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Abstract 

 
This paper considered a two-step implicit multi-hybrid block methods of uniform order 

3 4k    for solving special second order delay differential equations. The methods 

were generated by interpolation and collocation techniques using a combination of 

power series and exponential function. The approximate basis function is interpolated 

at the first two grid points and collocated at both grid and off-grid points. The 

developed schemes and its derivatives were combined to form block methods to 

simultaneously solve special second order delay differential equations. The basic 

properties of the methods such as order, error constants, consistency and convergence 

were also examined. The developed methods were applied to solve two special second 

order delay differential equations and the numerical results perform better in terms of 

accuracy when compared with the methods in the literature. 
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1. Introduction 

The importance of mathematics in solving real life problems cannot be over emphasized. Mathematics has been in use for 

centuries to perform some complex and computational intensive tasks. Also in science and Engineering, usually 

mathematical models are developed to help in the understanding of physical phenomena. These models often yield equations 

that contain some derivatives of an unknown function of one or several variables. Such equations are called differential 

equations. Differential equations also arises in some other field such as physical sciences, Economics, Medicine, Psychology 

operation Research study of thin film flow of a liquid in fluid dynamics and anthropology. There are different types of 

differential equations. They are ordinary differential equations, partial differential equations, stochastic differential equations 

and delay differential equations. The methods can be adopted for the solution of initial value problems (IVPs) of ordinary 

differential equations (ODE) of the form 
( ) ( 1) ( 1)

0 1 1( , , '... ), ( ) , '( ) ,... ( )n n n

ny f x y y y y a y a y a   

        (1) 

on the interval  ,a b  

The conventional way of solving higher order differential equation of type (1) is by reducing it to an equivalent system of 

lower order initial value problem of ODES. The success of this approach was faulted as a result of some short comings. 

In recent years, there has been a growing interest in the numerical treatment of delay differential equations. It occupies a 

place of central importance due to their versatility in the mathematical modelling of processes in various application fields. It 

is also of central importance in biological sciences (e.g population dynamics and epidemiology in Adegboyega [1]. For 

example when the birth rate of predators is affected by prior levels of predators or prey rather than by only the current levels 

in a predator prey model. The manner in which the properties of system of delay differential equation differ from those of 

systems of ODE has remain an active area of research (Martin et al. [2]). Hoo et al. [3] uses spline collocation and Adomain 

decomposition method for solving delay differential equations. Also Ogunfiditimi [4] employed Adomain decomposition 

method (ADM) to solve both linear and Non Linear DDE. In recent times, Anakira et al. [5] employed the Optimal 

Homotopy Asymptotic Method (OHAM) in solving linear and nonlinear. 
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DDE.  Sumudu and Wu”s [6] used a new modified variational iteration method for the solution of Linear and Non linear 

DDE. DDEs are differing from ODEs in that the derivatives at any time depend on the solution at prior times. In this paper, 

special second order delay differential equation of the form. 

0 0 0''( ) ( , ( )), ( ) , '( ) , , 0y t f t y t y t y t t t        
    (2) 

is considered where is the initial function and  is the delay term. Most of the methods for solving special second order 

odes can be adopted for solving special second order delay differential equation. In addition to the above, equation (2) with 

multiple delays can be written in the following form: 

1 2''( ) ( , ( ), ( ), ( )... ( )), 0ny t f t y t y t y t y t t           (3) 

with initial conditions 

0 0( ) ( ), '( ) '( ),y t t y t t t t     

There are two different ways to calculate the delay term in the developed methods.  

For 
0 0,x    the delay term is calculated using the initial function given ( )x . For

0 0,x   the delay terms are rely on 

the location of  0 .x   from this location, we are able to recall the values which we had been stored earlier. 
 

2. Formulation of the Methods 

This work considers an approximate solution that combines power series and exponential function of the form; 
1

0 0

( )
!

j jr s r s
j

j r s

j j

x
y x a x a

j

  



 

                                      (4)   

Interpolation and collocation procedures are used by choosing interpolation point s at a grid points and collocation points r at 

all points given rise to ζ = s+ r system of equations whose coefficients are determined by using appropriate procedures such 

as Gaussian elimination method. The first derivative and second derivative of (4) is given by (5) and (6) respectively. 
11

1

1 1

'( )
( 1)!

j jr s r s
j

j r s

j j

x
y x ja x a

j

   




 

 


 
                            (5) 

21
2

2 2

''( ) ( 1)
( 2)!

j jr s r s
j

j r s

j j

x
y x j j a x a

j

   




 

  


                              (6) 

where , j

ja    for   0(1)7j  and ( )y x  is continuous differentiable. Let the solution of (4) be sought on the partition 

0 1 2 1: ,.......... ,...........N n n Na x x x x x x b        of the integration interval [a,b] with a constant step-size h, given by

1 , 0,1,......,n nh x x n N    

Then, substituting (6) into (4) gives; 
21

2

2 2

( , , ') ( 1)
( 2)!

j jr s r s
j

j r s

j j

x
f x y y j j a x a

j

   




 

  


                       (7) 

Collocating (6) at 1, 0( )
4n jx j k  and interpolating (5) at , 0(1) 1n jx j k   to yield a system of equations which is solved for 

unknown 1' , 0( )
4ja s j k  using Gaussian elimination method, and solving for the parameters 'ja s and substituting their 

values into (4) leads to a class of continuous implicit hybrid linear multistep method of the form: 
1

0 0 0

( ) ( ) ( ) ( )
k k

j n j j n j vi n vi

j j vi

y x x y x f x f  


  

  

 
   

 
                                   (8) 

where ( ), ( , , ' )n j n j n j n j n j n jy y x f f x y y       and ( , , ' )n vi n vi n vi n vif f x y y    and  is the delay term 

For simplicity,  

( , , ( )), ( , , ( )), ( , , ( )), ( , , ( )),1 1 1 1 2 2 2 2 1 1 1 1
2 2 2 2

( , , ( )), ( , , ( )), ( , , ( )),5 5 5 51 1 1 1 3 3 3 3
4 4 4 44 4 4 4 4 4 4 4

f t y y t f t y y t f t y y t f t y y tn n n n n n n n n n n n n n n n

f t y y t f t y y t f t y y t
n n n nn n n n n n n n

f
n

   

  

                  

     
          


( , , ( )), ( , , ( )),7 7 7 73 3 3 3

4 4 4 42 2 2 2

t y y t f t y y t
n n n nn n n

    
     

 

The ( ), ( ), ( ),j j vix x x   in (8) is expressed as continuous function of t  such that: 
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1 ,n kx x
t

h

 
 also 1dt

dx h
  

Taking the derivative of (8) yields; 
1

0 0 0

1 1
'( ) ( ) ( ) ' ( ) '

k k

j n j j n j vi n vi

j j vi

y x x y x f x f
h h

  


  

  

 
   

 
         (9) 

Now, applying the block method as established in Shampine and Thompson [7], the block formula of the following form: 

0 0 1 1

, 0,1,...,
q q q

q q

ij n j ij n ij n ij n ij

j vi j j

h a y y h e y d f b f i q


 

 

   

 
    

 
         (10) 

The  represent the power of the derivative of the continuous method, p is the order of the problem to be solved, now, using 

vector notation, equation (9) becomes   

 ( ) ( )p

m m m mh AY h Ey h Df y BF Y            (11) 

The Matrices ( ), ( ), ( ), ( ),ij ij ij ijA a B b E e D d    are square matrices are constant coefficient matrix and

1 1 1 1( , , ' ) , ( , , , ' ) , ( ) ( , ) , ( ) ( , ) ,T T T T

m n vi n n vi m n n vi n n vi m n vi n m n nY y y y y y y y y F Y f f F y f f             

1(1) .i q  The normalized form of (10) is then given as: 

 ( ) ( )m m m mh AY h Ey h Df y BF Y           (12) 

This equation is solved for 1,n vi ny y  . After some simplification, we obtain discrete schemes which is used to implement 

the hybrid schemes (8) without any need for predictors or Taylor series as starting values. 

 

2.1 Derivation of Two -step method with six-off step points 

Collocating (6) at 1, 0( )
4n jx j k  and interpolating (5) at , 0(1) 1n jx j k   to yield a system of equations which is solved for 

unknown 1' , 0( )
4ja s j k  using Gaussian elimination method, to obtain values for the parameters: 

0 1 2 3 4 5 6 7 10, , , , , , , ,..,a a a a a a a a a  and substituting the values of the parameters into equation (4) and simplifying the 

result, to obtain a continuous scheme of the general form: 
1

0 0

( ) ( ) ( ) ( )
k

j n j j n j

j j

y t t y t f t  

 

         (13) 

where 1 , 2n kx x
t k

h

 
   and Setting 1 20, , 2n n nx x h x h     

The coefficients of ( )j t  and ( )j t  are: 

0( ) 1t t    ,     1( )t t   
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  (14) 

 

 

 

 

2.2 Derivation of Two-step Block method with six off-step points 

The general block formula proposed by (6) in the normalized form is given by 

 (0) ( ) ( )m n n mA Y ey h df y h dF y                                    (15) 

Evaluating (14) at , 1,2;n jx x j  the first derivative at  1, 0 2,
4n jx x j   using  

Shampine and Thompson [7] gives the coefficient of (15) as 

8183 653203 50689 196277 95167 92473 7703 5741

230400 14515200 907200 2903040 7257600 2903040 2419200 16588800

3673 81 7729 22703 373 14773 449 521

28350 800 56700 181440 4725 453600 56700 604800

1467 4707 225

6400 44800 1024

b

   

   

 



28143 11079 9141 2223 387

143360 89600 179200 179200 286720

1552 58 5008 47 2384 986 16 209

4725 567 14175 180 14175 14175 945 113400

248375 19375 143375 641875 225 12875 3125 3625

580608 193536 290304 2322432 1024 145152 145152 15

 

   

   

48288

369 549 111 639 9 81 9 9

700 5600 175 2240 28 800 350 3200

216433 98441 1601467 160867 55223 127253 8183 57281

345600 1036800 2073600 552960 129600 2073600 230400 16588800

1472 464 2624 908 2924 464

2025 4725 2835 2835 4725 141

   

   

  

,

324901
0 0 0 0 0 0 0

23224320

58193
0 0 0 0 0 0 0

1814400

71661
0 0 0 0 0 0 0

1433600

7703
0 0 0 0 0 0 0

113400

56975
0 0 0 0 0 0 0

663552

93
0 0 0 0 0 0 0

896

2019731
0 0 0 0 0 0 0

16588800

1472 1978
0 0 0 0 0 0 0 0

75 14175 14175

d 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
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1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0(0)

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

A 

 
 
 
 
 
 
 
 
 
  

,   

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

e 

 
 
 
 
 
 
 
 
 
  

 

3. Properties of the method 

3.1 Order and Error Constant of the Block Method 

Let the linear Operator defined on the method be [ ( ); ],y x h  where 

( ) ( ) (2 )'
[ ( ); ] [ ( ) ( )], (16)

0

k jho i i
y x h A Y y h d f y b F ym n n mi i

i i


    


 

Expanding the form 
mY and ( )mF y in Taylor Series and comparing coefficients of h,  

we obtained 
1 1 2 2

[ ( ); ] ( ) '( ) ... ( ) ( ) ( ) ... (17)
0 1 1 2

p p p p p p
y x h C y x C hy x C h y x C h y x C h y xp p p

   
      

   
Theorem 1: The linear operator and the associated block method are said to be of order p if 

0 1 1 2... 0, 0p p pC C C C C      2pC 
 is called the error constant. It implies that the local truncation error is given by  

2 2 3

2 ( ) ( )p p p

n k pT C h y x O h  

                                     

(18) 

Expanding the block method (15) in Taylor Series expansion and comparing the coefficients of h, the order of the block is 

10p   with error constant 

2

1129981 22063 3649 37 307625 299 1570597 37
, , , , , , ,

100459163443200 7847962214400 826781204480 6131220480 40181566537728 32296140800 1435055947776000 3065610240

T

pC 

 
  
 

 

3.2   Consistency 

Consistency of the Main Method 

A Linear Multistep method is consistent if the following conditions are satisfied.  Lambert [8] in Areo [9] 

1) The order is 𝑝 ≥1 

2)  𝛼𝑗
𝑘
𝑗=0 = 0 

3) 𝜌 𝑟 = 𝜌′ 𝑟 = 𝜌′′  𝑟 = 𝜌 𝑛−1  𝑟 = 0 

4) 𝜌𝑛 𝑟 = 𝑛! 𝜎(𝑟) and for the principal root 1r  and 2n   

Hence, The method satisfies the necessary and sufficient conditions for consistency of a numerical method. 

 

3.3   Zero stability of the method 

(0) ( )iA A   = 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

















 

    
    
    
    
    
    
    
    
    

 

8 7 0   , 0,0,0,0,0,0,0,1 
.
 

Since no root has modulus greater than one and 1   is simple, hence the block method is zero stable in the 0h  

3.4    Convergence  

Zero stability and consistency are sufficient conditions for a linear multistep method to be convergent. Areo [9]. Since the 

new method is zero-stable and consistent, it can be concluded that the method is convergent 
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3.5     Stability domain of the block method 

Following the stability domain as discussed in Ibijola et al.[10] 

The stability domain of the Two-step six-off step block method is shown below 

 
Figure 3: Showing Stability domain of Two-step six off-step points 
 

4. Implementation of Numerical Examples 

The methods was adopted on some delay differential equation of special second order to assess the accuracy and efficiency of 

the methods and the results was compared with that of other researchers that proposed existing methods Hoo et al. [3], San et 

al. [11]. 

Problem1:  Consider the linear delay equation  

   ''( ) , 0, ,

( ) sin( ), '( ) , 0x

y x y x x

y x x y x e x

  



 

       
Exact solution:  ( ) sin( )y x x  

Problem2:  Consider the linear delay equation  

     
1 1

''( ) , 0, ,
2 2

( ) 1 sin( ), '( ) , 0x

y x y x y x x

y x x y x e x

  



   

        
Exact solution:  ( ) 1 sin( )y x x 

 
Problem 3:  Application to Matheiu’s Equation, in this section we apply our developed methods to solve a well-known 

equation in engineering, the Matheiu’s equation, which defined as follows: 
3''( ) ( cos ) ( ) ( ) ( )y t a t y t yc t by t T           (4.1) 

which is a nonlinear delay differential equation. Where δ, a,b,c and T are parameters. δ is the frequency squared of the simple 

harmonic oscillator, and a is the amplitude of the parametric resonance, and b is the amplitude of delay which c is the 

amplitude of the cubic nonlinearity and T is the time delay. 

Equation (4.1) is a model for high speed milling, a kind of parametrically interrupted cutting as opposed to the self-

interrupted cutting arising in an unstable turning process.  

According to Morisson and Rand [12], various special cases of (4.1) have been studied, depending on which parameters is 

zero. 

when δ=a=b=1 and c=0 we obtained the following Linear Mathieu equation: 

''( ) (1 cos ) ( ) ( ); [0,10], ( ) sin( ), '( ) cos( ), 0y t t y t y t T tE y t t y t t t         (4.2) 

where T=τ=h/10 is the delay term, the exact solution does not exist. 

when δ=a=b=c=1 we obtained the following Nonlinear Mathieu equation: 
3''( ) (1 cos ) ( ) ( ) ( ); ( ) sin( ), '( ) cos( ), 0y t t y t t y t T y t t y t t ty          (4.3) 

where T=τ=h/10 is the delay term, the exact solution does not exist. 

Source: Mechee et al [13] 

Both the linear and non linear Mathieu equations are solved using the developed methods and the results are presented in 

table 5 and 6. 

 

Notations and their meaning 

MTD= New Method Employed, Two-step with six off step points, Error=(y-Exact) – (y-Computed) 

Problem3:  Consider the linear delay equation  
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Table 1: Showing results for Problem 1 using MTD 

S/N X y-exact y-computed Error in MTD Time 

1 0.1 0.900166583353171790     0.900166583353171790     0.00000000e+00 0.0747   

2 0.2 0.801330669204938780     0.801330669204938780     0.00000000e+00 0.0901   

3 0.3 0.704479793338660400     0.704479793338660400 0.00000000e+00 0.0917   

4 0.4 0.610581657691349420     0.610581657691349530     1.11022302e-16 0.0928   

5 0.5 0.520574461395796990     0.520574461395796990     0.00000000e+00 0.0939   

6 0.6 0.435357526604964520     0.435357526604964630     1.11022302e-16 0.0949   

7 0.7 0.414902727059537790     0.414902727059537850     5.55111512e-17 0.0952   

8 0.8 0.355782312762308870     0.355782312762308930     5.55111512e-17 0.0960   

9 0.9 0.282643909100477210     0.282643909100477210     0.00000000e+00 0.0970   

10 1.0 0.158529015192103500     0.158529015192103440     5.55111512e-17 0.0984   
 

Table 2: Showing results for Problem 2 using MTD 

S/N X y-exact y-computed Error in MTD Time 

1 0.1 0.099833416646828155     0.099833416646828155     0.00000000e+00 0.0223   

2 0.2 0.198669330795061220     0.198669330795061220     0.00000000e+00 0.0286   

3 0.3 0.295520206661339600 0.295520206661339600     0.00000000e+00 0.0294   

4 0.4 0.389418342308650520     0.389418342308650470     5.55111512e-17 0.0298   

5 0.5 0.479425538604203010     0.479425538604203010     0.00000000e+00 0.0302   

6 0.6 0.564642473395035480     0.564642473395035260     2.22044605e-16 0.0306   

7 0.7 0.644217687237691130     0.644217687237691020     1.11022302e-16 0.0310   

8 0.8 0.717356090899522790     0.717356090899522680     1.11022302e-16 0.0314   

9 0.9 0.783326909627483410     0.783326909627483300     1.11022302e-16 0.0318   

10 1.0 0.841470984807896500     0.841470984807896390     1.11022302e-16 0.0322   
 

Table 3: Showing the comparison of the numerical errors for problem 1 using MTD 

h=π/(10*2i) i Cubic Spline (San [11]) Direct Method (Hooetal. [3]) Error in MTD 

0 1.84E-02 1.84E-06 1.69864123e-14 

1 4.62E-03 4.62E-07 0.00000000e+0 

2 1.16E-03 1.16E-08  0.00000000e+00 

3 2.89E-04 2.89E-09 1.11022302e-16 

4 7.23E-05 7.23E-10 0.00000000e+00 

5 1.81E-05 1.81E-11 0.00000000e+00 

6 4.52E-06 4.52E-12 0.00000000e+00 

 

Table 4: Showing the comparison of the numerical errors for problem 2 using MTD 

H y-exact y-computed Error in MTD Error in Hooet al [3] 

10


 
0.309016994374947400     0.309016994374964380     1.69864123e-14 9.9016e-05 

20


 
0.156434465040230870 0.156434465040230870     0.00000000e+00 7.7395e+06 

50
  

0.062790519529313374   0.062790519529313374     0.00000000e+00 2.4408e-07 

100


 
0.031410759078128292     0.031410759078128292     0.00000000e+00 1.6530e-08 

200
  

 .015707317311820675     0.015707317311820675     0.00000000e+00 1.0953e-09 

250
  

0.012566039883352607     0.012566039883352607     0.00000000e+00 4.6437e-10 

500


 
0.006283143965558951     0.006283143965558951     0.00000000e+00 4.8654e-11 

 

Table 5: Showing the computed non linear solution for problem 3 

X Computed Non linear solution Time of Execusion 

0.1000000 0.100058792433976180 0.0017 

0.2000000 0.200348223977677570 0.0021 

0.3000000 0.301236737230030920 0.0028 

0.4000000 0.403393465598161690 0.0041 

0.5000000      0.507819663062459180 0.0056 

0.6000000      0.615861136779212610 0.0060 

0.7000000      0.729199011592285400 0.0065 

0.8000000 0.849817854390083620 0.0068 

0.9000000 0.979951996771661450 0.0715 

1.0000000 1.122012658450579600 0.0719 
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Table 6: Showing the computed linear solution for problem 3 

X Computed Linear solution Time of Execution 

0.1000000   0.094717048839893861  0.0017   

0.2000000   0.177546021015915540  0.0021   

0.3000000   0.246547367488382100  0.0026 

0.4000000   0.299877759653102370  0.0038 

0.5000000   0.335834594397979140  0.0053   

0.6000000   0.352895741742854600  0.0057 

0.7000000   0.349753231513026450  0.0066 

0.8000000   0.325339805798630420  0.0070   

0.9000000   0.278847534345766200  0.0074 

1.0000000    0.209737989871232070  0.0078 
  

4.1 Discussion of Results 

The exact solution, computed solution and error of sample problem 1-2 are shown in the Table 1–2. The table 3-4 shows the 

error comparison of the developed methods with the existing method in the literature. The developed methods are compared 

with the results of works of other researchers who proposed the existing methods, It can be seen that the developed methods 

performed better in terms of accuracy  
 

5. Conclusion 

This paper considers the derivation, analysis and implementation of direct solution of special second order delay differential 

equation by a two-step Implicit Multi-Hybrid block methods of uniform order. The results shown that the new method is 

more accurate and suitable for solving special second order delay differential equations. The numerical results generated 

when the new developed methods was applied on some second order delay differential equations have shown the high 

accuracy of the method. In addition, the method were applied to solve an engineering problem, namely Mathieus Equation, 

the results of the linear and non linear mathieus equations are displayed in table 5 and 6.  
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