
231 
 

Journal of the Nigerian Association of Mathematical Physics 

Volume 52 (July & Sept., 2019 Issue), pp231 – 234 

© J. of NAMP 

 
THERMODYNAMIC PROPERTIES OF GRAPHENE IN THE LINEAR APPROXIMATION 

OF ITS ENERGY DISPERSION RELATION 

 

N.A. Siyaka, A.D.A. Buba and S.B. Elegba 

 

Department of Physics, Faculty of Science, University of Abuja, P. M. B 117, Abuja, Nigeria. 

 
Abstract 

 
This paper presents the thermodynamic properties of graphene via its partition 

function. The energy dispersion relation for the first nearest neighbour hopping is 

approximated to its linear term and was used to model a partition function for the 

single layer graphene. The specific heat, Helmholtz free energy and entropy of 

graphene were calculated and their temperature dependence was shown. 

 
 

1. Introduction  

Graphene is the first example of a truly two dimensional crystal. The electronic properties of graphene are exceptionally 

novel. For instance, the low-energy quasi-particles in graphene behave as massless chiral Dirac fermions, which have led to 

the experimental observation of many interesting effects similar to those predicted in the relativistic regime. Graphene also 

has immense potential to be a key ingredient of new devices, such as single molecule gas sensors, ballistic transistors and 

spintronic devices [1].  High in-plane thermal conductivity is due to covalent sp
2
 bonding between carbon atoms, whereas 

out-of-plane heat flow is limited by weak van der Waals coupling [2]. The strong and anisotropic bonding and the low mass 

of the carbon atoms give graphene and related materials unique thermal properties. Herein, we seek to solve some of the 

thermodynamic properties by using a modeled partition function and establish their temperature dependence. 

 

2.  Theoretical Analysis 

a. Linearization of Energy Dispersion of Graphene Around The Dirac Points 

The energy dispersion relation of graphene is given by  

E= 1 + 4 cos  
 3

2
𝑘𝑥𝑎 cos  

𝑘𝑦𝑎

2
 + 4𝑐𝑜𝑠2  

𝑘𝑦𝑎

2
                (1) 

Let the E-k relation written in terms of 𝛼 and 𝛽  

E(𝛼, 𝛽)=  1 + 4𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 + 4𝑐𝑜𝑠2𝛽                         (2) 

Using Taylor series to expand the relation around the Dirac points 

𝐸 ≈ 𝐸 𝛼𝑐 , 𝛽𝑐 +
𝜕𝐸

𝜕𝛼
⃒𝛼𝑐 ,𝛽𝑐(𝛼 − 𝛼𝑐) +

𝜕𝐸

𝜕𝛽
⃒𝛼𝑐 , 𝛽𝑐 (𝛽 − 𝛽𝑐 )+…                          (3) 

Where 𝛼𝑐 = 0 𝑎𝑛𝑑 𝛽𝑐 =
2𝜋

3
 are the Dirac points 

Approximating up to the linear part 

𝐸 𝛼𝑐 , 𝛽𝑐 = 0 

𝜕𝐸

𝜕𝛼
=

1

2
(−4 sin 𝛼) cos 𝛽

 1+4𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 +4𝑐𝑜𝑠 2𝛽
=

−2 sin 𝛼 cos 𝛽

 1+4𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 +4𝑐𝑜𝑠 2𝛽
   

At 𝛽𝑐  
𝜕𝐸

𝜕𝛼
=

sin 𝛼

 2−2 cos 𝛼
      (4) 

But 2 sin 𝛼 = 2 sin 𝛼
2 cos 𝛼

2  and 1 − cos 𝛼 = 2𝑠𝑖𝑛2 𝛼
2  

Substitute these into eqn. (4) and at 𝛼𝑐  
𝜕𝐸

𝜕𝛼
= cos

𝛼

2
= 1                (5) 
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𝜕𝐸

𝜕𝛽
=

1

2
(−4 cos 𝛼 sin 𝛽−8 sin 𝛽 cos 𝛽)

 1+4𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 +4𝑐𝑜𝑠 2𝛽
                         (6) 

At 𝛼𝑐   
𝜕𝐸

𝜕𝛽
=

−2 sin 𝛽(1+2 cos 𝛽)

1+2𝑐𝑜𝑠𝛽
                   (7) 

At  𝛽𝑐 ,  
𝜕𝐸

𝜕𝛽
= −2 sin 𝛽 = − 3                                          

𝐸 = 𝑘𝑥 − 𝑖 3𝑘𝑦                 (8)  

Since 𝛼 =
𝑎 3

2
𝑘𝑥  and 𝛽 =

𝑎

2
𝑘𝑦  

Then at the Dirac points, eqn. (3) becomes 

𝐸 =  
𝑎 3

2
𝑘𝑥 − 0 − 𝑖 3(

𝑎

2
𝑘𝑦 −

2π

3
)                 (9) 

𝐸 +
2π 3

3
=

𝑎 3

2
(𝑘𝑥 − 𝑖𝑘𝑦)                (10) 

We assume that 𝐸 = 𝐸 +
2π 3

3
 and 𝑘 =

𝑎 3

2
(𝑘𝑥 − 𝑖𝑘𝑦) 

Therefore, the linearization of energy dispersion of graphene results 

𝐸 = 𝑎 𝑘                   (11) 
 

b. Thermodynamic properties of Graphene 

In order to obtain all thermodynamic quantities of graphene, we concentrate, at first, on the calculation of the partition 

function Z. 

For a canonical ensemble that is mechanical and continuous, the canonical partition function is defined as [3] 

𝑍 =  𝑒−𝜏𝐸(𝑘𝑥𝑘𝑦 )𝑑𝑘𝑥𝑑𝑘𝑦                           (12) 

Where 𝜏 =
1

𝐾𝐵𝑇
 

As we calculated in equation (11), the linear approximation of E is 

𝐸(𝑘𝑥𝑘𝑦) = 𝑎 𝑘  

Therefore, 

𝑍 =  𝑒−𝑎𝜏𝑘 𝑑𝑘𝑥𝑑𝑘𝑦                  (13) 

Assuming a circular symmetry instead of the hexagonal lattice, 

 𝑑𝑘𝑥𝑑𝑘𝑦 = 2𝜋  𝑘𝑑𝑘
𝑞

0
= 𝜋𝑞2                (14) 

𝑍 = 2𝜋  𝑒−𝑎𝜏𝑘 𝑘𝑑𝑘 =
−2𝜋

𝑎

𝜕

𝜕𝜏
 𝑒−𝑎𝜏𝑘 𝑑𝑘 =

2𝜋

𝑎

𝜕

𝜕𝜏
 
𝑒−𝑎𝜏𝑘

𝑎𝜏
                (15)            

𝑍 =
−2𝜋

𝑎2𝜏2
 𝑎𝑘𝜏𝑒−𝑎𝜏𝑘 + 𝑒−𝑎𝜏𝑘  0

𝑞
                                            (16) 

𝑍 =
2𝜋

𝑎2𝜏2
 1 − 𝑎𝑞𝜏𝑒−𝑎𝜏𝑞 − 𝑒−𝑎𝜏𝑞                                    (17) 

Eqn. (17) is the approximate partition function for a monolayer graphene 

The area of the lattice can be calculated using the reciprocal lattice vectors. The vectors are [4] 

𝑏1
    =  

2𝜋

 3𝑎
,

2𝜋

𝑎
 and𝑏2

    =  
2𝜋

 3𝑎
,
−2𝜋

𝑎
                 (18) 

The determinant of the reciprocal lattice vectors is equal to the area of the lattice 

𝜋𝑞2 =   

𝑖 𝑗 𝑘
2𝜋

 3𝑎

2𝜋

𝑎
0

2𝜋

 3𝑎

−2𝜋

𝑎
0

                   (19) 

𝑞 = 2𝜋

𝑎
(2𝜋

 3
)

1
2                  (20) 

The specific heat is defined in terms of partition function as [3] 

𝐶 = 2𝐾𝐵𝑇
𝑑𝑙𝑛𝑍

𝑑𝑇
+ 𝐾𝐵𝑇2 𝑑𝑙𝑛𝑍

𝑑𝑇
                (21) 

But 𝜏 =
1

𝐾𝐵𝑇
, then C becomes 

𝐶 = −2𝐾𝐵
𝑑𝑙𝑛𝑍

𝑑𝑇
+ 𝐾𝐵

𝜕

𝜕𝜏
(𝜏2 𝑑𝑙𝑛𝑍

𝑑𝑇
)               (22) 

𝑙𝑛𝑍 = ln  
2𝜋

𝑎2 − 2𝑙𝑛𝜏 + ln(1 − 𝑎𝑞𝜏 − 𝑒−𝑎𝑞𝜏 )              (23) 
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𝑑𝑙𝑛𝑍

𝑑𝜏
= −

2

𝜏
+

𝑎2𝑞2𝜏

𝑒𝑎𝑞𝜏 −𝑎𝑞𝜏 −1
                 (24) 

𝑑𝑙𝑛𝑍

𝑑𝜏
= −

2

𝜏
−

𝑎2𝑞2𝜏

1+𝑎𝑞𝜏 −𝑒𝑎𝑞𝜏                  (25) 

Therefore, 

𝐶 = −2𝐾𝐵  −2 −
𝑎2𝑞2𝜏

1+𝑎𝑞𝜏 −𝑒𝑎𝑞𝜏  − 𝐾𝐵
𝜕

𝜕𝜏
(2𝜏 +

𝑎2𝑞2𝜏3

1+𝑎𝑞𝜏 −𝑒𝑎𝑞𝜏 )             (26)    

𝐶 = 𝐾𝐵(2 −
𝜔2−𝜔2𝑒𝜔 −𝜔3𝑒𝜔

(1+𝜔−𝑒𝜔 )2 )                (27) 

 where 𝜔 = 𝑎𝑞𝜏 

The Helmholtz free energy is related to the partition function as [3]        

𝐴 = −𝐾𝑇𝑙𝑛𝑍                                      (28) 

𝐴 = −𝜏𝑙𝑛𝑍                                                  (29) 

Therefore, 

𝐴 = 𝐾𝐵𝜏(ln(
2𝜋

𝑎2𝜏2
 1 + 𝜔 − 𝑒𝜔 − 𝜔)               (30) 

The entropy is related to the partition function as [3]: 

𝑆 = 𝐾𝑇
𝜕𝑙𝑛𝑍

𝜕𝑇
+ 𝐾𝑙𝑛𝑍                (31) 

𝑆 =
1

𝜏

𝜕𝑙𝑛𝑍

𝜕𝜏

𝑑𝜏

𝑑𝑇
+ 𝐾𝑙𝑛𝑍                (32) 

𝑆 = 𝐾𝐵(2 −
𝜔2

1+𝜔−𝑒𝜔 + ln  
2𝜋

𝑎2𝜏2  1 + 𝜔 − 𝑒𝜔 − 𝜔)                       (33) 

 

3.  Results and Discussion 

We have used the analytical results of the thermodynamic properties (specific heat, Helmholtz free energy and entropy) 

relation for graphene to obtain the numerical data for different values of reduced temperature 𝜇 =
1

𝜏
= 𝐾𝐵𝑇as shown in 

figure1-3 below. Before we proceed to discuss the main results, we discuss the behaviour of the specific heat in the region of 

lower temperatures. The specific heat remains unchanged at certain temperatures 𝜇 = 0 − 2.33, but increases linearly beyond 

this point. In this lower temperature region the partition function can be approximated by 

𝑍(𝜏) =
2𝐾𝐵𝜋

𝑎2𝜏2                   (34) 

Which yields 𝐶 = 2𝐾𝐵  

Therefore the reduced specific heat is  
𝐶

𝐾𝐵
= 2                            (35) 

We can say that this limit follows the Dulong-Petit law of ultra-relativistic ideal gas [5]. 

We should mention that in the numerical results, for all the thermodynamic properties of graphene in the linear 

approximation of its energy dispersion relation, all thermal quantities are plotted against the reduced temperature (𝜇 = 𝐾𝐵𝑇). 

In figure 1, there is a linear increase beyond temperature (𝜇0 = 2.33). From figure 2, we can see that the Helmholtz free 

energy decreases as expected. In the case of entropy (figure 3), we observed that it increase with temperature without any 

abrupt change 

 
Fig.1. Variation of specific heat C with reduced temperature 𝜇   

 
Fig.2. Variation of Helmholtz free energy (A) of graphene with reduced temperature 𝜇 
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Fig.3. Variation  of Entropy S of graphene with reduced temperature 𝜇 

 

5.  Conclusion 

We have presented a well detailed study of the finite temperature behaviour of some thermodynamic quantities of graphene 

through its modeled partition function. All our results are in good agreement with previous experimental data. The variation 

of heat capacity of graphene with temperature is in conformity with the experimental results and its unchanged value at lower 

temperatures has been experimentally shown by Sarita Mann et al. The increasing value of entropy fairly explains the 

increasing disorder [6]. Also the free energy with increase in temperature expectedly decreases as previous studies.   
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