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Abstract 

 

In this paper, we present the fourth-order Runge Kutta Method (RK4) in solving first 

order Ordinary Differential Equations (ODE) with initial conditions. The proposed 

methods are quite efficient and practically well suited for solving these problems. Many 

examples are considered to validate the accuracy and easy application of the proposed 

methods. We compared the approximate solutions with the analytical solution. We 

found out that there is good agreement between the exact and approximate solutions. 

We also compared the performance and the computational effort of the methods. 

Besides, to achieve more accuracy in the solutions, the step size needs to be very, very 

small. Finally, the error terms have been analyzed for the proposed methods for 

different step sizes and compared also by appropriate examples to demonstrate 

reliability and efficiency. All results were obtained by MATLAB programing language.  
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1. Introduction 

It is known generally that Differential Equations are among the most important Mathematical tools used in producing 

models in the engineering, mathematics, physics, aeronautics, elasticity, astronomy, dynamics, biology, chemistry, medicine, 

environmental sciences, economics, social sciences, banking and many other areas [1]. Many researchers have studied the 

nature of Differential Equations and many complicated systems that can be described quite precisely with mathematical 

expressions. Although there are many analytic methods for finding the solution of differential equations, there exist quite 

many differential equations that cannot be solved analytically [2]. This means that the solution cannot be expressed as the 

sum of a finite number of elementary functions (polynomials, exponentials, trigonometric, and hyperbolic functions). For 

simple differential equations, it is possible to find closed-form solutions [3]. But many differential equations arising in 

applications are so complicated that it is sometimes impractical to have solution formulas; even when a solution formula is 

available, it may involve integrals that can be calculated only by using a numerical quadrature formula. In either case, 

numerical methods provide a powerful alternative tool for solving the differential equations under the prescribed initial 

condition or conditions [3].  

There are many types of practical numerical methods for solving initial value problems for ordinary differential 

equations. From our findings, the ancestor of all numerical methods in use today was developed by Leonhard Euler between 

1768 and 1770 [4], improved Euler’s method and Runge Kutta methods described by Carl Runge and Martin Kutta in 1895 

and 1905 respectively [5]. We have excellent and exhaustive books which can be consulted, such as [1-3, 6-12].  

From the literature review, we found that many authors have worked on numerical solutions of initial value problems 

using the fourth-order Runge Kutta method and many researchers have tried to solve initial value problems to get a higher 

accurate solution by applying numerous methods, such as the Euler method, the Runge Kutta method, the Adomian 

Decomposition Method, Hybrid method, Extrapolation method, and many other methods. See [13-21]. In this paper, we 

applied the fourth-order Runge Kutta method for solving initial value problems in ordinary differential equations. 

A rigorous and elaborate numerical technique is the Runge Kutta method. This technique is the most widely used one 

since it gives starting values and is particularly suitable when the compilation of higher derivatives is complicated [15]. We 

used two examples of different kinds of ordinary differential equations to illustrate the proposed formulae. The results 

obtained from each of the numerical examples show that the convergence and error analysis which we presented clearly  
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illustrate the efficiency of the method. However, the Runge Kutta method also has its advantages and disadvantages to use. It 

has the advantage of being the most widely used numerical weapon, since it gives reliable values, starting values and 

particularly suitable when the computation of higher-order derivatives are complicated. It also possesses the advantage of 

requiring only the function values at some selected points on the sub-intervals. It is easy to change step-length for special 

procedures necessary for starting, which minimize the computing time. However, the method is very laborious. It is a lengthy 

procedure and needs to check back the values computed earlier. The inherent error in the Runge Kutta method is hard to be 

estimated and the method has its limitation in solving certain types of differential equations only and the step-length is the 

key factor of the computation. 

Lastly, this paper is structured as follows: Section 2: definitions and the general concept of differential equations,; 

Section 3: problem formulations; Section 4: error analysis, Section 5: numerical examples; Section 6: discussion of results; 

and the last section, the conclusion of the paper. 
 

2. Definitions and General Concepts of Differential Equations 

A differential equation is a mathematical equation for an unknown function of one or more variables that relates the values of 

the function itself and its derivatives of various orders. 

2.1. Definition: The general form of a differential equation is as follows: 

𝑎0 𝑡 
𝑑𝑛𝑦

𝑑𝑡𝑛 + 𝑎1 𝑡 
𝑑𝑛−1𝑦

𝑑𝑡𝑛−1 + ⋯⋯⋯ + 𝑎𝑛−1 𝑡 
𝑑𝑦

𝑑𝑡
+ 𝑎𝑛 𝑡 𝑦 = 𝑓(𝑡)     (2.1) 

Here 𝑎𝑖 𝑡 ;    𝑛 = 1, 2, 3, ⋯⋯⋯ and 𝑓(𝑡) is the function of 𝑡 and 𝑦 = 𝑦(𝑡) is an unknown function in terms of t. 

2.2. Definition: An equation involving a function 𝑦(𝑡) of one independent variable (t) and its derivatives 

𝑦 𝑡 ⋯⋯⋯𝑦𝑛(𝑡) is called an ordinary differential equation (ODE) of order 𝑛. 

2.3. Definition: An implicit ODE of order n depending on 𝑦(𝑛) has the form        

 𝐹(𝑡, 𝑦, 𝑦′ 𝑡 , 𝑦"(𝑡), ⋯𝑦(𝑛)(𝑡)) = 0. In a special form, 𝐹(𝑡, 𝑦, 𝑦 ′ , 𝑦", ⋯𝑦(𝑛−1)) = 𝑦(𝑛) is called an ODE in 

explicit form. 

2.4. Definition: A partial differential equation for the function 𝑢 = 𝑢(𝑡1, 𝑡2, 𝑡3, ⋯⋯⋯ , 𝑡𝑛) is of the form 

𝐹  𝑡1, 𝑡2, 𝑡3, ⋯ , 𝑡𝑛 ,
𝜕𝑢

𝜕𝑡1
,
𝜕𝑢

𝜕𝑡2
. ⋯ ,

𝜕𝑢

𝜕𝑡𝑛
,

𝜕2𝑢

𝜕𝑡1𝜕𝑡2
,

𝜕3𝑢

𝜕𝑡2𝜕𝑡3
, ⋯ = 0, where F is a linear function of u and its derivatives.  

2.5. Definition: An initial value problem (IVP) is a differential equation such as 𝑦′ 𝑡 = 𝑓 𝑡, 𝑦 𝑡  , satisfies the 

following initial conditions (IC) 𝑦 𝑡0 = 𝑦0  ;    𝑦′ 𝑡0 = 𝑦′0, where 𝑡0 ∈ 𝐼, for some open interval 𝐼 ∈ ℝ. 
2.6. Definition: A boundary value problem is a differential equation together with a set of additional restraints, called 

boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also 

satisfies given boundary conditions. The basic two point boundary value problem is given by𝑦′ 𝑡 = 𝑓(𝑡, 𝑦 𝑡 ) with 

𝑔 𝑦 𝑎 , 𝑦 𝑏  = 0. 
2.7. Definition: A set of first order differential equation: 

𝑦 = 𝑓 𝑡, 𝑦  

𝑦1 = 𝑓1 𝑡, 𝑦1 ⋯⋯⋯𝑦𝑛  

⋯⋯⋯⋯⋯⋯⋯⋯⋯ 

𝑦𝑛 = 𝑓𝑛 𝑡, 𝑦1 ⋯⋯⋯𝑦𝑛  
is called a first order system of ordinary differential equations. 

2.8. Definition: A set of first order differential equation is called autonomous if all functions 𝑓𝑘  on the right-hand side do 

not depend on 𝑡. 
             𝑦 = 𝑓 𝑦 or 

𝑦1 = 𝑓1 𝑦1 ⋯⋯⋯𝑦𝑛  

⋯⋯⋯⋯⋯⋯⋯⋯⋯ 

𝑦𝑛 = 𝑓𝑛 𝑦1 ⋯⋯⋯𝑦𝑛  

2.9. Definition: A solution of a system of ordinary differential equation is the form 𝑦 𝑡 = 𝑦0 with 𝑦0 ∈ ℝ2 is called an 

equilibrium solution. 𝑦 𝑡 = 𝑦(𝑡 + 𝑇)with𝑇 > 0 is called a period. The parameter T denote period. 

2.10. Definition: An equilibrium solution 𝑦 𝑡 = 𝑦0of an autonomous system is called stable if any solution in the 

neighborhood of 𝑦0 will always approach this equilibrium solution as 𝑡 ⟶ ∞. In this case 𝑦(𝑡) ⟶ 𝑦0  for 𝑡 → ∞. 
Otherwise the equilibrium solution is called unstable. 
 

3. Problem Formulation 

Runge Kutta method is a technique for approximating the solution of ODEs. This technique was developed by two German 

Mathematicians, Karl Runge by 1894 and extended by Wilhelm Kutta a few years later. The technique is popular because it  
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is efficient, quite accurate, stable, and used in most computer programmes for differential equations. The Runge Kutta 

methods are distinguished by their order in the sense that they agree with Taylor’s series solution up to terms of 𝑟 , where 𝑟 

is the order of the method. It does not demand prior computational of higher derivatives of 𝑦(𝑥) as in Taylor’s series 

method. The under-listed are the order of the Runge Kutta Method: 

(i) Runge Kutta Method of order one is called Euler’s Method, 

(ii) Runge Kutta Method of order two is the same as modified Euler’s or Heun’s Method, 

(iii) The fourth-order Runge Kutta Method is called Classical Runge Kutta Method. 

In this paper, we shall only focus on the fourth-order Runge Kutta Method.  

 

3.1. The Derivative of the Fourth Order Runge Kutta Method 

We shall derive the formula of fourth-order Runge Kutta method to obtain an approximate numerical solution of the first 

order differential equation 𝑦’ = 𝑓(𝑥, 𝑦) with the initial condition  𝑦 𝑥0 = 𝑦0  and it is assumed that is not a singular point. 

Let us take the first-order differential equation  

𝑦′ =
𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦 ;    𝑦 𝑥0 = 𝑦0        (3.1) 

Let  = 𝑥1 − 𝑥0, from Taylor’s series expansion, we have 

𝑦 𝑥 +  = 𝑦 𝑥 + 𝑦′ 𝑥 +
2

2!
𝑦′′  𝑥 +

3

3!
𝑦′′′  𝑥 + ⋯ 

or𝑦 𝑥 +  − 𝑦 𝑥 = 𝑦′ 𝑥 +
2

2!
𝑦′′  𝑥 +

3

3!
𝑦′′ ′ 𝑥 + ⋯    (3.2) 

Differentiating (3.1) partially with respect to variables  𝑥 & 𝑦 , we get 

𝑦′ = 𝑓 𝑥, 𝑦 = 𝑓 

𝑦′′ = 𝑓 ′ 𝑥, 𝑦 = 𝑓𝑥 + 𝑓𝑓𝑦   

𝑦′′ = 𝑓 ′′  𝑥, 𝑦 = 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦
2
 

𝑦𝑖𝑣 = 𝑓 ′′′  𝑥, 𝑦 = (𝑓𝑥𝑥𝑥 + 3𝑓𝑓𝑥𝑥𝑦 + 𝑓2𝑓𝑥𝑦𝑦 + 𝑓3𝑓𝑦𝑦𝑦 + 𝑓𝑦 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + 3 𝑓𝑥 + 𝑓𝑓𝑦  𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝑓𝑦
2(𝑓𝑥

+ 𝑓𝑓𝑦) 

Let us introduce the following convenient form 

𝐹1 = 𝑓𝑥 + 𝑓𝑓𝑦 ,      𝐹2 = 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑥𝑦 ,  𝐹3 = 𝑓𝑥𝑥𝑥 + 3𝑓𝑓𝑥𝑥𝑦 + 𝑓2𝑓𝑥𝑥𝑦 + 𝑓2𝑓𝑦𝑦𝑦  

Then we get as 

𝑦′ = 𝑓,  𝑦′ ′ = 𝐹1,  𝑦′′′ = 𝐹2 + 𝑓𝑦𝐹1 

𝑦𝑖4 = 𝐹3 + 𝑓𝑦𝐹2 + 3𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝐹1𝑓𝑦
2
 

If we now put them into (3.2), we obtain 

𝑦 𝑥 +  − 𝑦 𝑥 

= 𝑓 +
2

2!
𝐹1 +

3

3!
 𝐹1 + 𝑓𝑦𝐹1 

+
4

4!
 𝐹3 + 𝑓𝑦𝐹2 + 3𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑥𝑦  + 𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝐹1𝑓𝑦

2               (3.3) 

Now, we shall develop a fourth-order formula. In order to develop the Runge Kutta formula to find the co-efficient 

𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑛 & 𝑝 from below 

𝑘1 = 𝑓 𝑥, 𝑦 = 𝑓,   

𝑘2 = 𝑓 𝑥 + 𝑚, 𝑦 + 𝑚𝑘1  

𝑘3 = 𝑓(𝑥 + 𝑛, 𝑦 + 𝑛𝑘2) 

𝑘4 = 𝑓(𝑥 + 𝑝, 𝑦 + 𝑝𝑘3)       (3.4) 

Our aim then is ∆𝑦 will be expressed in the form 

∆𝑦 = 𝑦 𝑥, 𝑦 − 𝑦 𝑥 = 𝑎𝑘1 + 𝑏𝑘2 + 𝑐𝑘3 + 𝑑𝑘4      (3.5) 

At this stage, we may use Taylor’s series expansion for two variables as the followings 

𝑘1 = 𝑓,    

𝑘2 = [𝑓 + 𝑚𝐹1 +
1

2
𝑚22𝐹2 +

1

6
𝑚33𝐹3 + ⋯⋯⋯  

𝑘3 = [𝑓 + 𝑛𝐹1 +
1

2
2 𝑛2𝐹2 + 2𝑚𝑛𝑓𝑦𝐹1  

+
1

6
3 𝑛3𝐹3 + 3𝑚2𝑛𝑓𝑦𝐹2 + 6𝑚𝑛2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦   + ⋯⋯⋯ ]  
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𝑘4 = [𝑓 + 𝑝𝐹1 +
1

2
2 𝑝2𝐹2 + 2𝑛𝑝𝑓𝑦𝐹1  

+
1

6
3 𝑝3𝐹3 + 3𝑛2𝑝𝑓𝑦𝐹2 + 6𝑛𝑝2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 6𝑚𝑛𝑝𝐹1𝑓𝑦

2 + ⋯⋯⋯ ] 

Substituting the values of 𝑘1 , 𝑘2, 𝑘3&𝑘4 in (3.5), we obtain 

𝑦 𝑥 +  − 𝑦 𝑥 = 𝑎𝑓 + 𝑏[𝑓 + 𝑚𝐹1 +
1

2
𝑚22𝐹2 +

1

6
𝑚33𝐹3 + ⋯⋯⋯ +  

𝑐[𝑓 + 𝑛𝐹1 +
1

2
2 𝑛2𝐹2 + 2𝑚𝑛𝑓𝑦𝐹1 +

1

6
3 𝑛3𝐹3 + 3𝑚2𝑛𝑓𝑦𝐹2 + 6𝑚𝑛2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦   + ⋯⋯⋯ ] 

+𝑑[𝑓 + 𝑝𝐹1 +
1

2
2 𝑝2𝐹2 + 2𝑛𝑝𝑓𝑦𝐹1   

+
1

6
3 𝑝3𝐹3 + 3𝑛2𝑝𝑓𝑦𝐹2 + 6𝑛𝑝2𝐹1 𝐹𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 6𝑚𝑛𝑝𝐹1𝑓𝑦

2 + ⋯⋯⋯ ] 

This can be represented as  

𝑦 𝑥 +  − 𝑦 𝑥 =  𝑎 + 𝑏 + 𝑐 + 𝑑 𝑓 +  𝑏𝑚 + 𝑐𝑛 + 𝑑𝑝 2𝐹2 + 

 𝑏𝑚2 + 𝑐𝑛2 + 𝑑𝑝2 
3𝐹1

2
+ (𝑏𝑚3 + 𝑐𝑛3 + 𝑑𝑝3)

4𝐹2

6
+ 

 𝑐𝑚𝑛 + 𝑑𝑛𝑝 3𝑓𝑦𝐹1 +  𝑐𝑚2𝑛 + 𝑑𝑛2𝑝 4𝑓𝑦𝐹2 + 

(𝑐𝑚𝑛2 + 𝑑𝑛𝑝2)4𝐹1 𝑓𝑥𝑦 + 𝑓𝑓𝑦𝑦  + 𝑑𝑚𝑛𝑝4𝑓𝑦
2𝐹1 + ⋯⋯⋯    (3.6) 

When we compare (3.3) and (3.6), we get 

𝑎 + 𝑏 + 𝑐 + 𝑑 = 1,𝑏𝑚 + 𝑐𝑛 + 𝑑𝑝 =
1

2
, 𝑏𝑚2 + 𝑐𝑛2 + 𝑑𝑝2 =

1

3
, 𝑏𝑚3 + 𝑐𝑛3 + 𝑑𝑝3 =

1

4
,  

𝑐𝑚𝑛 + 𝑑𝑛𝑝 =
1

6
, 𝑐𝑚2𝑛 + 𝑑𝑛2𝑝 =

1

12
,  𝑐𝑚𝑛2 + 𝑑𝑛𝑝2 =

1

8
,  𝑑𝑚𝑛𝑝 =

1

24
 

By solving the above equations, we obtain 

𝑚 = 𝑛 =
1

2
, 𝑝 = 1, 𝑎 = 𝑑 =

1

6
,     𝑏 = 𝑐 =

1

3
  

Now we put these values in (3.4) and (3.5), we get the fourth-order Runge Kutta formulae as follows: 

𝑘1 = 𝑓 𝑥, 𝑦 = 𝑓,  𝑘2 = 𝑓  𝑥 +


2
, 𝑦 +

𝑘1

2
 , 𝑘3 = 𝑓(𝑥 +



2
, 𝑦 +

𝑘2

2
), 𝑘4 = 𝑓 𝑥 + , 𝑦 + 𝑘3   

∆𝑦 = 𝑦(𝑥 + ) − 𝑦 𝑥 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

When the initial values are  𝑥0, 𝑦0 , then, the first increment in y is computed from the given formulae below 

𝑘1 = 𝑓 𝑥0 , 𝑦0 = 𝑓, 𝑘2 = 𝑓  𝑥0 +


2
, 𝑦0 +

𝑘1

2
 , 𝑘3 = 𝑓(𝑥0 +



2
, 𝑦0 +

𝑘2

2
),   

𝑘4 = 𝑓 𝑥0 + , 𝑦0 + 𝑘3  

∆𝑦 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

or,  𝑦 𝑥0 +  = 𝑦 𝑥0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  

or,  𝑦1 = 𝑦0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

Hence, the general fourth-order Runge Kutta formulae for the 𝑛𝑡  interval is given by the followings: 

𝑘1 = 𝑓 𝑥𝑛 , 𝑦𝑛 = 𝑓,   𝑘2 = 𝑓  𝑥𝑛 +


2
, 𝑦𝑛 +

𝑘1

2
 ,    𝑘3 = 𝑓(𝑥𝑛 +



2
, 𝑦𝑛 +

𝑘2

2
),  

𝑘4 = 𝑓 𝑥𝑛 + , 𝑦𝑛 + 𝑘3    

𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)     (3.7) 

 

4. Error Analysis  

Numerical stability and errors are well discussed in depth in [10-12]. There are two types of errors in the numerical solution 

of ODEs: Round-off errors and truncation errors. Round-off error occurs because computers use a fixed number of bits and 

hence fixed the number of binary digits to represent numbers. In a numerical computation round-off errors are introduced at 

every stage of computation. Hence though an individual round-off error due to a given number at a given numerical step may 

be small but the cumulative effect can be significant. When the number of bits required for representing a number is less than 

the number is usually rounded to fit the available number of bits. This is done either by chopping or by symmetric rounding. 

Also, truncation errorarises when you use an approximation in place of an exact expression in a mathematical procedure. 

One of the serious drawbacks of the Runge Kutta method is error estimation [10]. The direct methods of estimating the 

error of higher-order Runge Kutta formulae are very complicated and time-consuming. Moreover, it is possible to compute 
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the errors in laborious ways, which are very hard, involving higher-order partial derivatives. We shall first estimate the error 

in second-order Runge Kutta formulae and the errors for higher orders can be obtained by generalizing the computed error. 

We get the second-order Runge Kutta formulae as follows: 

𝑦𝑛+1 = 𝑦𝑛 +
1

2
(𝑘1 + 𝑘2) 

𝑘1 = 𝑓 𝑥𝑛 , 𝑦𝑛  

𝑘2 = 𝑓(𝑥𝑛 + , 𝑦𝑛 + 𝑘1)       (4.1) 

Now, the truncated error is given by the following formula 

𝐸𝑟 = 𝑦 𝑥𝑛+1 − 𝑦𝑛+1       (4.2) 

Now expanding 𝑦(𝑥𝑛+1) by Taylor’s series expansion, we get 

𝑦 𝑥𝑛+1 = 𝑦 𝑥𝑛 +  = 𝑦 𝑥𝑛 + 𝑦 ′ 𝑥𝑛 +
2

2!
𝑦′′  𝑥𝑛 +

3

3!
𝑦′′′  𝑥𝑛 +

4

4!
𝑦′′′  𝑥𝑛 ⋯⋯⋯ 

= 𝑦𝑛 + 𝑓 +
2

2!
(𝑓𝑥 + 𝑓𝑓𝑦) +

3

3!
(𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2) + 𝑜(4) (4.3) 

We may use Taylor’s series expansion in (4.1), we get 

𝑘1 = 𝑓 

𝑘2 =   𝑓 +  𝑓𝑥 + 𝑓𝑓𝑦 +
2

2
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯⋯⋯  

= 𝑓 + 2 𝑓𝑥 + 𝑓𝑓𝑦 +
3

2
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯⋯⋯ 

𝑦𝑛+1 = 𝑦𝑛 +
1

2
 𝑓 + 𝑓 + 2 𝑓𝑥 + 𝑓𝑓𝑦 +

3

2
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯⋯⋯  

𝑜𝑟  𝑦𝑛+1 = 𝑦𝑛 + 𝑓 +
2

2
 𝑓𝑥 + 𝑓𝑓𝑦 +

3

4
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  +  (4.4) 

Now, substituting (4.3) and (4.4) in (4.2), we get 

𝐸𝑟 =  𝑦𝑛 + 𝑓 +
2

2
 𝑓𝑥 + 𝑓𝑓𝑦 +

3

6
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2 + ⋯ − 

 𝑦𝑛 + 𝑓 +
2

2
 𝑓𝑥 + 𝑓𝑓𝑦 +

3

4
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + ⋯  

=  
3

6
−

2

4
  𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  +

3

6
(𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2 + ⋯ 

= −
3

12
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  +

3

6
 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2 + ⋯ 

= −
3

12
 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓2𝑓𝑦𝑦  + 2𝑓𝑦 − 2𝑓𝑓𝑦

2 ⋯    (4.5) 

Hence, (4.5) shows that the truncation error of the second-order Runge Kutta formula is of order 3. Similarly, we can show 

that the truncation errors in the third-order, fourth-order Runge Kutta formula are of 4&5 respectively.  

Hence, by applying Taylor’s series expansion as above manner, we get the truncation error of the n
th

 -order Runge Kutta 

formulae of order 𝑛+1 as follows 

𝐸𝑟 = 𝑐𝑛+1𝑦𝑛+1        (4.6) 

 

5. Numerical examples 

In this section, we present two numerical examples to verify the accuracy of the proposed method. The numerical results and 

errors are computed and the findings are represented graphically. The computations were done using MATLAB programing 

language. The convergence of the IVP is calculated 𝑒𝑛 = |𝑦(𝑥𝑛) − 𝑦𝑛 | < 𝛿, where 𝑦(𝑥𝑛) represents the exact solution and 𝛿 

depends on the problem which varies from 10−7 while the absolute error is computed by |𝑦(𝑥𝑛) − 𝑦𝑛 |. 
 

Example 1: We consider the initial value problem 𝑦′ = 2𝑦 + 4 − 𝑥, 𝑦 0 = 0.5, on the interval 0 ≤ 𝑥 ≤ 1. The exact 

solution of the given problem is given by 𝑦 𝑥 = −
7

4
+

1

2
𝑥 +

9

4
𝑒2𝑥 . The results obtained are shown in Tables 1(a) and Table 

1(b) and graphically displayed in Figures 1-3.     
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           Table 1. (a) Numerical approximations for different step size. 

𝑛 𝑥𝑛  Exact Solution 𝑦𝑛  Approximation 

 = 0.1  = 0.05  = 0.025 

0 0.0 0.500000000000000 0.500000000000000 0.500000000000000 0.500000000000000 

1 0.1 0.482991259254641 0.482991276041667 0.482991260282179 0.482991259318196 

2 0.2 0.481443217233737 0.481443249170363 0.481443219188586 0.481443217354649 

3 0.3 0.494601846762876 0.494601892331463 0.494601849552140 0.494601846935397 

4 0.4 0.521749895006882 0.521749952801790 0.521749898544523 0.521749895225692 

5 0.5 0.562205089964132 0.562205158684403 0.562205094170517 0.562205090224305 

6 0.6 0.615318434431166 0.615318512873659 0.615318439232651 0.615318434728148 

7 0.7 0.680472583171637 0.680472670224579 0.680472588500170 0.680472583501218 

8 0.8 0.757080299231656 0.757080393868592 0.757080305024406 0.757080299589949 

9 0.9 0.844582985541526 0.844583086815646 0.844582991740541 0.844582985924948 

10 1.0 0.942449288132117 0.942449395170920 0.942449294683989 0.942449288537364 

 

      Table 1(b) Observed absolute errors for example 1. 

𝑛 𝑥𝑛  Errors 

 = 0.1  = 0.05  = 0.025 

0 0.0 0.0000000000000000 0.0000000000000000 0.0000000000000000 

1 0.1 0.0000000167870257 0.0000000010275381 0.0000000000635554 

2 0.2 0.0000000319366255 0.0000000019548488 0.0000000001209114 

3 0.3 0.0000000455685865 0.0000000027892643 0.0000000001725214 

4 0.4 0.0000000577949080 0.0000000035376411 0.0000000002188106 

5 0.5 0.0000000687202708 0.0000000042063848 0.0000000002601734 

6 0.6 0.0000000784424928 0.0000000048014847 0.0000000002969818 

7 0.7 0.0000000870529420 0.0000000053285324 0.0000000003295807 

8 0.8 0.0000000946369367 0.0000000057927503 0.0000000003582932 

9 0.9 0.0000001012741199 0.0000000061990149 0.0000000003834224 

10 1.0 0.0000001070388032 0.0000000065518719 0.0000000004052469 

 

      
      Figure 1: Exact Numerical Solution 
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Figure 2: Exact Solution and Numerical Approximation for different step sizes 

 

 
Figure 3: Error for different step sizes 

Example 2: We consider the initial value problem 𝑦′ =  
2𝑥

1+𝑥2 𝑦,    𝑦 0 = 2.15, on the interval 0 ≤ 𝑥 ≤ 1. The exact 

solution of the given problem is given by 𝑦 𝑥 = 2.15(1 + 𝑥2). The results obtained are shown in Tables 2(a) and Table 2(b) 

and graphically displayed in Figures 4-6.  

Table 2. (a) Numerical approximations for different step size. 

𝑛 𝑥𝑛  Exact Solution 𝑦𝑛  Approximation 

 = 0.1  = 0.05  = 0.0125 

0 0.0 2.1500000000000000 2.1499999999999999 2.1499999999999999 2.1499999999999999 

1 0.1 2.1715000000000000 2.2189261331225589 2.1953422717100741 2.1774571783101435 

2 0.2 2.2360000000000000 2.3334262590434469 2.2848168625939533 2.2481613547284356 

3 0.3 2.3435000000000000 2.4953349088988657 2.4193352905262206 2.3623386200456209 

4 0.4 2.4940000000000000 2.7063977618557740 2.5997528348958383 2.5201991763896565 

5 0.5 2.6875000000000000 2.9682198057208375 2.8268457712415058 2.7219321270457231 

6 0.6 2.9240000000000000 3.2822334942455038 3.1012989059616269 2.9677029158303689 

7 0.7 3.2035000000000000 3.6496866641324219 3.4237025865589228 3.2576530871066636 

8 0.8 3.5260000000000000 4.0716461444112806 3.7945568275012476 3.5919017080978404 

9 0.9 3.8915000000000000 4.5490116345173126 4.2142797983894926 3.9705477490335759 

10 1.0 4.3000000000000000 5.0825348832800321 4.6832183031819152 4.3936728449178357 
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Table 2. (b) Observed absolute errors for example 1. 

𝑛 𝑥𝑛  Errors 

 = 0.1  = 0.05  = 0.0125 

0 0.0 0.0000000000000000 0.0000000000000000 0.0000000000000000 

1 0.1 0.0474261331225589 0.0238422717100741 0.0059571783101435 

2 0.2 0.0974262590434472 0.0488168625939536 0.0121613547284358 

3 0.3 0.1518349088988655 0.0758352905262205 0.0188386200456208 

4 0.4 0.2123977618557738 0.1057528348958381 0.0261991763896563 

5 0.5 0.2807198057208376 0.1393457712415058 0.0344321270457231 

6 0.6 0.3582334942455043 0.1772989059616275 0.0437029158303694 

7 0.7 0.4461866641324219 0.2202025865589228 0.0541530871066636 

8 0.8 0.5456461444112803 0.2685568275012473 0.0659017080978401 

9 0.9 0.6575116345173129 0.3227797983894929 0.0790477490335761 

10 1.0 0.7825348832800320 0.3832183031819150 0.0936728449178359 

      

        
         Figure 4: Exact Numerical Solution 
 

       
      Figure 5: Exact Solution and Numerical Approximation for different step sizes 
 

      
     Figure 6: Error for different step sizes 
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6. Discussion and Results 

The obtained results are displayed in Table 1(a), (b) and Table 2(a), (b) and graphically represented in Figures (1-3) and 

Figures (4-6) respectively. The approximate solutions and absolute errors are calculated using MATLAB programming 

language with different step sizes and also computed with the exact solution. From the tables, we observed that good results 

are obtained even for a reasonably large step size but the approximations enhanced by reducing the step size. Our proposed 

method gives very good results when compared with the exact solutions. Hence, we say that a numerical solution converges 

to the exact solution if reducing the step size leads to decrease errors such that in the limit when the step size reduces to zero 

the errors go to zero. 

 

7. Conclusion 

In this paper, the fourth-order Runge Kutta has been presented for solving first order Ordinary Differential Equations (ODE) 

with initial conditions. To find more accurate results of the numerical solution, we reduced the step size to very, very small. 

From our tables and figures, we analyzed that the solution for the proposed method converges to the exact solution for 

decreasing the step size . The numerical solutions obtained are in good agreement with the exact solutions. The results of 

the two problems guarantee consistency, convergence, and stability. Thus, the accuracy increase with decrease step size, we 

may conclude that this method is applied to solve first-order ODEs with initial conditions to find the anticipated accuracy.In 

our subsequent research, we shall examine the comparison of the fourth-order Runge Kutta method with other existing 

methods like the Adomian decomposition. 
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