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Abstract 

A property of ℝ that is rarely stated to talkless of being established in the literature of 

Elementary Real Analysis, is stated and proved. An application in the Theory of the 

Riemann Integral is pointed out. 
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1  LANGUAGE AND NOTATION 

Our language and notation shall be pretty standard as found, for example, in [1].  denotes the empty set, ℝ is the 

collection of the real numbers. We shall indicate the end or absence of a proof by ///. 

 Let a, b  ℝ. If  a   b (also written b  a), a is said to precede b and b said to dominate a. Let   S  ℝ. If     

ℝ precedes all the elements of S,  is called a lower bound of S. And, a lower bound, *, say, of  S, dominating all other 

lower bounds of S, is called the infimum of  S, and denoted  inf S. Similarly    ℝ that dominates all the elements of S is 

called an upper bound  of  S, and, an upper bound,  *, say, of  S, preceding all other upper bounds, is called the supremum of 

S, and denoted sup s. If S has a lower bound, it is said to be bounded below;  similarly, if S has an upper bound it is said to be 

bounded above. If S is bounded above and below, it is simply said to be bounded and called a bounded set. 

   

Comparability Property 1  Let x, y  ℝ. Then,  

x   y, or x = y, or x  y        ….(C.P) 

and one and only one of (CP) must be true. In particular, for a  ℝ, one and only one of 

a  0, or a = 0,  or a  0 

must be true. /// 

Employing the above Comparability Property 1 of  ℝ, if  a  ℝ, its absolute value, denoted | a | is defined as 

follows.  

                a,  if  a  0 

| a |        0,  if  a = 0  

     – a,  if  a  0 

Let   S  ℝ. We define the set | S | as follows. 

 S |    {| s | :  s  S }. 

We can now state the Supremum-Infimum Property of ℝ, advertised in the Abstract.  

The Sup-Inf Property 2  Let   S  ℝ.. Suppose S is a bounded set. Then,     

(i)  | S| is a bounded set, and  

(ii)  sup | S|  –  inf | S | 

       sup {|x – y| : x,  y  S} 
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      = sup {x – y : x, y  S } 

      = sup S – inf S. ///    

See also the statement of The Sup-Inf Property 14: 

The Sup-Inf Property has applications in Elementary Real Analysis, but  

a proof is difficult to locate in the literature. This paper furnishes a proof  

 of this property, and also points out one application. The notation | S | and similar others given, presently, are the author’s 

 

2  PROOF OF THE SUP -INF PROPERTY 

We reel out some properties of ℝ, and intermittently give some definitions and observations about the bounded non-

empty subset S of ℝ.  

Property 1   For x, y  ℝ, 

(i)  x   y   – y    – x, 

and  

(ii)  x   y   – y    – x. /// 

Let   S  ℝ. Define  – S {– s : s  S}. 

Observation 1  Let   S  ℝ. If S is bounded, so is  – S.     

Proof Hypothesis S is bounded.  

So, let ,   ℝ be a lower bound and an upper bound of S, respectively. Hence,  

  s   for all s  S.  

By Property 1, therefore,  

–    – s   –   for all s  S. 

And so, –  is a lower bound for – S, and   –  is an upper bound for  – S. Hence – S is bounded. /// 

Property 2  Let x,  y,  p,  q  ℝ. Then, 

(i)  









qpand

yx
   x + p   y  + q 

and  

(ii)  









qp

yx

and
   x + p     y  + q. /// 

Now let   S1, S2  ℝ, and define  

S1 +  S2  {x + y  : x  S1, y  S2}. 

 

Observation 2   Let   S1, S2  ℝ. If S1 and S2 are bounded sets, so is the set S1 + S2. 

Proof  Hypothesis  S1 and S2 are bounded sets. 

So, let 1, 2 be respective upper bounds for S1 and S2, and so for x  S1 and  y  S2,  

x   1 

and   

y    2.  

By Property 2, therefore,  

 x + y    1 + 2 for  x  S1,  y  S2                 …() 

Since x and y were arbitrary, it follows from () that  1 + 2 is an upper bound for S1 + S2, and hence, S1 + S2 is bounded 

above. Similarly, S1 + S2 is bounded below. ///  

Let    S1, S2  ℝ. Define  

S1 – S2 {x – y : x  S1,  y  S2} 

Observation 3  Let    S1, S2  ℝ. Then,  

(i)  S1 – S2 = S1 + ( – S2),  

(ii)  If S1 and S2 are bounded sets, so is S1 – S2.   
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Proof  Immediate from Observation 1 and Observation 2. ///  

Observation 4  Let   S  ℝ. If  S is bounded, so is S – S = {x – y : x, y  S}. 

Proof  Immediate from Observation 3. ///. 

Comparability Property 1 of Section 1 says:  

For x, y  ℝ, one and only one of  

x   y  or  x = y  or x  y 

must be true.  

Therefore, for x,  y   ℝ, define  

x  y = max {x,  y}= 















yxx

yxx

yxy

 if     ,

 if     ,

 if     ,

 

Property 3  For x  ℝ, 

| x | = max {x , – x} = x – x. /// 

Let   S  ℝ. Define  

| S | = {| s | : s  S}. 

 

Observation 5  Let   S  ℝ. If  S is a bounded set, so is | S |.  

Proof   Hypothesis S is a bounded set.  

By Observation 1, therefore, – S is a bounded set. By the Hypothesis there exist ,   ℝ such that  is a lower 

bound for S and  is an upper bound for S. Because – S is also bounded, – , –  ℝ exist such that  –  is a lower bound for – 

S and  – is an upper bound  for  – S. Hence, – is a lower bound for both S and – S, and –  is an upper bound for both S 

and – S . And so,  

– 
   s, – s   – for all s  S. 

By Property 3, therefore,  

– 
    | s |   –  for all s  S. 

And from this follows that | S | is a bounded set. /// 

 

Observation 6  Let   S  ℝ, and suppose that S is a bounded set. Then. 

(i)   – S, 

(ii)  S – S 

(iii) | S | 

       and  

(iv)  | S – S |     

are all bonded sets.  

 

Proof  Immediate. /// 

Observation 7  Let    S  ℝ. Then,  

– S   S   | S |  S. 

Proof  Hypothesis  – S   S. 

Hence, 

s  S    – s  S 

and so  

s  S    s, – s  S. 

Hence,  

s  S  max{s, – s } S 

By Property 3, therefore,  

s  S    | s |  S. 

Hence, since S was arbitrary, we have shown that  
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– S   S   | S |  S. /// 

 

Remark In a forthcoming book of the author, The Real Numbers, the set | S | is called absolute S|].  

Property 4 The LUB Axiom Every non-empty subset of ℝ, bounded above, has a supremum. /// 

FACT 5  Let   A  S  ℝ, and suppose that S is bounded above. Then,  

(i)  A is also bounded above  

(ii)  sup S and sup A exist, and    

(iii)  sup A   sup S. 

 

Proof Immediate from Property 4 above, and the definition of the supremum as an upper bound preceding all other upper 

bounds. /// 

 

Observation 8  Let   S  ℝ, and suppose that S is bounded. Then,  

(i)   | S | is bounded, and  

     | S |  S 

– S  S      and  

     sup | S |   sup S.   

 

Proof (i)  is Observation 5, and so by Property 4, both sup S and sup | S | exist.  

(ii): That | S |   S is Observation 7. And, that sup | S |   sup S is now immediate from FACT 5. ///  

Property 6 For x  ℝ, x   | x |. ///  

Observation 9 Let   S  ℝ. Then,  

 S bounded  

 and         sup | S | = sup S 

  – S  S                   …() 

 

Proof   That  

 sup | S |    sup S         …(1) 

is Observation 8. It suffices, therefore, to reverse the inequality in (1) to prove (). By Property 6,  

s   | s |, for all s  S.  

And so,  

s   | s |  sup | S | for all s  S. 

That is,  

s   sup | S | for all s  S.                         …() 

Hence, sup | S | is an upper bound for S, and so by the definition of the supremum as an upper bound preceding all other 

upper bounds, it follows from () that  

 sup S    sup | S |                           …(2) 

Clearly, (1) and (2) gives (). ///  
 

Observation 10  Let   S  ℝ, and suppose that S is a bounded set. Then 

(i)  S – S  and |S – S | are bounded sets,      

and  

(ii)  sup(S – S) = sup|S – S |  
 

Proof That S – S and | S – S | are bounded sets are claims of Observation 6. To prove (ii), simply observe that  – (S – S)   S – 

S, and so invoke Observation 9. ///  

We recast Observation 10(ii) as follows.  
 

Observation 10(ii) Let   S  ℝ, and suppose S is bounded. Then 

sup {x – y : x,  y  S} 

= sup {|x – y| : x,  y  S. /// 
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To establish our next Observation, we reel out some six Properties of ℝ; the superscripts identify those properties. First,  

Property 71 The EQUI-LUB Axiom Every non-empty subset of ℝ  bounded below has an infimum. ///  

Property 82  Let a, b  ℝ. Then,  

a  b  a  a = b. ///  

Property 93  Let x,  y,  p, q  ℝ. Then,  

(i)  x  y  

      and          x – q   y – p    

      p q 

      and 

 (ii) x   y  

      and          x – q    y – p. ///    

      p   q 

Property 104  Let , p  ℝ. Then,  

(i)    p    

       and             | p|  , 

       – p   

       and  

(ii)   p    

       and               | p|  . /// 

       – p    

 

Property 115 The Great Characterizations of the Supremum & the Infimum  Let   S  ℝ, and suppose that S is bounded 

above. Then,  

(i)    = sup S 

        

        is an upper bound of  S, and if   0, then  –  is not an upper bound of S,    

(ii)    = sup S 

        

        is an upper bound of  S, and if   0, there exists x  S such that  

        –    x  , 

(iii)  = sup S 

        

         is an upper bound of  S, and if  *  ℝ and  *  , then there exist  x  S such that 

        *   x   

Suppose S is bounded below. Then.  

(i)   = inf S 

         

        is a lower bound of S, and if    0, then   +  is not a lower bound of S, 

(ii)   = inf S 

         

         is a lower bounded of S, and if   0, then there exists x  S such that  

          x    + , 

(iii)   = inf S 

          

          is a lower bound of S, and if  *  ℝ and     *, then there exists x  S such that  

           x   * . /// 

Property 126  Let a, b  ℝ. Then,  

a   b +  for every   0    a  b. /// 

Now to our next 
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Observation 11 Let    S  ℝ and suppose S is a bounded set. Then,  

sup S – inf S = sup{x – y :  x, y   S}  

= sup {| x – y| :  x, y   S}                          …() 

 

Proof By Observation 10(ii), 

sup{x – y :  x, y   S} = sup{| x – y| :  x,  y  ℝ}.  

And so, to prove (), it suffices to show that  

sup{| x – y| :  x,  y  S 

 sup S – inf S                          …() 

 sup {x – y :  x, y   S} 

 

And so, to obtain (), we shall separately show that  

sup{| x – y| :  x,  y   S}  sup S – inf S                      …(3) 

and  

sup S – inf S    sup {x – y :  x, y   S }                         …(4) 

 

Proof of (3): Let  x,  y  S. Then, clearly,  

x ,  y  sup S 

and 

inf S   x,  y. 

 

By  a repeated application of Property 93, therefore, we have  

x – y   sup S  –  inf S  

and               

– (x – y) = y – x   sup S – inf S.  

And so, by Property 104,  

|x – y|  sup S  –  inf S, for all x, y  S                                  …{*}  

 

Since x and y were arbitrary, it follows from (*) that sup S – inf S is an upper bound for the set  {|x – y| : x,  y  S }. And so, 

by the definition of the supremum as an upper bound preceding all other upper bounds it follows that  

sup{|x – y| : x,  y  S }  sup S  –  inf S, 

which is (3) that we set out to prove.  
 

Proof of (4):  Let   0. Then, 
2

ε   0. By Property 115(ii) and (ii), there exists  x  S such that  

sup S  – 
2

ε    x                           …() 

and there exists  y  S such that  

y   inf S  + 
2

ε
                                  …() 

By Property 93  applied to () and () therefore, we have  

(sup S – 
2

ε
)  –  (inf S  + 

2

ε
)    x – y. 

That is,  

sup S – inf S  –  
2

ε  – 
2

ε    x – y 

That, is, 

sup  S  – inf S   (x – y) +  

from which follows that  

sup S – inf S   (x – y) +     sup {p – q :  p,  q  S} + . 

That is,  

sup S – inf S   sup {p – q : p, q   S} + , for every    0. 
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And so, by Property 126, (4) follows. ///  
 

Property 13 For x, y   ℝ, 

(i)   x  | x |,  – x  | x |,  

(ii)  | x +  y|   | x | + | y ,  

 and  

 (iii) ||x| - | y ||   













||

||

yx

yx
  | x|  + | y |. //// 

 

Observation 12 Let   S  ℝ and suppose that S is bounded. Then 

(i)  | S |,  

(ii) S – S,  

and  

(iii) | S – S |  

are bounded sets,  and  

(iv) sup | S |  – inf | S |   sup {|x – y| : x,  y   S } 

     (= sup | S – S |).      
 

Proof  Clearly, (i), (ii) and (iii) are well-known by now, for boun- ded S,   S  ℝ. Clearly, (iv) is  

sup | S | –  inf | S |  sup {| x – y | : x,  y    S }                       …()    

We prove (). By the first equality in Observation 11, we have  

sup | S | –  inf | S |  = sup{| x | – | y | : x,  y    S }                       …()    

Let x,  y  S. From the first claim of Property 13(i), we have  

| x | – | y |   || x| – | y ||                            …(5) 

And, by (iii) of same Property 13,  

|| x | – | y ||   | x – y |                   …(6) 

(5) and (6), therefore, give 

| x | – | y |   | x – y |                   …(7) 

for any x,  y   S. And hence, by now familiar arguments,  

sup {| x | – | y | : x,  y   S }   sup{| x – y | : x,  y   S }      …(8) 

Clearly, () and (8) give (), which is what we set out to prove. ///  

We have thus, completed the proof of  
 

The Sup-Inf Property 14  Let     S    ℝ and suppose S is a bounded set. Then,   

(i)  | S |,  

(ii)  S – S = {x – y : x,  y   S }, 

and  

(iii)  | S – S | = {| x – y | : x,  y   S }  

         are bounded sets, and  

(iv)  sup | S |  –  inf | S |   sup {| x –  y| : x,  y   S } 

        = sup {x – y : x,  y   S } = sup S – inf S .  

 

In particular,  

sup | S |  –  inf | S |    sup S  –  inf S. /// 

 

 

3  AN APPLICATION 

Definition of the Integral  

  THROUGHOUT, a, b  ℝ, a    b, [a, b] = {x  ℝ : a   x   b}is a closed bounded interval of ℝ, and  f  : [a, b] 

 ℝ. We do not rep- eat this standing rule.  

Let  P = {x0,  x1, … , xn}  [a, b] be such that  

a = xo   x1  x2  …   xn – 1   xn = b. 
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P is called a partition of [a, b], the points, x0, x1, …, xn of  P called the partition points of  P and the  closed bounded intervals  

[xo, x1], [x1, x2], …, [xk – 1 , xk], … , [xn – 2 , xn – 1], [xn – 1,  xn] 

called the subintervals of the partition P; In particular, [xk – 1 , xk], k = 1, 2, …, n, is called the kth subinterval  of  P. 

By [a, b] we denote the collection of all the partitions of [a, b]; and so, by  

P  [a, b] 

we mean that P is a partition of [a, b]. E.g., the trivial partition of [a, b], Ptriv. = {a = xo, x1 = b}  [a, b]. 

Let  P,  P  [a, b]. If  P  P, we say that  P is finer than  P and that  P refines  P, and so call P a refinement of  P.  
 

The function  f : [a, b]  ℝ is said to be bounded and called a bounded function, if its range,  f ([a, b]), is a bounded set. We 

denote by ℬ[a, b] the collection of all the bounded functions  f  :  [a, b]  ℝ, and so, by  

f  ℬ[a, b] 

shall be meant that  f : [a, b]  ℝ  is a bounded function.  

Suppose  f  ℬ[a, b] and  P ={a = xo, x1, …, xn = b} [a, b].   

Since  f  ℬ[a, b], then the sets  f ([a, b]),  f ([xk – 1 , xk]), k = 1, 2, …, n, are bounded sets. Define 

M( f ) = sup  f ([a, b]) 

m( f ) = inf   f ([a, b]) 

Mk( f ) = sup  f ([xk – 1 , xk]) 

mk( f ) = inf  f ([xk – 1 , xk]). 

L( f,  P) = 


n

k

k fm
1

)( (xk  – xk – 1), called the lower Riemann sum of f w.r.t  P,  

and  

U( f,  P) = 



n

k

k fM
1

)(
(xk  – xk – 1), called the upper Riemann sum of f w.r.t  P. 

FACT 1  Let  P  [a, b] and  f  ℬ[a, b]. Then,  

               m( f )(b – a)   L( f,  P)   U( f,  P)   M( f )(b – a). /// 

 

FACT 2  Let  f  ℬ[a, b] and  P,  P  [a, b]. If  P refines P, then,  

(i)  L( f,  P )    L( f,  P), 

and  

(ii) U( f,  P )    U( f,   P ). ///  

 

FACT 3  Let  f  ℬ[a, b] and  P,  P  [a, b]. Then,  

L( f,  P )    U( f,   P ). /// 

 

From all the preceding, we have that  

  

(i) the L( f,  P ) s increase with finer partition, and  

(ii) the collection  

{ L( f,  P ) :  P  [a, b]}  

of all the lower Riemann sums of  f, is bounded above by M( f )(b – a). By the LUB Axiom, therefore,  

sup{L( f,  P ) :  P  [a, b]} 

exists, and called the lower Riemann Integral of  f and denoted 
b

a
f. Similarly,  

inf {U( f,  P ) :  P  [a, b]} 

exists and called the upper Riemann Integral of  f  and denoted 
b

a

 

f. 

FACT 4  For  f  ℬ[a, b],  

(i)  
b

a f  and 
b

a f exist, and  
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(ii) 
b

a
f    

b

a f . /// 

 

DEFINITION 5  Let   f  ℬ[a, b]. 

(i) f is said to be integrable, and called a Reimann integrable function, provided   


b

a
f  =  

b

a f,  and  

  (ii) If  f is integrable, its integral, denoted  
b

a
f , is defined as the common value of the lower, 

b

a
f , and upper,  

b

a f, 

Riemann  integrals;  

that is, 
b

a
f  = 

b

a
f   = 

b

a f .  

 

Integrability Criterion  

The Rieman integrability Criterion 6 Let f  ℬ[a, b]. Then, f is integrable if and only if for every   0 there exists a 

partition P  [a, b] such that  

U( f,  P )  –  L(  f,   P )  . /// 

Let  f  : [a,  b]  ℝ. Define  

| f | : [a, b]  ℝ,  x  ↦| f(x) | , x  [a, b].  

 

We now come to the advertised application. First, a  

Property Sidewise Addition of Inequalities 7  Let a1, a2, …, an,  b1, b2, …, bn  ℝ. Then, 

a1    b1 

a2    b2 

. 

.     a1 + a2 + … + an    b1 + b2 + … + bn. /// 

. 

an    bn 

 

And finally,  

THEOREM 8 Integrability of  | f |  Let  f  ℬ[a, b]. If  f  is integrable, so is | f |  

 

Proof  Hypothesis  f  ℬ[a, b] is integrable.  

We want to show that | f | is, consequently, integrable. We employ the Riemann Integrability Criterion twice.  First, 

by the Hypothesis, if   0 is given, there exists a partition P  [a, b] such that  

U( f,  P )  –  L(  f,   P )                            …() 

If  P = {a = xo, x1, …, xn = b}, then () can be written as  




n

k

k fM
1

)( (xk  – xk – 1)  –  


n

k

k fm
1

)( (xk  – xk – 1)  . 

That is, as  




n

k

k fM
1

)((  –  mk( f ))(xk – xk – 1)                  …()  

From the Sup-Inf Property [| sup | S | – inf | S |  sup S  – inf S |], we clearly have,   

Mk(| f |) – mk(| f |)   Mk( f ) – mk( f )                          …() 

And so, from (), we have  

( Mk(| f |) –  mk(| f |)))(xk – xk – 1)   

  (Mk( f ) –  mk( f ))(xk – xk – 1)                        …() 
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Hence, by the Sidewise Addition Property, () gives  




n

k

k fM
1

|)(|(  –  mk(| f |))(xk  – xk – 1)   


n

k

k fM
1

)((  –  mk( f ))(xk  – xk – 1). 

That is,  

U( | f |,  P )  –  L( | f |,  P )   U( f ,  P )  –  L( f ,  P ) 

which  by (),  

  
And so,  

U( | f |,  P )  –  L( | f |,   P )  .  

And so, again, by the Riemann Integrability Criterion, | f | is integrable. /// 
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