)   

for 𝑡 > 0,                                  

𝑋(𝑡) = {
𝐼, 𝑡 = 0
0, 𝑡 < 0

   

And 𝑥(𝑡, 𝜑0, 0) is the free solution of system (1) with zero control 𝑢(𝑡) = 0 for 𝑡 ≥ 0, given by 

 𝑥(𝑡, 𝜑0, 0) = 𝑋(𝑡)𝑥(0) + ∑ ∫ 𝑋(𝑡 − 𝜏 − ℎ𝑖)𝐴𝑖𝑥0𝑑𝜏
0

−ℎ𝑖

𝑀
𝑖=0                     (5) 

The solution  𝑥(𝑡, 𝜑0, 0) depends only on the initial complete state 𝜑0 = (𝑥(0), 𝑥0). 

The Set of solutions of  system (1) at 𝑡1 > 0 with initial conditions 𝜑0 = (𝑥(0), 𝑥0) ∈ 𝑀2([−ℎ𝑀, 0], 𝐑𝑛) with admissible control 

𝑢 ∈ 𝐿2([0, 𝑡1], 𝑈) is called the attainable set in time 𝑡1 > 0 of the dynamical system (1) from the initial complete state 𝜑0 with 

constrained control. The set is denoted by 𝐾𝑈([0, 𝑡1], 𝜑0). 
 

Definition 2: The Attainable Set 𝐾𝑈([0, 𝑡1], 𝜑0) of system (1) from the initial complete state 𝜑0 = (𝑥(0), 𝑥0) in time 𝑡 > 0, 

𝑢(𝑡) ∈ 𝑈 is the set 

𝐾𝑈([0, 𝑡1], 𝜑0) = {𝑥(𝑡) ∈ 𝐑𝑛: 𝑥(𝑡) = 𝑥(𝑡, 𝜑0, 0) + ∫ 𝑋(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏,   𝑢 ∈ 𝐿2([0, 𝑡], 𝑈}
𝑡

0
           (6) 

Note: The attainable set is convex, closed and 0 ∈  𝐾𝑈([0, 𝑡], 0) for all 𝑡 ≥ 0. [1] 

In equation (3), we set the matrix function 𝑋(𝑡 − 𝜏)𝐵 = 𝑌(𝑠), 𝑡 ≥ 𝜏 ≥ 0 and define the reachable set of system (1) at time 𝑡 by 

𝐼𝑅(𝑡) = {∫ 𝑌(𝑠)𝑢(𝑠)𝑑𝑠
𝑡

0
; 𝑢 is measurable, 𝑢(. ) ∈ 𝐵𝑚}             (7) 

Lema 1: The reachable set 𝐼𝑅(𝑡) is symmetric, convex, and closed. Also, 0 ∈ 𝐼𝑅(𝑠) for each 0 ≤ 𝑠. 

Definition 3: The system (1) is said to be proper in 𝐸𝑛 on an interval [𝑡0, 𝑡1] if 𝐵∗𝑌(𝑠) = 0, that is, 𝜏 ∈ [𝑡0, 𝑡1] 𝐵 ∈ 𝐸𝑛, implies 

𝐵 = 0. If system (1) is proper on [𝑡0, 𝑡0 + 𝜖] for each 𝜀 > 0, we say that the system (1) is proper at 𝑡0. If system (1) is proper on 

each interval, [𝑡0, 𝑡1],  𝑡1 > 𝑡0 ≥ 0, we say that the system is proper in 𝐸𝑛. 

Definition 4: System (1) is said to be asymptotically stable if for any initial complete state 𝜑0 ∈ 𝑀2([−ℎ𝑀, 0], 𝐑𝑛) and 𝑢 = 0, the 

complete state at time 𝑡 > 0, i.e, 𝜑𝑡 = (𝑥(𝑡), 𝑥𝑡) satisfies the condition 

lim
𝑡→∞

‖𝜑𝑡‖𝑀2 = 0, [6-7] 

Theorem 1: The system (1) is asymptotically stable if and only if all the roots 𝑠𝑖  of the quasi-characteristic equation 

𝜔(𝑠) = det(𝑠𝐼 − ∑ 𝐴𝑖𝑒
−𝑠ℎ𝑖𝑀

𝑖=0 ) = 0 of the autonomous system (1) (𝑢(𝑡) ≡ 0) have negative real parts, i.e., ℜ[𝑠𝑖] < 0 for all 𝑖 =
1,2,3, … , 𝑀. [7-8]. 
 

4. ECLUDIAN NULL CONTROLLABILITY RESULTS. 

Generalising the results obtained in [1] and [5], we define the following matrix. 

𝑄𝑛(𝑠) =  ∑ 𝐴𝑖
𝑀
𝑖=0 𝑄𝑛−1(𝑠 − ℎ𝑖),   𝑛 = 1,2, … , 𝑠 ∈ [0,∞)               `      (8) 

 𝑄0(𝑠) = {
𝐵, 𝑠 = 0
0, 𝑠 ≠ 0

              (9)                                                                     

And define 

𝑄𝑛̂(𝑡1) = {𝑄0(𝑠), 𝑄1(𝑠), 𝑄2(𝑠), … , 𝑄𝑛−1(𝑠), 𝑠 ∈ [0, 𝑡1]          (10) 

For 𝑠 = ℎ𝑖 , 2ℎ𝑖 , 3ℎ𝑖 , … … . ,    𝑖 = 0,1,2,3, … … , 𝑀 for system (1). 

We define the rank of  𝑄𝑛̂(𝑡1) as the rank of block matrix composed of all matrices from the set 𝑄𝑛̂(𝑡1). 
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Lema 1: For every𝑡1 ∈ (0,∞), 𝑟𝑎𝑛𝑘𝑄𝑛̂(𝑡1) = 𝑛. [1]. 

Theorem 2: The system (1) is proper in 𝐸𝑛 on an interval [0, 𝑡1] if and only if 

𝑟𝑎𝑛𝑘 𝑄𝑛̂(𝑡1) = 𝑛                      (11) 

See proof in [8],  [Theorem 2.3]. 

Theorem 3: The dynamical system (1) is proper on [0, 𝑡1], 𝑡1 > 0 if and only if the origin is an interion point of 𝐼𝑅(𝑡1). 

Proof: 

Since 𝐼𝑅(𝑡1) is a closed convex subset of 𝐸𝑛 through all the points of the boundary, there exist a support plane.. 

Let the point 𝑞 be on the boundary of the reachable set 𝐼𝑅(𝑡1), such that 𝜂∗(𝑝 − 𝑞) < 0 for all 𝑝 ∈ 𝐼𝑅(𝑡), where 𝛼 is an outward 

normal to the support plane of 𝐼𝑅(𝑡) through 𝑞.  

If 𝑞 = 𝑦(𝑡, 𝑢 +), 𝑢 + will be of the form 

𝑢 + (𝑠) = 𝑠𝑔𝑛(𝜂∗𝑌(𝑠)), such that 

𝜂∗ ∫ 𝑌(𝑠)𝑢(𝑠)𝑑𝑠 ≤ ∫ |𝜂∗𝑌(𝑠)|𝑑𝑠
𝑡1

0

𝑡1

0
 for all 𝑢 ∈ 𝐵𝑚. 

But since 0 ∈ 𝐼𝑅(𝑡), if 0 ∉ 𝑖𝑛𝑡𝐼𝑅(𝑡1), then 0 is in the boundary. Hence, this is equivalent to ∫ |𝜂∗𝑌(𝑠)|𝑑𝑠
𝑡1

0
= 0; meaning that 

𝜂∗𝑌(𝑠) = 0 and 𝑠 ∈ ([0, 𝑡1])𝜂 ≠ 0. 

Therefore, the dynamical system (1) is not proper on [0, 𝑡1]. 
 

Definition 5: The domain Φ of Euclidian null-controllability is the set of initial functions in 𝑊2
(1)

 which can be steered to the 

origin 0 ∈ 𝐸𝑛 in finite time, using admissible controls. 

Corollary 1: If the dynamical system (1) is proper in 𝐸𝑛, then Φ, the domain of Euclidean null-controllability, contains the zero in 

its interior. 

Proof: 

Since 0 ∈ Φ, and 𝑥(𝑡) = 0 is a solution of system (1) with 𝑢 = 0. We assume that system (1) is proper which means that 0 is in 

the interior of the reachable set 𝐼𝑅(𝑡) for every 𝑡. On the other hand, supposing that 0 is not in the interior of Φ. Then there exist a 

sequence {𝑥𝑚}1
∞ ⊆ 𝐵 such that 𝑥𝑚 → 0 as 𝑚 → ∞ and no 𝑥𝑚is in Φ, that is 𝑥𝑚 ≠ 0. 

From variation of parameter, 

0 ≠ 𝑥(𝑡1, 𝑥𝑚, 𝑢) = 𝑥(𝑡1, 𝑥𝑚, 0) + ∫ 𝑌(𝑠)𝑢(𝑠)𝑑𝑠
𝑡1

0
 for all 𝑡1 ≥ 0 and any 𝑢 ∈ 𝐵𝑚. 

Therefore, 𝑗𝑚 ≝ 𝑥(𝑡1, 𝑥𝑚 , 0) is not in 𝐼𝑅(𝑡1) for any 𝑡1 ≥ 0. Hence the sequence {𝑗𝑚}1
∞ ⊆ 𝐸𝑛, 𝑗𝑚 ∈ 𝐼𝑅(𝑡1)𝑗𝑚 ≠ 0 is such that as 

𝑗𝑚 → 0, 𝑚 → ∞. This implies that 0 is not in the interior of 𝐼𝑅(𝑡1) for any 𝑡1. Hence, 0 ∈ 𝑖𝑛𝑡Φ. 

 

Main Theorem:  

Assume that the dynamical system (1) is proper in 𝐸𝑛, and that the trivial solution of (3) is uniformly asymptotically stable. Then 

system (1) is Euclidean null-controllable. 

Proof: 

Supposing that system (1) is proper on 𝐸𝑛, by corollary (1), the domain Φ of null controllability contains an open ball 𝑃 of finite 

radius around the zero function 𝜑0. Given the initial function 𝜑1 ∈ 𝑊2
(1)

. Using the null control 𝑢(𝑡) = 0, the solution 𝑥(𝑡, 𝜑1, 0) 

of (4a) satisfies 

𝑥𝑡(𝜑1, 0) → 𝜑0 ≡ 0 as 𝑡 → ∞, and 𝑥𝑡1
(𝜑1, 0) ∈ 𝑃 ⊆ Φ for some finite time 𝑡1. 

Since 𝑥𝑡1
(𝜑1, 0) can be steered to 0 ∈ 𝐸𝑛 in finite time, the dynamical system (1) is Euclidean null-Controllable. 

 

5. EXAMPLES 

Example 1. Consider a dynamical system with two delays in the state given by the equation; 

𝑥̇ =  𝐴0𝑥(𝑡 − 0) +  𝐴1𝑥(𝑡 − ℎ1) + 𝐴2𝑥(𝑡 − ℎ2) + 𝐵𝑢(𝑡)              (12) 

Let 𝐴0 = [
−2 0
0 −3

], 𝐴1 = [
0 0

−1 0
], 𝐴2 = [

0 0
−2 1

], 𝐵 = [
0
1

], 𝐶∗ = [1  1], 𝐷 = 0, 𝑥(0) =  0. 

With control values in the m-dimensional unit hypercube 𝐵𝑚 = {𝑢(𝑡) ∈ 𝐑𝑛: |𝑢𝑗| ≤ 1, 𝑗 = 1,2,3, … 𝑚}, 𝑡 > 0 and it is convex and 

compact set containing 0 ∈ 𝑖𝑛𝑡𝐶𝑚. Where ℎ0 = 0, ℎ1 = 1, ℎ2 = 2, 𝑛 = 2, 𝑚 = 1, 𝑀 = 2 𝑎𝑛𝑑 𝑈 = 𝐶𝑚.  
In studying the stability of the dynamical system (12), the quasi-characteristic equation is of the form: 

𝜑(𝑠) = det(𝑠𝐼 − 𝐴0 − ∑ 𝐴𝑖𝑒
−𝑠ℎ𝑖2

𝑖=1 ) = 0  

= det(𝑠𝐼 − 𝐴0 − 𝑒−𝑠𝐴1 − 𝑒−2𝑠𝐴2) = 0  

= det ([
𝑠 0
0 𝑠

] − [
−2 0
0 −3

] − 𝑒−𝑠 [
0 0

−1 0
] − 𝑒−2𝑠 [

0 0
−2 1

])  

= det ([
𝑠 0
0 𝑠

] − [
−2 0
0 −3

] − [
0 0

−𝑒−𝑠 0
] − [

0 0
−2𝑒−2𝑠 𝑒−2𝑠])  

= det (
𝑠 + 2 0

𝑒−𝑠 + 2𝑒−2𝑠 𝑠 + 3 − 𝑒−2𝑠)  

= (𝑠 + 2)(𝑠 + 3 − 𝑒−2𝑠) − (0)(𝑒−𝑠 + 2𝑒−2𝑠)  
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= 𝑠2 + 3𝑠 − 𝑠𝑒−2𝑠 + 2𝑠 + 6 − 2𝑒−2𝑠 =  𝑠2 + 5𝑠 − 𝑠𝑒−2𝑠 − 2𝑒−2𝑠 + 6 = 0  

To show that the root of the above quasi-characteristic equation have a negative real part, we assume that contradiction that 𝛼 ≥

0, where 𝑠 = 𝛼 ± 𝛽𝑖 as the root of the equation. Since 𝛽 ≠ 0, we have the imaginary part as:
ℑ(𝑠2+5𝑠−𝑠𝑒−2𝑠−2𝑒−2𝑠+6)

𝛽
 

= 2𝛼 + 5 − 2𝑒−2𝛼 (
𝑠𝑖𝑛2𝛽

2𝛽
)  − 4𝑒−2𝛼 (

𝑠𝑖𝑛2𝛽

2𝛽
) 

> 2 + 5 − 2 − 4 > 0. 

This is not in line with the assumption that the complex number 𝑠 = 𝛼 ± 𝛽𝑖, 𝑤ℎ𝑒𝑟𝑒 𝛼 > 0 is a root of the above quasi-

characteristic equation. Therefore, all the roots of the above quasi-characteristic equation have negative real parts. Hence by 

Theorem 1, we conclude that system (12) is asymptotically stable. 

To show that system (12) is controllable, we use the method by Beata [2] showing that 𝑄̃𝑛(𝑡1) = 𝑛, 𝑛 = 2 for all 𝑡1 > 0, hence we 

find all matrices that belong to the set 𝑄̃2(𝑡1): 

𝑄0(0) = 𝐵 = [
0
1

] and 𝑄0(𝑠) = 0 for 𝑠 ≠ 0. 

Since 

𝑄1(𝑠) = ∑ 𝐴𝑖𝑄0(𝑠 − ℎ𝑖)
2
𝑖=0 = 𝐴0𝑄0(𝑠) + 𝐴1𝑄0(𝑠 − ℎ1) + 𝐴2𝑄0(𝑠 − ℎ2), 

for all 𝑠 = ℎ𝑖 , 2ℎ𝑖 , 3ℎ𝑖 , … … , 𝑖 = 0, 1, 2, we get 

𝑄1(0) = 𝐴0𝐵 = [
−2 0
0 −3

] [
0
1

] = [
0

−3
] ,  

𝑄1(ℎ1) = 𝐴1𝑄1(0) = [
0 0

−1 0
] [

0
−3

] = [
0
0

] , 

𝑄1(ℎ2) = 𝐴2𝑄1(0) = [
0 0

−2 1
] [

0
−3

] = [
0

−3
] , 

𝑄1(2ℎ1) = 𝐴2𝑄𝑜(0) = 𝑄1(ℎ2), as 2ℎ1 = ℎ2. 

Hence, 𝑄̃2(𝑡1) = {𝑄0(0), 𝑄1(0), 𝑄1(ℎ1), 𝑄1(ℎ2)},    𝑛 = 2 

and 𝑟𝑎𝑛𝑘𝑄̃2(𝑡1) = 𝑟𝑎𝑛𝑘 [
−2 0
0 −3

     
0 0
0 −3

] = 2 

By Theorem 2, the dynamical system is proper in 𝐸𝑛 on the interval [0, 𝑡1]. 
See Matlab code below on getting the rank. 

>> Q = [-2 0 0 0;0 -3 0 -3] 

Q = 

    -2     0     0     0 

     0    -3     0    -3 

>> K = rank(Q) 

K = 

     2 

>> 

Therefore, by the Main Theorem,  the dynamical system (12) is Euclidean Null controllable. 

 

6. CONCLUSION: We have considered linear stationary dynamical systems with multiple delays in the state, introduced some 

definitions, and established theorems necessary and sufficient for the dynamical system (1) to be Euclidean Null Controllable by 

extending the work of [1-2]. 
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