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Abstract 

An investigation of unsteady heat flow of a viscous incompressible 

magnetohydrodynamic fluid over an oscillating plate under the influence of radiation 

was carried out. The governing equations where solved by the method of undetermined 

coefficient and solutions were obtained. The features of the fluid flow were subjected to 

analysis using Wolfram 9 software and the results obtained showed clearly that velocity 

profile increases when Radiation, Reynolds, Prandtls, Grashofs number are increased 

but an increase in Hartmann number brought about a corresponding decrease in  the 

velocity profile. When the radiation parameter is increased there is a rapid increase in 

the shear stress profile also when the Reynold’s number is increased there is a 

significant decline in the shear stress profile but for the Prandtl’s and the Grashof’s 

number an increase in them brought about a minimal increase in the shear stress of 

the plate and an increase in the Hartmann’s number led to a marginal decline in the 

shear stress of the plate.   
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1. Introduction 

Magnetohydrodynamics (MHD) is the study of an electrically conducting fluid and its interaction with magnetic field. The 

basic concept of MHD is the dynamics of matter moving in an electromagnetic field where current is established in the matter 

by induction [1]. Examples of MHD fluid include mercury, liquid sodium, liquid metal and lithium e.t.c. MHD has 

applications in astrophysical and geophysical problems. Several scholarly work centered on MHD and its ancillary 

parameters, thus scholars have also thought it wise to pen down their findings. 

Mass and heat transfer analysis of an unsteady MHD flow past an impulsively started vertical plate in the presence of thermal 

radiation was investigated by [2]. They obtained the exact solution to the governing equation in closed form by Laplace 

transform technique. From their result the mass diffusion tends to reduce the fluid velocity whereas a reverse effect was 

noticed for the radiation parameter on the velocity profile of the fluid. 

Unsteady heat transfer of viscous incompressible boundary layer fluid flow through a porous plate with induced magnetic 

field was tackled by [3]. They noticed that where the Grashofs parameter is increased the velocity and temperature profile 

increases but the magnetic induction decreases with an increase in the Grashofs parameter. The effect of variable viscosity 

and thermal conductivity on MHD flow and heat transfer of a dusty fluid was worked on by [4]. From their findings they 

noticed that an increase in the variable viscosity parameter decreases the fluid and dust phase velocities whereas it causes an 

increase in both phases of the temperature profile. Also their result showed that increase in Prandtls number decreases the 

thermal boundary layer thickness. 

Similarly, an investigation on the numerical study of heat and mass transfer MHD viscous flow over a moving wedge in the 

presence of viscous dissipation and heat function with convective boundary condition was carried out by [5]. They concluded 

from their findings that both mass injection and suction are important in separating the profiles of the hydrodynamics and 

thermal layers. Another interesting findings from their work is that the temperature profile and heat transfer coefficient 

depends upon the Prandtl number, viscous dissipation, heat sink and convective parameter. Also they observed that whenever 

the convection parameter is high the mass transfer rate are found to be high also.  

In another development a research on radiation effects on MHD Couette flow between two plate with the transfer of heat was 

done by [6], and he observed that the velocity distribution is affected by the Hartmann number. Viscous flow of 

Incompressible MHD fluid flow over an accelerated plate with electroconductivity and chemical reaction in the presence of  
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radiation was tackled by [7]. Also a work on MHD non-linear flow with heat flux passing through a porous sheet with heat 

generation and radiation was examined by [8], and they found out that the distribution of the temperature and wall 

temperature are enhanced for increasing numbers of magnetic field and heat generation parameters. A Studied on viscous 

dissipation influence and radiation on MHD Couette flow in a porous medium was carried out by [9]. They discovered that 

an increase in the temperature distribution is a fallout of an increase in the Reynolds number.  Similarly, Time dependent 

MHD convection free past an infinite heat vertical plate in a medium that is porous with radiation influence, viscous 

dissipation and time dependent suction was studied by [10]. They observed that the magnetic number and radiation 

parameters gives a decrease in temperature. 

Furthermore, a study was carried out by [11] where flow of viscous incompressible MHD fluid over a suddenly accelerated 

plate with variable electroconductivity and chemical reaction term induced radiation. He observed that an increase in the fluid 

parameters apart from the magnetic parameter brings about an increase in the shear stress at the plate. MHD radiation flow 

confined by a porous medium was examined by [12]. They observed that when Hartmann number is increased this decelerate 

the flow along the plate, also the velocity profile values are reduced strongly with increase in the Hartmann parameters. Our 

primary aim is to stretch the study of [13] by including Viscous and incompressible fluid flow in an oscillating plate. 

 

NOMENCLATURE 

T = Temperature  

V = Fluid velocity 

ρ = Fluid density 

P = Fluid pressure 

Μ = Absolute Viscosity 

g = Acceleration due to gravity 

V = Kinematic viscosity 

𝐻° = Magnetic field 

a =  Thermal diffusivity  

𝑞𝑦= Radiative term 

𝑐𝑣= Specific heat capacity at constant volume  

Nu = Nusselt number 

Λ = Planck’s function      

∝𝑘= Absorption coefficient     

𝑅 = Dimensionless radiation term 

Nu = Nusselt number 

θ = dimensionless temperature 

M = Dimensionless magnetic parameter 

Pr = Prandtl parameter 

Gr = Grashof parameter 

Re = Reynolds parameter 

 

2.  MATHEMATICAL FORMULATION OF THE PHYSICAL PROBLEM 

Let a flat plate exist as shown in figure 1, extending to a large distance in the x and z directions. Let an incompressible 

viscous fluid exist over a half plate y = 0 (i.e xz - plane). Let the fluid extend to infinity and be at rest there. Further, let the 

plate be oscillating with constant amplitude and frequency with velocity ucoswt this generates a two dimensional parallel 

flow near the plate since the plate is situated in an infinite fluid, the pressure must be constant. 
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Figure1.The configuration of the problem and the coordinate system. 
 

The hydrodynamics basic equations which the physics of the problem is governed by is drawn from the argument of [5] and 

[10] 

∇.V =  0  (Continuity Equation)        (1) 

Ρ (
𝜕𝑦

𝜕𝑡
+   𝑉. 𝛻 𝑉) =  −𝛻𝑃 +  𝜇𝛻2𝑉 +  𝜌𝑔 −  

𝑉𝜇 𝛿𝐶𝐻0

𝑃∝
    (Momentum Equation)   (2)   

( 
𝜕𝑇

𝜕𝑡
+ (𝑉. 𝛻)𝑇) = 𝑎2∇2𝑇 - 

1

𝜌𝐶𝑣
∇. 𝑞𝑦  (Energy Equation)      (3) 

 

From equation (3) following [14] the radiation term reduces to  
𝜕𝑞𝑦

𝜕𝑦
= 4𝛿2(𝑇 − 𝑇∝)        (4) 

Where     𝛿2 =   (𝛼𝑘
𝛼

0

𝜕𝜆

𝜕𝑇
 )𝑑𝑘′         (5) 

Substitute equations (4) into (3) having in mind that restricting the effect of variation of density under boussinesq 

approximation which is restricted with temperature exclusively to the body force term with these assumption, the physical 

description of the flow is given as 
𝜕𝑣

𝜕𝑦
= 0         (6) 

ρ
𝜕𝑣

𝜕𝑡
 = -

𝜕𝑃

𝜕𝑦
+  𝜇

𝜕2𝑣

𝜕𝑦2 + g𝑃0𝝃 (T − 𝑇0) - 
𝑣𝜇2𝛿𝑐𝐻0

2

𝑃𝛼
     (7) 

𝜕𝑇

𝜕𝑡
=  𝑎2 𝜕2𝑇

𝜕𝑧2 −
4𝛿2(𝑇−𝑇𝑂)

𝑃𝐶𝑣
                                                                        (8) 

Where 𝛏 is the coefficient of volume expansion perturbation. 

Velocity field, temperature field and pressure field are denoted by 

𝑣′ = 𝑣 − 𝑣𝑒  

𝑃′ = 𝑃 −  𝑃𝑒         (9) 

𝑇 ′ = 𝑇 −  𝑇𝑒  
Equilibrium values is represented by the subscript e. Putting (9) in (6), (7) and (8) when unity terms are retained, the following linearized 

equations are obtained.  
𝜕𝑣′

𝜕𝑦
 = 0           (10) 

ρ
𝜕𝑣′

𝜕𝑡
=  −

𝜕𝑃′

𝜕𝑦
+  𝜇

𝜕2𝑣

𝜕𝑦2  𝑔𝑃0𝝃 (𝑻′ − 𝑻𝟎
′ ) - 

𝛿𝑐𝜇
2𝐻0𝑣

′

𝑝𝛼
      (11) 

𝜕𝑇 ′

𝜕𝑡
  = 𝑎2 𝜕2𝑇 ′

𝜕𝑦2  - 
4𝛿2(𝑇 ′−𝑇0

′ )

𝑃𝐶𝑣
                                                                        (12) 

Non-dimensional analysis  

We substitute the following expressions below, for dimensionless homogeneity of the governing hydrodynamics equation. 

y = 
𝑣′ 𝑡

𝑑
  P = 

𝑃′

𝜌𝑉2 𝛼
2 = 

4𝛿2𝑃𝛼𝐶𝛼𝑑2

𝜌𝐶𝑣𝑉
            V = 

𝑣′

𝑢
𝛽2 = 

𝛼2𝑝 ′

𝑇𝛼
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g = 
𝑔𝑑

𝑣2                   T = 
𝑇 ′−𝑇0

𝑇1−𝑇2
                    R𝑒−1= 

𝜇

𝑣𝑑𝑝
𝑚2 = 

𝛿𝑐𝐻0
′ 𝜇𝑣

𝑢2𝑝𝛼
   Gr = g𝛏

(𝑇− 𝑇0)𝑑2

𝑣2  

Having employed the Rayliegh’s technique into equations (10 - 12) it results into equations (13) – (15)  
𝜕𝑣

𝜕𝑦
 = 0                                                                  (13) 

𝜌
𝜕𝑣

𝜕𝑡 ′
 = - 

𝜕𝑝

𝜕𝑦
 + R𝑒−1 𝜕2𝑣

𝜕𝑦2 + Gr𝜃 - 𝑚2𝑣     (14) 

𝜕𝜃

𝜕𝑡 ′
 = 𝛽2 𝜕2𝜃

𝜕𝑦2 - 𝛼2𝜃       (15) 

Boundary conditions given as, 

U = ucosnt  at    y = 0 

U = 0     at          y = ∝       (16) 

𝜃(0)= 1   at 𝜃 𝛼 = 0 

 

3. METHOD OF SOLUTION  

We seek solution to equations (13 - 15) in the form  

V(y,t) = h(y) 𝑒−𝑛𝑡                   (17) 

𝜃 𝑦, 𝑡 =  ∅ 𝑦 𝑒−𝑛𝑡                                                                                        (18) 

P(y,t) =  h(y)𝑒−𝑛𝑡                                                                                            (19) 

Where n is decay constant 

The boundary conditions equation (16) transforms into  

h = VCosnt𝑒𝑛𝑡               at  y = 0                                    (20a) 

h = 0      at y = ∞                                    (20b) 

∅(0) = 𝑒𝑛𝑡   at ∅(∞) = 0                               (20c)    

We can rewrite equations (14) – (15) using equation (17 – 19) as 

−′′ (y) - Re′ (y) + Re(𝑃𝑛 −  𝑚2)h(y) = -ReGr𝜃(𝑦)                                      (21) 

𝛽2∅′′ (𝑦) - (𝛼2 −  𝑛)∅(𝑦) = 0         (22) 

Solving equation (22), we impose the transformed boundary condition equation (20c) and substitute into equation (17), we 

have 

∅(𝑦) = Coshfy                                   (23) 

Nu = 
𝜕𝜃

𝜕𝑦
 = 𝑓𝑆𝑖𝑛𝑓𝑦                                                                                      (24) 

were,  

f = (
𝛼2−𝑛

𝛽
)

1
2   

To solve equation (21), we put equation (23) into it and solve the resulting equation this is followed by imposing the 

boundary condition and substitute into equation (18) to get  

V(y,t) = 𝑒−𝑛𝑡  [(UCosnt𝑒𝑛𝑡 −  𝐾)𝑒𝑇1𝑦  + KCosh(fy) + ISinh(fy)]  (25) 

The shear stress at the plate gives 

𝜎(𝑦, 𝑥) = 𝜇
𝜕𝑢

𝜕𝑦
 = 𝜇𝑒−𝑛𝑡 [𝑇1(UCosnt𝑒𝑛𝑡 −  𝐾)𝑒𝑇1𝑦 +  𝐾𝑓Sinh(fy) + IfCosh(fy)] (26) 

were  

I = 
𝑅𝑒2𝐺𝑟2𝑓− 𝑅𝑒2𝑓2𝐺𝑟

(𝑓2+ Re (𝑝𝑛 +𝑚2))3−𝑅𝑒2𝑓2(𝑓2  + Re  𝑝𝑛 +𝑚2 
 

K = 
−𝑅𝑒2𝑓𝐺𝑟

(𝑓2+Re (𝑝𝑛 +𝑚2) )2−𝑅𝑒2𝑓2 

𝑇1 = 
𝑅𝑒+  (𝑅𝑒)2− 4𝑅𝑒(𝑝𝑛 +𝑚2)

2
 

  

4. RESULTS AND DISCUSSION 

For the purpose of getting a physical perspective and numerical validation of the problem we take the approximate value of 

velocity constant as (U = 5.36) and the decay constant (n = 0.0035) other parameter values used are 

R = 2.50, 3.50, 4.50, 5.50, 6.50 

Re = 20, 30, 40, 50, 60 

Pr = 0.51, 0.61, 0.71, 0.81, 0.91 

Gr = 2, 4, 6, 8, 10 

M = 20.0, 20.5, 30.0, 30.5, 40.0 

T = 1 
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For discussion of the results gotten we begin with the radiation parameter as shown in Figure 2, when the radiation number is 

increased it leads to a corresponding increase in temperature profile, this results is in tandem with the study of [5]. Figure 3 

shows that an increase in the radiation number leads to a rise in the Nusselt profile. Also, figure 4 shows that when the 

radiation number is increased the velocity profile increases also. Figure 5 shows that an increase in the Reynolds number 

leads to an increase in the velocity profile, this results is consistent with the findings of [9]. From figure 6 we noticed that an 

increase in the Prandtl’s number results in an increase in the velocity profile. This results corroborates the findings of [11]. 

Similarly, Figure 7 shows that when the thermal Grashofs number (Gr) is increased the velocity profile will also increase. 

The thermal  Grashof number  represents the relative effect of the thermal buoyancy force to the viscous MHD fluid. The 

flow is slightly accelerated due to the enhancement in buoyancy force corresponding to an increase in thermal Grashof 

number. The influence of the Hartmann number (M) on the velocity profile is shown in figure 8, we see that when the 

Hartmann parameter is increased the velocity profile drops. This study agrees with the study of [7] and [15]. Figure 9 

represents typical shear stress in the boundary layers for various values of the radiation parameters. We observed clearly that 

the shear stress at the plate increases with an increase in the radiation parameters this is in line with [15]. Figure 10 shows 

that when the Reynolds parameter increases the shear stress at the plate will also decrease. Figure 11-12 shows that a 

marginal increase is experienced at the shear stress of the plate when the Prandtl and the Grashof parameters are increased 

respectively. Figure 13 shows clearly that increase in the Hartmann number will bring about a marginal decrease of the shear 

stress of the plate. 

 

 
R = 2.5, 3.5, 4.5, 5.5, 6.5 

Figure 2: Temperature profile θ against boundary layer y for varying Radiation R.  

 
 R = 2.5, 3.5, 4.5, 5.5, 6.5 

Figure 3: Nusselt number Nu against boundary layer y for varying Radiation R. 

 
R = 2.5, 3.5, 4.5, 5.5, 6.5 

Fig 4: Velocity profile V against boundary layer y for varying Radiation. R  
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Re = 20, 30, 40, 50, 60, 80 

Figure 5: Velocity profile V against boundary layer y for varying Reynold’s number. 

 
Pr = 0.51, 0.61, 0.71, 0.81, 0.91 

Figure 6: Velocity profile V against boundary layer y for varying Prandtl number Pr 

 
Gr = 2, 4, 6, 8, 10 

Figure 7: Profile of velocity V against boundary layer y for varying Grashof number Gr 

 
M = 20.0, 20.5, 30.0, 30.5, 40.0 

Figure 8:  Profile of velocity V against boundary layer y for different Hartmann number Mg 

 
R = 2.5, 3.5, 4.5, 5.5, 6.5 

Figure 9: Shear stress 𝜎 against boundary layer y for varying Radiation R. 
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Re = 20, 30, 40, 50, 60 

Figure 10: Shear stress 𝜎 against boundary layer y for varying Reynold’s number R 

 
Pr = 0.51, 0.61, 0.71, 0.81, 0.91 

Figure 11: Shear stress 𝜎 against boundary layer y for varying Prandtl number Pr 

 
Gr = 2, 4, 6, 8, 10 

Figure 12: Shear stress 𝜎against boundary layer y for varying Grashof number Gr 

 
M = 20, 20.5, 30, 30.5, 40 

Figure 13: Shear stress 𝜎 against boundary layer y for varying Hartmann number M 

 

5. CONCLUSION 
The study of MHD together with other parameters is very important as it helps to explain the behavior of the MHD fluid in 

various conditions which can lead to proper application. Conclusion drawn from this study are that; 

1. Radiation parameter when increased led to an increase in the velocity and Nusselt profile of the fluid. 

2. Parameter such as Prandtl, Raynolds and Grashofs when increases will bring about an increase in the velocity profile 

of the fluid 

3. Hartmann parameter impedes on the flow of the MHD fluid as when the parameter is increase there is a 

corresponding decrease velocity profile of the fluid. 
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