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Abstract 

Let 𝑿𝒏 be the finite set {𝟏, 𝟐, 𝟑, … , 𝒏}. Wedenote by 𝑺𝒏, 𝑻𝒏, 𝑷𝒏 and 𝑺𝑷𝒏 the sets of 

all permutations, full transformation, partial transformation and strictly partial 

transformation on 𝑿𝒏 respectively. We define the stretch 𝒔+(𝝅) of a permutation 𝝅 to 

be the arithmetic average of{|𝝅(𝒊) − 𝝅(𝒊 + 𝟏)|: 𝟏 ≤ 𝒊 < 𝒏}. A (partial) 

transformation 𝜶moves an element 𝒊 ∈ 𝒅𝒐𝒎(𝜶) a distance of |𝒊 − 𝒊𝜶| units. The 

work  𝒘(𝜶) performed by 𝜶 is the sum of all these distances. In this paper, we 

characterise elements of 𝑻𝒏, 𝑷𝒏 and 𝑺𝑷𝒏which attain maximum work, elements of 

𝑻𝒏 with maximum stretch and calculate the number of permutations attaining 

maximum works and maximum stretches. Equally, explicit formulas for these 

maximums are derived. 

 
Keywords:  work, stretch, maximum work, maximum stretch, permutations, full transformation, partial 

transformation, strictly partial transformation.  

 

1. Introduction 

A partial transformation𝛼 of a finite set 𝑋𝑛 = {1,2,3, … , 𝑛} is a map whose domain and codomain are subsets of𝑋𝑛. A 

partial transformation 𝛼 is said to be full if its domain is the whole of 𝑋𝑛 and is said to be strictly partial if it is not a full 

transformation. The sets of all partial full and strictly partial transformations of 𝑋𝑛 are denoted by 𝑇𝑛, 𝑃𝑛 and 𝑆𝑃𝑛 

respectively. The set of partial transformations and its various subsets have been objects of study among various researchers 

over the course of the years. Aspects of transformations that have been explored are always in terms of their algebraic or 

combinatorial properties. 

The concept of ‘work’ in transformations first appeared in [1].A (partial) transformation𝛼 of 𝑋𝑛 moves an element 𝑖 ∈
𝑑𝑜𝑚(𝛼) a distance of |𝑖 − 𝑖𝛼| units. The work  𝑤(𝛼) performed by 𝛼 is the sum of all these distances.  Although [1] 

documented that their motivation for the study stems after attending a talk in Sydney in 2004 delivered by Tim laver, where 

the work performed by semigroup of order-preserving transformation on the finite set 𝑋𝑛 = {1,2, … , 𝑛} was conjectured as 

(𝑛 − 1)22𝑛−3. This conjecture was proved in the paper of the duo, and alongside they further studied the works and average 

works performed by the semigroup of partial transformation and some of its subsemigroups. They derived explicit formulas 

for the work and average work of these various subsemigroups of the partial transformations. 

Prior to this, what appears to have the same definition as work has been studied under the name displacement. This concept 

of displacement appears in literature under various names with subtle variations and its usage has been with respect to 

permutations. The concept of total displacement of a permutation 𝜋 on 𝑋𝑛 whose expression first appear in [2] was defined 

as∑ |𝑖 − 𝜋(𝑖)|𝑛
𝑖=1 . The idea was further considered by other authors although with slight differences and names depending 

on its usage in their various researches. To consider some instance, the term spearman’s measure of disarray was used as 

substitute for displacement in [3]; delay, total relative displacement and shift factor were used [4], [5]and [6] respectively. 

With respect to permutations, [7] considered stretch and displacement. The stretch 𝑠+(𝜋)(in terms of addition) of a 

permutation 𝜋is defined to be the arithmetic average of {|𝜋(𝑖) − 𝜋(𝑖 + 1)|: 1 ≤ 𝑖 < 𝑛}. Permutations that attain maximum 

value of stretch was obtained and their description was given, and with respect to displacement, they equally found  
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permutations that attain maximum displacement and characterised them. The ideas of displacement in permutations have 

found applications in the areas of turbo coding [7], interleavers of turbo codes [4] and [8], speech scrambling [6] and many 

more.   

In this paper, we extend the work of [7] with respect to transformations, this we did along the line of [1]. We subdivide this 

paper into three sections. In the second section, wepresent preliminary definitions and existing results relating to stretch and 

displacement in permutations. The last section however deals with the main findings of this paper. 

 

2. Preliminaries 

Consider the finite set𝑋𝑛 = {1,2,3, … , 𝑛}. 
In this section, we present preliminary results and definitions. Basic concepts in semigroup can be found in [9] 

Definition 2.1[7] Let 𝜋 ∈ 𝑆𝑛. The displacement of 𝜋 is defined as: 

𝑑(𝜋) = ∑
|𝑖−𝜋(𝑖)|

𝑛

𝑛
𝑖=1 . 

Definition 2.2[7]A permutation 𝜋 ∈ 𝑆𝑛is called crossing if for every 𝑖, 𝑗 ∈ 𝑋𝑛, the two closed interval [𝑖, 𝜋(𝑖)], [𝑗, 𝜋(𝑗)] 
intersect (possibly at a single point). Otherwise,𝜋 is said to be non-crossing. 

In the next result and the one that follows, it is shown respectively that only crossing permutations can attain maximum 

displacement and such permutations are characterised. 

Lemma 2.3[7]Let𝜋 ∈ 𝑆𝑛be a non-crossing permutation.Then there is𝜌 ∈ 𝑆𝑛with 𝑑(𝜌) > 𝑑(𝜋). 
Lemma 2.4[7]Let𝜋 ∈ 𝑆𝑛. If 𝑛 = 2𝑚, then𝜋 is crossing if and only if it maps{1,2, … ,𝑚}onto{𝑚 + 1,𝑚 + 2,… , 𝑛}. If 𝑛 =
2𝑚 + 1, then𝜋is crossing if and only if it maps{1,2, … ,𝑚} to{𝑚 + 1,𝑚 + 2,… , 𝑛}and{𝑚 + 2,𝑚 + 3,… , 𝑛} to{1,2, … ,𝑚 +
1}. 
The result that follows discusses on the value of this maximum displacement. 

Theorem 2.5[7]Given 𝑛 ≥ 1, let𝑑𝑛 = 𝑚𝑎𝑥 {𝑑(𝜋): 𝜋 ∈ 𝑆𝑛}and 𝐷𝑛 = {𝜋 ∈ 𝑆𝑛: 𝑑(𝜋) = 𝑑𝑛}.Then𝜋 ∈ 𝐷𝑛  if and only if 𝜋is 

crossing. Moreover,𝑑𝑛 =
𝑛
2⁄ when𝑛is even and 𝑑𝑛 = (𝑛 − 1)(𝑛 + 1)(2𝑛)−1when𝑛 is odd. 

Definition 2.6[7] Let 𝜋 ∈ 𝑆𝑛 . Consider 𝔅 = {{𝑖, 𝑖 + 1}: 1 ≤ 𝑖 ≤ 𝑛} and |𝔅| = 𝑛 − 1. The stretch of 𝜋 (with respect to 

addition) is defined as 𝑠𝔅
+(𝜋) = ∑

|𝜋(𝑖)−𝜋(𝑖+1)|

𝑛−1

𝑛−1
𝑖=1  . 

Definition 2.7[7]For two subsets 𝐴, 𝐵 of 𝑋𝑛, we say that 𝜋 ∈ 𝑆𝑛 oscillates between 𝐴 𝑎𝑛𝑑 𝐵 if for every1 ≤ 𝑖 ≤ 𝑛, we have 

either 𝜋(𝑖) ∈ 𝐴, 𝜋(𝑖 + 1) ∈ 𝐵 or 𝜋(𝑖) ∈ 𝐵, 𝜋(𝑖 + 1) ∈ 𝐴. 

Below is presented a result that shows for which 𝜋 ∈ 𝑆𝑛 is 𝑠𝔅
+(𝜋) maximal, and the formula for this maximal value is also 

given. 

Theorem 2.8[7]The maximum value of 𝑠𝔅
+(𝜋) among all 𝜋 ∈ 𝑆𝑛 is 

(2𝑚2 − 1)
(2𝑚 − 1)⁄  when 𝑛 = 2𝑚 and 

(2𝑚2 + 2𝑚 − 1)
(2𝑚)⁄  when 𝑛 = 2𝑚 + 1.When 𝑛 = 2𝑚, the maximum is attained by 𝜋 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓𝜋 oscillates 

between{1,2, … ,𝑚}, {𝑚 + 1,𝑚 + 2,… , 𝑛} and (𝜋(1), 𝜋(𝑛)) ∈ {(𝑚,𝑚 + 1), (𝑚 + 1,𝑚)}. When 𝑛 = 2𝑚 + 1, the 

maximum is attained by 𝜋 𝑖𝑓 𝑠𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 either 𝜋 oscillates between{1,2, … ,𝑚}, {𝑚 + 1,𝑚 + 2,… , 𝑛} and (𝜋(1), 𝜋(𝑛)) ∈

{(𝑚 + 1,𝑚 + 2), (𝑚 + 2,𝑚 + 1)}, or 𝜋 oscillates between {1,2, … ,𝑚 + 1}, {𝑚 + 2,𝑚 + 3,… , 𝑛} and (𝜋(1), 𝜋(𝑛)) ∈

{(𝑚,𝑚 + 1), (𝑚 + 1,𝑚)}. 
Definition 2.9[1] the work performed by a partial transformation 𝛼 ∈ 𝑃𝑛 in moving a point𝑖 ∈ 𝒏is defined to be: 

𝑤𝑖(𝛼) = {
|𝑖 − 𝑖𝛼| 𝑖𝑓 𝑖 ∈ 𝑑𝑜𝑚(𝛼)
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

The (total) work performed by 𝛼 is 

𝑤(𝛼) =∑𝑤𝑖(𝛼)

𝑖∈𝒏

 

Notice that on multiplying 𝑛 to the result of displacement by [7], we obtain a value equal to what was called work in [1]. 

Henceforth, we neglect the use of displacement and adopt work in the sense of its usage in [1]. Equally our usage of stretch 

shall be without consideration to the cardinality of the set 𝔅 as it were in [7]. This is purely for the purpose of consistency.  
 

3. Main Results 

In this section, we present the findings of this work. We begin by presenting respectively the characterisations for mappings 

with maximum work and maximum stretch in 𝑇𝑛, together with their associated combinatorial results. 

Consider the finite set 𝑋𝑛 = {1,2, … , 𝑛}. 
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Theorem 3.1 Let  𝛼 ∈ 𝑇𝑛. Then, 

a. If 𝑛 is even, 𝛼 performs maximum work in𝑇𝑛if and only if for each 𝑖 ∈ 𝑋𝑛 ,    

       

𝑖𝛼 = {
n   if 1 ≤ i ≤

n

2
,

        1   if (
n

2
) + 1 ≤ i ≤ n.

         (1) 

     

b. If 𝑛 is odd, then α performs the maximum work in 𝑇𝑛 if and only if for each 𝑖 ∈ 𝑋𝑛 ,  

𝑖𝛼 =

{
 
 

 
 n      if 1 ≤ i ≤

n−1

2
,

    n or 1 if i = (
n−1

2
) + 1,

        1   if (
n−1

2
) + 2 ≤ i ≤ n.

         (2) 

Moreover,  

max
α∈Tn

{w(α)} = {

n

4
(3n − 2)              if n is even,

1

4
(n − 1)(3n + 1)    if n is odd.

       (3) 

Finally, if  

∆(S) = |{α ∈ S:w(α)is maximum}|. Then 

∆(𝑇𝑛) = {
1        if  n is even,
2      if  n is odd.

         (4) 

Proof: 

a. Let 𝑛 be even. Suppose 𝛼 performs maximum work in 𝑇𝑛, then by definition of work performed by 𝛼 ∈ 𝑇𝑛, we 

have 

𝑤(𝛼) = ∑ |𝑖 − 𝑖𝛼|𝑛
𝑖=1    

Now, notice that 𝑤(𝛼) can be maximum only when|𝑖 − 𝑖𝛼|is made sufficiently large for each 𝑖 ∈ 𝑋𝑛. Thus, 

𝑚𝑎𝑥|𝑖 − 𝑖𝛼| = {
𝑛 − 𝑖     𝑖𝑓 1 ≤ 𝑖 ≤

𝑛

2
,

            𝑖 − 1        𝑖𝑓 (
𝑛

2
) + 1 ≤ 𝑖 ≤ 𝑛.

 

hence the map in (1). 

Conversely, suppose 𝛼 ∈ 𝑇𝑛 is as in the even case, then clearly, |𝑖 − 𝑖𝛼| is at maximum for each 𝑖 ∈ 𝑋𝑛 and so the value of 

𝑤(𝛼)will be maximum. And the result follows. 

b. For 𝑛 odd, and suppose 𝛼 performs maximum work in 𝑇𝑛, then by definition, 

𝑤(𝛼) =∑|𝑖 − 𝑖𝛼|

𝑛

𝑖=1

 

Using similar argument as above, the maximum value of 𝑤(𝛼) can be attained by maximizing |𝑖 − 𝑖𝛼| for each 𝑖 ∈ 𝑋𝑛. 

Now, 

𝑚𝑎𝑥|𝑖 − 𝑖𝛼| =

{
 
 

 
   𝑛 − 𝑖     if    1 ≤ 𝑖 ≤

𝑛 − 1

2
,

𝑛 − 1 

2
if     𝑖 = (

𝑛 − 1

2
) + 1,

           𝑖 − 1      if     (
𝑛 − 1

2
) + 2 ≤ 𝑖 ≤ 𝑛.

 

Hence, 𝛼 must be the map described in (2). 

Conversely, suppose 𝛼 ∈ 𝑇𝑛 is in the odd case, then clearly, |𝑖 − 𝑖𝛼| is at maximum for each 𝑖 ∈ 𝑋𝑛. Thus, 𝑤(𝛼)will be at 

maximum and so we have our desired result. 

Now, for an even𝑛 and 𝛼 as in(1), we have, 

𝑤(𝛼) =∑(𝑛 − 𝑖) +

𝑛

2

𝑖=1

∑ (𝑖 − 1)

𝑛

𝑖=
𝑛

2
+1
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=∑𝑛

𝑛

2

𝑖=1

−∑𝑖

𝑛

2

𝑖=1

+ ∑ 𝑖

𝑛

𝑖=
𝑛

2
+1

− ∑ 1

𝑛

𝑖=
𝑛

2
+1

 

=∑𝑛

𝑛

2

𝑖=1

− 2∑𝑖

𝑛

2

𝑖=1

+∑𝑖

𝑛

𝑖=1

− ∑ 1

𝑛

𝑖=
𝑛

2
+1

 

=
𝑛2

2
−
𝑛

2
(
𝑛

2
+ 1) +

𝑛

2
(𝑛 + 1) − (𝑛 −

𝑛

2
) 

= 𝑛2 −
𝑛2

4
+
𝑛

2
− 𝑛 

=
𝑛

4
(3𝑛 − 2). 

Also, for an odd𝑛 and 𝛼 as in (2), we have, 

𝑤(𝛼) = ∑(𝑛 − 𝑖) +

(
𝑛−1

2
)

𝑖=1

∑ (𝑖 − 1) + (
𝑛 − 1

2
)

𝑛

𝑖=(
𝑛−1

2
)+2

 

= ∑(𝑛 − 𝑖) +

(
𝑛−1

2
)

𝑖=1

∑(𝑖 − 1) − ∑ (𝑖 − 1) +

(
𝑛−1

2
)+1

𝑖=1

(
𝑛 − 1

2
)

𝑛

𝑖=1

 

= ∑(𝑛 − 𝑖) +

(
𝑛−1

2
)

𝑖=1

∑(𝑖 − 1) − ∑ (𝑖 − 1)

(
𝑛−1

2
)+1

𝑖=1

𝑛

𝑖=1

 

=∑(𝑖 − 1)

𝑛

𝑖=1

+ ∑(𝑛 − 2𝑖 + 1)

(
𝑛−1

2
)

𝑖=1

 

=
𝑛(𝑛 + 1)

2
− 𝑛 +

𝑛(𝑛 − 1)

2
− (

𝑛 − 1

2
) (
𝑛 − 1

2
+ 1) +

𝑛 − 1

2
 

=
2𝑛(𝑛 − 1)

2
−
(𝑛 − 1)(𝑛 + 1)

4
+
(𝑛 − 1)

2
 

=
(𝑛 − 1)

4
[4𝑛 − (𝑛 + 1) + 2] 

=
1

4
(𝑛 − 1)(3𝑛 + 1). 

Finally, when𝑛is even, it is clear from the map (1) that in 𝑇𝑛only 1 such map will attain the maximum. 

On the other hand, for an odd 𝑛, 2 such maps will obviously exist since the central element in the domain is mapped to 

either 𝑛 𝑜𝑟 1. 

Next, we present a result that characterises mappings in 𝑇𝑛 that attain maximum stretch. But note that we consider the 

stretch only in the addition case.      
 

Theorem 3.2For 𝑛 ≥ 2, a mapping 𝛼 ∈ 𝑇𝑛attains maximum additive stretch in 𝑇𝑛if and only if  α oscillates between1 and 

𝑛. This maximum value is (𝑛 − 1)2. Moreover, there are only 2 elements of 𝑇𝑛 that attain this maximum. 

Proof: 

By definition, the additive stretch𝑠+(𝛼) of a map 𝛼 ∈ 𝑇𝑛is given by,  

𝑠+(𝛼) = ∑ |𝛼(𝑖) − 𝛼(𝑖 + 1)|𝑛−1
𝑖=1 .  

Obviously, the maximum value of 𝑠+(𝛼)is attained by maximizing |𝛼(𝑖) − 𝛼(𝑖 + 1)| for each 𝑖 ∈ {1,2,3, … , 𝑛 − 1}. Now, 

notice that, for each  

𝑖 ∈ {1,2,3, … , 𝑛 − 1}, the maximum value of |𝛼(𝑖) − 𝛼(𝑖 + 1)| is 𝑛 − 1. This  

is clearly possible only when 𝛼 oscillates between 1 and 𝑛. 
Conversely, suppose 𝛼 ∈ 𝑇𝑛 oscillates between1 and 𝑛. Then clearly,  

|𝛼(𝑖) − 𝛼(𝑖 + 1)| is at maximum for each 𝑖 ∈ {1,2,3, … , 𝑛 − 1}. And so the additive stretch of 𝛼 is also at maximum.  

Now, if  𝛼 ∈ 𝑇𝑛 attains maximum additive stretch, then by the above description, we have  
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𝑠+(𝛼) = ∑ |𝛼(𝑖) − 𝛼(𝑖 + 1)|

𝑛−1

𝑖=1

 

= (𝑛 − 1) + (𝑛 − 1) + (𝑛 − 1) + ⋯+ (𝑛 − 1) 
= (𝑛 − 1)2. 

Finally, by the definition of oscillation, 𝛼 ∈ 𝑇𝑛 oscillates between 1 and 𝑛 if and only if, for any 𝑖 ∈ {1,2,3, … , 𝑛 − 1}, 
either 𝛼(𝑖) = 1, 𝛼(𝑖 + 1) = 𝑛 or 𝛼(𝑖) = 𝑛, 𝛼(𝑖 + 1) = 1. Thus, only 2 such 𝛼 ∈ 𝑇𝑛will exist.  

In what follows, we count the number of elements in 𝑆𝑛 that attain maximum work and maximum stretch. 

Theorem 3.3 Let 𝜋 ∈ 𝑆𝑛. Then, the total number of permutations in 𝑆𝑛 

i. that attain maximum value of additive stretch is  

             {
2 [(

n−2

2
) !]

2

                  if n is even

2 [(
n−1

2
) ! (

n−3

2
) !) if n is odd.

 

 for 𝑛 ≥ 2. 

ii. that attain maximum work is 

{
[(
n

2
) !]2             if n is even

 n[(
n − 1

2
) !]2, if n is odd

 

Proof: 

i. Let 𝑛 be even. Then by Theorem 2.8[7],  𝜋 ∈ 𝑆𝑛 oscillates between 𝐴 = {1,2, … ,
𝑛

2
} and 𝐵 = {

𝑛

2
+ 1,… , 𝑛} and 

(𝜋(1), 𝜋(𝑛)) ∈ {(
𝑛

2
,
𝑛

2
+ 1) , (

𝑛

2
+ 1,

𝑛

2
)}. If (𝜋(1), 𝜋(𝑛)) = (

𝑛

2
,
𝑛

2
+ 1), it follow that 𝜋|{2,3,4,…,𝑛−1} oscillates 

between 𝐴′ = (𝐴\{
𝑛

2
}) and 𝐵′ = (𝐵\{

𝑛

2
+ 1}). Thus, 𝜋|{2,3,4,…,𝑛−1} is a union 𝛼 ∪ 𝛽, where 𝛼 is a bijection from 

{2,4,6, … , 𝑛 − 2} onto 𝐵′, and 𝛽 is a bijection from {3,5,7, … , 𝑛 − 1} onto 𝐴′. Now, it is clear from simple 

combinatorial argument that, there are (
𝑛−2

2
) ! such 𝛼 and  (

𝑛−2

2
) ! such  𝛽. But then, there are [(

𝑛−2

2
) !]2 possible 

maps of the form 𝛼 ∪ 𝛽 = 𝜋|{2,3,4,…,𝑛−1}. And so, in this case, this is exactly the number of permutations 𝜋 ∈ 𝑆𝑛 

that are of maximum additive stretch. 

If  (𝜋(1), 𝜋(𝑛)) = (
𝑛

2
+ 1,

𝑛

2
), then a similar observation as above shows that  𝜋|{2,3,4,…,𝑛−1} is a union 𝛾 ∪ 𝜏, 

where 𝛾 is a bijection from {2,4,6, … , 𝑛 − 2} onto 𝐴′ and 𝜏 is a bijection from {3,5,7, … , 𝑛 − 1} onto 𝐵′. And so, 

there are (
𝑛−2

2
) ! such 𝛾 and  (

𝑛−2

2
) ! such 𝜏. Thus here too, we have exactly [(

𝑛−2

2
) !]2𝜋 ∈ 𝑆𝑛 that are of maximum 

additive stretch. Hence when 𝑛 even, the total number of permutations in 𝑆𝑛 that attain the maximum additive 

stretch is 2([(
𝑛−2

2
) !]2 ).  

If𝑛 be an odd integer. By Theorem 2.8[7],𝜋 ∈ 𝑆𝑛 oscillates between 𝐶 = {1,2,3,… ,
𝑛−1

2
} and 𝐷 = {

𝑛+1

2
,
𝑛+1

2
+

1,… , 𝑛} and (𝜋(1), 𝜋(𝑛)) ∈ {(
𝑛+1

2
,
𝑛+3

2
) , (

𝑛+3

2
,
𝑛+1

2
)}. Now firstly, if (𝜋(1), 𝜋(𝑛)) = (

𝑛+1

2
,
𝑛+3

2
), it then follows 

that the permutation 𝜋|{2,3,4,…,𝑛−1} oscillates between 𝐶 and 𝐷′ = (𝐷\{
𝑛+1

2
,
𝑛+3

2
}). Thus, 𝜋|{2,3,4,…,𝑛−1} is a union 

𝛿 ∪ 𝜎, where 𝛿 is a bijection from {2,4,6, … , 𝑛 − 1} onto 𝐶 and 𝜎 is a bijection from {3,5,7, … , 𝑛 − 2} onto 𝐷′. 

Since 𝜋 is a permutation, there will be (
𝑛−1

2
) ! such 𝛿 and ( 

𝑛−3

2
)! Such 𝜎. And so, we shall have (

𝑛−1

2
) ! (

𝑛−3

2
) ! 

Possible maps 𝜋|{2,3,4,…,𝑛−1}. Now, since there are two possibilities for  (𝜋(1), 𝜋(𝑛)), we have that the total 

number of permutations 𝜋 ∈ 𝑆𝑛 that attain the maximum additive stretch is 2((
𝑛−1

2
) ! (

𝑛−3

2
) !). The second 

description of the permutation follows. 

ii. Let 𝜋 ∈ 𝑆𝑛 be a permutation whose work is maximum. If 𝑛 is even. Then, by Lemma 2.4[7] the subset  𝐴 =

{1,2, … ,
𝑛

2
} is mapped by 𝜋 onto the subset 𝐵 = {

𝑛

2
+ 1,… , 𝑛}, obviously 𝜋 will force 𝐵 to be mapped onto 𝐴.It 

therefore follows that 𝜋 will map both 𝐴 onto 𝐵 and 𝐵 onto 𝐴 in (
𝑛

2
) !possible ways since|𝐴| = |𝐵|.Hence, we 

shall have a total of [(
𝑛

2
) !]2 permutations that attain maximum work. 
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If 𝑛 is odd, again by the characterisation in Lemma 2.4[7], 𝜋 ∈ 𝑆𝑛 imposes no condition to the image of the central 

element of 𝑋𝑛 (
𝑛+1

2
)𝑡ℎ element, and thus allowing it to be mapped to any 𝑖 ∈ 𝑋𝑛. The other two subsets of 𝑋𝑛 (𝐴 =

{1,2,3, … ,
𝑛−1

2
 and 𝐵 = {

𝑛−1

2
+ 1,… , 𝑛}) on the left and right of (

𝑛+1

2
)𝑡ℎ elementrespectively have the same 

cardinality 
𝑛+1

2
. Thus, we shall have (

𝑛+1

2
) !ways 𝜋 will map 𝐴 onto the elements of 𝐵 and vice versa. This 

therefore results to a total of [(
𝑛+1

2
) !]2 possible arrangements of the two partitions. Lastly, since the (

𝑛+1

2
)𝑡ℎ 

element can be mapped to any 𝑖 ∈ 𝑋𝑛, we shall have a total of 𝑛[(
𝑛+1

2
) !]2 permutations that attain the maximum 

work in 𝑆𝑛.  

In the next result, we characterise elements of 𝑃𝑛that attain maximum work. But first, we write an important lemma that 

will aid us in the proof of the characterisation. 

Lemma 3.4 Let𝑋𝑛 be the finite set {1,2,3, … , 𝑛}. If 𝐾 = {𝛼 ∈ 𝑃𝑛: |𝑑𝑜𝑚(𝛼)| = 𝑚} and 𝐿 = {𝛽 ∈ 𝑃𝑛: |𝑑𝑜𝑚(𝛽)| = 𝑚 + 1 <
𝑛}. Then there exists at least a 𝛾 ∈ 𝐿 such that 𝑤(𝛾) > 𝑤(𝛿) for all 𝛿 ∈ 𝐾. 

 

Proof: 

Note first of all that for all 𝛼 ∈ 𝐾 and all 𝛽 ∈ 𝐿 there exists at least one map in 𝐾 and at least one map in 𝐿 whose work is 

maximum in 𝐾 and 𝐿 respectively. For such 𝛼 ∈ 𝐾 and all 𝛽 ∈ 𝐿, and for 𝑖 ∈ 𝑑𝑜𝑚(𝛼) and 𝑗 ∈ 𝑑𝑜𝑚(𝛽), 

max|i − iα| = {
n − i     if 1 ≤ i ≤

n

2
,

            i − 1        if (
n

2
) + 1 ≤ i ≤ n.

 

and  

max|j − jβ| = {
n − j     if 1 ≤ j ≤

n

2
,

            j − 1        if (
n

2
) + 1 ≤ j ≤ n.

 

Suppose 𝛿 ∈ 𝐾 and 𝛾 ∈ 𝐿 are such maps, that is max
𝛼∈𝐾

𝑤(𝛼) = 𝑤(𝛿) and  max
𝛽∈𝐿

𝑤(𝛽) = 𝑤(𝛾), then by definition, 

𝑤(𝛿) = ∑ |𝑖𝑟
𝑚
𝑟=1 − 𝑖𝑟𝛿| for 𝑖𝑟 ∈ 𝑑𝑜𝑚(𝛿) 

and  

𝑤(𝛾) = ∑ |𝑖𝑠
𝑚+1
𝑠=1 − 𝑖𝑠𝛾| for 𝑖𝑠 ∈ 𝑑𝑜𝑚(𝛾) 

 

It follows obviously from the definition that since there are more summation of terms under 𝛾, 𝑤(𝛾) > 𝑤(𝛿). 
 

Theorem 3.5 An element 𝛼 ∈ 𝑃𝑛 attains maximum work if and only if 𝛼 ∈ 𝑇𝑛 and 𝛼 is such that: 

𝑖𝛼 = {
n   if 1 ≤ i ≤

n

2
,

        1   if (
n

2
) + 1 ≤ i ≤ n.

   

if 𝑛 is even,  

and   

𝑖𝛼 =

{
 
 

 
 n      if 1 ≤ i ≤

n − 1

2
,

    n or 1 if i = (
n − 1

2
) + 1,

        1   if (
n − 1

2
) + 2 ≤ i ≤ n.

 

if 𝑛is odd. 

 

Proof: 

The proof follows from lemma 3.4 and the proof of theorem 3.1. 

 

We consider below description of elements in the set of all strictly partial transformations(𝑆𝑃𝑛)that attain maximum work.  
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Theorem 3.6 Let  𝛼 ∈ 𝑆𝑃𝑛. Then,  

(a) If 𝑛 is even, 𝛼 performs maximum work in 𝑆𝑃𝑛 if and only if, for each 𝑖 ∈ 𝑋𝑛, 

(i) 𝑑𝑜𝑚(𝛼) = 𝑋𝑛\{
𝑛

2
 𝑜𝑟 

𝑛

2
+ 1} 

(ii) either 

              𝑖𝛼 = {
n   if 1 ≤ i ≤

n

2
,

        1   if (
n

2
) + 1 ≤ i ≤ n.

 

or 

              𝑖𝛼 = {
n   if 1 ≤ i ≤

n

2
− 1,

        1   if (
n

2
) + 1 ≤ i ≤ n.

 

 

(b) if 𝑛 is odd, 𝛼 performs maximum work in 𝑆𝑃𝑛 if and only if for each 𝑖 ∈ 𝑋𝑛, 

(i) 𝑑𝑜𝑚(𝛼) = 𝑋𝑛\{
𝑛+1

2
} 

(ii) 𝑖𝛼 = {
n        if  1 ≤ i ≤

n−1

2
,

        1         if          
n+3

2
≤ i ≤ n.

 

Proof: 

By lemma 3.4 and the proof of Theorem 3.1, the result follows. 

Remark:It can be deduced fromTheorem 3.5 that for any 𝑛, no map will perform work greater than the map 

described in Theorem 3.1. 
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