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Abstract 

 
In this work we have solved the Schrödinger equation with the molecular Tietz-Hua 

potential by expanding the centrifugal term potential in Taylor series expansion, we have 

solved the resulting Gaussian hypergeometric ordinary differential equation by standard 

method. We have obtained normalization constant, normalized radial wave functions, 

energy eigenvalues and energy determining parameter for various low-lying quantum 

states considered for three diatomic molecules: H2, HF and O2. The result shows that the 

energy eigenvalues we obtained for the three diatomic molecule are in near perfect 

agreement with those in the literature to about six significant figures, the result we 

obtained also shows greater stability for the ro-vibrational states of the molecules. 

 

1.0  Introduction 

The relevance of the solutions of wave equation in the subject area of quantum mechanics cannot be over emphasized due to 

the information they hoist regarding the quantum mechanical system being investigated [1-3]. The Schrödinger wave 

equation is used to describe non-relativistic spinless particles, the Klein-Fuck-Gordon, Dirac, Duffin-Kemmer-Petiau 

equations are used to describe particles of spin zero, spin half and spin one respectively [4]. Exact solutions of the 

Schrödinger equation are possible only for some selected potentials for all quantum states n , where n  is the principal 

quantum number and   is the principal angular momentum quantum number [1,2]. And for some potentials, exact solutions 

are possible for all states with 0  (the s-wave state) [5-10]. Generally, for a majority of potential models, the Schrödinger 

equation has no exact solution for all quantum states [11-14], therefore, the only means to solving the wave equation is to 

adopt approximate solution method, which is usually numerical or analytical. Several methods have been used by researchers 

to solve the Schrödinger equation, some of these methods include, amongst others, the parametric Nikiforov-Uvarov method 

[15-17], standard method [18-19], supersymmetric quantum mechanics [20], factorization method [20-21], asymptotic 

iteration method [22], Laplace transform method [1], generalized pseudospectral method [23-24], exact and proper 

quantization rules [25]. Various potential models have been used to solve the Schrödinger equation; the bound state solutions 

of Schrödinger equation with modified Mobius square potential and its thermodynamic properties was obtained by [18]. 

Using parametric Nikiforov-Uvarov method. Also, the bound state solutions of the Schrödinger equation for the Kratzer 

potential plus screened Coulomb potential [11] was investigated for some selected diatomic molecules using the Nikiforov-

Uvarov method. Fröbenius series solution of the Schrödinger equation with various types of symmetric potential in one 

dimension were obtained by [5]. Various approximation models for the centrifugal term potential have been proposed and 

used to solve the Schrödinger equation [7, 18], however, most of these models are limited to short screening parameters/short 

potential range and are limited for use with exponential-type potentials. Recently, researchers have proposed an 

approximation model termed [17,25] the generalized Pekeris approximation to the centrifugal term, these model gives 

excellent result when used to solve the Schrödinger equation with Hulthén, Manning-Rosen, Rosen-Morse, Eckart and 

Pöschl-Teller potentials, the model has not been used to solve the Schrödinger equation with Tietz-Hua potential [17]. It is 

against this background that we intend to solve the Schrödinger equation with the Tietz-Hua potential via the generalized 

Pekeris approximation model using standard methods. 
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2.0 Theoretical Analysis 

2.0.1 Tietz-Hua potential 

The Tietz-Hua potential is widely used in various branches of physics such as molecular physics, solid state physics, particle 

physics and chemical physics, it can conveniently be used to describe molecular interactions and has been considered to be 

more realistic than the Morse potential for describing molecular vibrations. The Tietz-Hua potential is given by [26]: 
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where eD  is the depth of the potential well, r  is the internuclear separation, er  is the equilibrium internuclear separation 

and  hh cb  1 , with   as the Morse constant, and hc , the chemical constant. 

2.0.2 Solution of Schrödinger Equation with Tietz-Hua Potential 

The radial Schrödinger equation given in [4] can be expressed as: 
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Using Eq. (1) in Eq. (2), we get: 

 

 

 
0

2

1

1

12
2

2

2
2

22

2












































 


n

e

e

rrb

h

rrb

en

n
R

r

r

rec

e
DE

rd

Rd

eh

eh



 .   (3) 

Letting  

 eh rrbz  .         (4) 

Eq. (3) becomes: 
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Eq. (5) can also be written as: 
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where 

hc

1
1 .         (7) 

Eq. (6) can be solved analytically only by approximation method. The s-wave solution of this equation [14] was obtained 

using parametric Nikiforov-Uvarov method. The radial Schrödinger equation with the Tietz-Hua potential was solved by 

means of generalized pseudospectral method [23].In this communication, we will solve the Schrödinger equation with the 

Tietz-Hua potential, our procedure involves representing the centrifugal term in Eq. (6) by terms of a Taylor series expansion 

as proposed by [17,25], and using suitable ansatz, transform the resulting equation to a hypergeometric-type differential 

equation whose solution can be written in terms of a standard hypergeometric function. Following [17], we express  2
/ rre

that appears in Eq. (6)as: 
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where y  and its inverse,
1y  are appropriately chosen functions, and   is an element in the domain of 

1y . The 

coefficients,  ,2,1,0jc j  are given by: 
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with the function F  given by [17]: 

 
m

eh

m

e

rb

y

r

r
yF

























12
1

.        (10) 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 52, (July & Sept., 2019 Issue), 223 –230 



225 
 

 - Wave Analytical Solutions of…                       Eyube, Sanda and Jabil                            J. of NAMP 

 
In this work, we choose for y , the hc -deformed hyperbolic function [3] given by: 
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and 
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hc
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Using Eq. (13), Eq. (10) and Eq. (9), and taking 2m , we find: 
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where     ,11,  if 0hc  and  1,1  if 0hc . Substituting Eq. (12) in Eq. (8), one gets: 
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Putting Eq. (17) in Eq. (6), we find: 
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where 
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Letting 
z

h ecu  .         (22) 

Eq. (18) gives; 
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where prime denote derivative. Now, let us analyze the asymptotic behavior of Eq. (18). When 0z , Eq. (22) gives 

hcu   and when z , 0u , thus, we assume solution for Eq. (23) of the form: 

     uFuuNuR nnn 
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.       (24) 

where nN  are the normalization constants to be determined from normalization condition,   and   are constants to be 

determined when Eq. (24) is satisfied by Eq. (23). Eq. (24) gives: 
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Using Eq. (25) and Eq. (26) in Eq. (23) and simplifying, we obtained: 
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Eq. (27) is of the hypergeometric-type differential equation if the last-two terms of the coefficient of  uFn   separately 

varnish, this is true iff: 

   1 .         (28) 

and also. 
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.         (29) 

Eq. (28) gives: 
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Putting Eq. (28) and Eq. (29) in Eq. (27), we obtain the Gaussian hypergeometric-type differential equation: 

              uFuFuuFuu nnn    112322121 .  (31) 

whose solution is the hypergeometric function given by: 

   ucbaFuFn ;;,12
.        (32) 

where 

  221a .       (33) 

  221b .       (34) 

12  c .         (35) 

Considering the finiteness of the solution, the quantum condition requires either a  or b  to be an integer, therefore, we can 

have: 

n  221 .       (36) 

where ,2,1,0n ,  

Using Eq. (32), the polynomial solution of the Gaussian hypergeometric-type differential equation given by Eq. (31) is:

   unnFuFn ;12;222,12  
.     (37) 

 

2.0.2.1 Normalization Constant 

The normalization requirement for the radial wave function is given as: 
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Using Eq. (4) and Eq. (22), Eq. (38) can be expressed in terms of variable u  as: 
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Substitute Eq. (24) in Eq. (39) to obtain: 
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From Eq. (41) we obtain the normalization constants as: 
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when Eq. (37) is used in Eq. (41). 

 

2.0.2.2Energy Eigenvalues 

From Eq. (28), Eq. (29)and Eq. (36), we find: 
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The energy eigenvalue nE  can be found by substituting Eq. (19), Eq. (20), Eq. (21) and Eq. (30) in Eq. (43), this gives: 
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2.1 Input spectroscopic parameters 

Table 1 shows the spectroscopic parameters, taken from [23], used in our numerical computation 

 

Table 1 shows the spectroscopic parameters [23] of the molecules used in our computations 

Molecule 
hc   g2310/     1

mnbh   mnre    1
mn    1

mcDe  

H2 0.170066 0.084 16.1890 0.0741 19.506 38318 

HF 0.127772 0.160 19.4207 0.0917 22.266 49382 

O2 0.027262 1.377 25.9103 0.1207 26.636 42041 

 

3.0 Discussion 

We consider the special case of s-wave ( 0 ), Eq. (44) reduces to: 
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It is clear that Eq. (45) is independent of  ,2,1,0jc j
 and therefore, independent of energy determining parameter,  . 

Shown in Table 2 are computed energy eigenvalues (relative to the well depth,  en DE  
)  and corresponding 

normalization constants for some low lying quantum states n , we have also computed the energy determining parameter, 

 for quantum states with 0 , the analysis was carried out for three diatomic molecules: H2, HF and O2. For the 

diatomic molecules considered, our results for the energy eigenvalues are in near perfect agreement (to about 6 significant 

figures) with those of [23] and shows better stabilization for the molecules. Figures 1, 2 and 3 shows plots of normalized 

wave functions for states 2s, 3s and 5s for H2, HF and O2 respectively. 

 

4.0 Conclusion 

We have obtained the  - wave analytical solutions of Schrödinger equation with Tietz-Hua potential using standard 

methods, we have also obtained normalization constant, energy eigenvalues, energy determining parameters and normalized 

radial wave functions, special case of s-wave was also derived from the result. 
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Table 2. Energy Determining Parameter ( ), Normalization Constant ( nN ) and Energy Eigenvalues of H 2, HF and O2  

n  
H2 HF O2 

    2

1
mnNn   

  VeDE en    
    2

1
mnNn   

 

  VeDE en    
    2

1
mnNn   

 

  VeDE en    

present [23] present [23] present [23] 

00 … 6.167E+24 4.4815764961 4.4815797825 … 8.656E+35 5.8687261066 5.8687195228 … 6.657E+110 5.1163227377 5.1163223113 

30 … 8.300E+23 3.0595150931 3.0595425362 … 9.685E+34 4.4737838016 4.4737571516 … 4.092E+108 4.5590651926 4.5590745476 

50 … 5.176E+22 2.2815541870 2.2815913849 … 8.656E+35 3.6602104422 3.6601740988 … 4.725E+106 4.2058534805 4.2058686976 

01 1.292209 6.351E+24 4.4669143761 4.4669801579 -1.186954 6.251E+33 5.8635834521 5.8636625262 -5.26 6.297E+110 5.1159779903 5.1159784440 

31 1.296307 8.390E+23 3.0474364161 3.0474413866 -1.142993 7.534E+35 4.4693389177 4.4692935886 -6.18 3.879E+108 4.5587425353 4.5587436240 

51 1.298356 5.164E+22 2.2710826188 2.2710928924 -1.130063 7.743E+34 3.6585698346 3.6560952745 -6.60 4.484E+106 4.2055461301 4.2055464879 

02 1.293029 6.729E+24 4.4379462892 4.4379154622 -1.186954 4.760E+33 5.8534805541 5.8535547327 -5.26 5.635E+110 5.1152907824 5.1152907228 

32 1.297537 8.558E+23 3.0233297498 3.0233638406 -1.142993 4.491E+34 4.4608354737 4.4603723647 -6.22 3.488E+108 4.5580768039 4.5580817907 

52 1.299586 5.132E+22 2.2501750838 2.2502130058 -1.130063 2.754E+33 3.6557991066 3.6479433575 -6.64 4.039E+106 4.2049069057 4.2049020823 

 

 

  

           

Fig. 1 Normalized Wave Functions for H2           2 Normalized Wave Functions for HF          Fig. 3 Normalized Wave Functions for O2 
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