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Abstract

Queues are waiting lines of customers waiting to be served. Queuing systems are
prevalent in human activities such as we experience in filling stations, banks, toll
gates, hospitals, e.t.c. Many queuing models in literature have dealt with several
aspects of queuing theory ranging from single-server (M/M/1) to multiple-server model
with Poisson input and exponential service (M/M/S). In these models, so far no
restriction has be imposed on the total number of customers allowed in the systems at
any time. In this paper a single-server model with Poisson input and exponential
service (M/M/1) with finite queue length (restricted number of customers to wait in line
at any instant) is developed. From the sensitivity analysis of different values of traffic
intensity p and service rate u, and arrival rate A of the model, it is observed that as the
traffic intensity p increases, the expected values of the number of customers, the line
length, the time in the line, all increase rapidly. It is also observed that for a given
service rate u, when intensity p is small, most of the expected time a customer spends in
the queuing system is due to average service time; but as the arrival rate A increases,

most of the exeected time spent is due to waiting in line.
Keywords: Queue, Customer, inter-arrival, departure.

1.0 Introduction

According to Siagian [1] a queue is waiting line made up of customers requiring service from one or more facilities. Queue
theory as stated in [2] was proposed and developed by Agner Kraup Erlang, a Danish Mathematician and Engineer in 1910
while working on the Copenhagen Telephone Company’s problem of how to determine the number of people who needed
telephone services and how many telephone operators were required to handle a certain volume on the call. Basic elements of
queuing models depend on factors such as arrival distribution, service distribution, service facility, service discipline and
queue size (number of customers in the queue) [3]. Taha [4] opined that a queuing system can be described by its input or
arrival process, its queue discipline, and its service mechanism. The input process which is usually a description of the
pattern of arrivals into the system is given by the probability distribution of time between successive arrival events, and the
number of individuals or units that appear at each of these events as in case of a super-market, restaurant, petrol station etc.

[5].

Subagyo [6] listed four basic structures of queuing models which are: single channel single phase, single channel multiple
phase, multiple channel single phase and multiple channel multiple phase. According to Kakiay [7] there are four commonly
used service disciplines: First Come First Served (FCFS), Services in Random Order (SIRO), and Priority Service (PS).
Queues are situations we experience in the day-to-day activities of life. For instances, queues are being experience in
hospitals, filling stations, banks, restaurants etc as customers wait to be served. As stated in [8], queues are formed when the
demand for service exceeds its supply, and that wait time depends on the number of customers in the queue system, the
number of servers attending to the customers and the amount of service time for each customer.
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Most elementary queuing models assume that the inputs (arriving customers) and outputs (leaving customers) of the queuing
system occur according to the birth-and —death process [9]. However, in the context of queuing theory, the term birth refers
to the arrival of a new customer into the queuing system and death refers to the departure of a served customer whereas the
state of the system at time t(t > o), denoted by N(t), is the number of customers in the queuing system at time t [10].
According to Wagner [11], arrival and departure of customers in a queue system occur randomly, hence their mathematical
models are formulated based on the following assumptions:

Assumptionl: Given N(t) = n, the current probability distribution of the remaining time until the next arrival is exponential
with parameter 2 (n=0,1,2,...).

Assumption 2:  Given N(t) = n, the current probability distribution of the remaining time until the next departure (service
completion) is exponential with parameter u, m =1, 2 .....).

Assumption 3: The random variable of assumption 1 (the remaining time until the next arrival) and the random variable of
assumption 2 (the remaining time until the next departure) are mutually independent. The next transition in the state of the
process is either n —n + 1 (a single arrival) or n—n — 1 (a single departure) depending on whether the former or later
random variable is smaller.

The most common decisions that need to be made when designing a queuing system as contained in [12], include: (a) number
of servers at a service facility (b) efficiency of the servers, (¢c) number of service facilities (d) amount of waiting space in the
queue (e) any priorities for different categories of customers and the two primary considerations in making these kinds of
decisions typically are (i) the cost of service capacity provided by the queuing system and (ii) the consequences of making
the customers wait in the queuing system. Providing too much service capacity causes excessive costs, providing too little
causes excessive waiting. Therefore, the goal is to find an appropriate trade-off between the service cost and the amount of
waiting.

One basic approach available for seeking this trade-off is to establish one or more criteria for a satisfactory level of service in
terms of how much waiting would be acceptable. For example, one possible criterion might be that the expected waiting time
in the system should not exceed a certain number of minutes. Another might be that at least 95 percent of the customers
should wait no longer than a certain number of minutes in the system. Similar criteria in terms of the expected number of
customers in the system (or the probability distribution of this number) also could be used. The criteria also might be stated
in terms of the waiting time or the number of customers in the queue system. Once the criterion or criteria have been
selected, then it is usually straightforward to use trial and error to find the least costly design of the queuing system that
satisfies all the criteria. The other basic approach for seeking the best trade-off involves assessing the costs associated with
the consequences of making customers to wait [13].

Many authors have developed different queue models to address different situation involving queuing. For examples a
queuing model on patient waiting time in ante-natal care clinic to determine the number of doctors required so that a given
percentage of pregnant women do not exceed a given waiting time and the number of expectant mothers in the queue do not
surpass a given threshold is developed in [14]. Nugraha [15] developed a queuing model on Toll Gate with the aim of
decongesting traffic on the highways. In line with [12], which advocates minimum cost of waiting time of customers, we
present a Finite Queue Model of Single-server with restricted number of customers allowed per time to wait in a queue
system.

2.0 Model Assumptions and Mathematical Notations

The assumptions associated with the queuing model formation are as follows:

a) The system consists of serves n-customers arriving per time t.

b) A customer is assumed to join each line with equal probability regardless of the length of the several lines.
c) The expected number of customers in each system, is summed over all the separate system.

d) Customers are attended to on first come, first serve basis.
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Mathematical Notations

1 A = Average number of customers arriving per unit of time

2 1 = Average number of services per unit of time.

3. P = traffic intensity

4, T =time of arrival

5. h > o very small interval of time

6. n = number of customers in the system

7. Pn(T) = Probability that n customers are in the system at time T.

8. Ae = exponential inter arrival density

9. ue™ = exponential service time density

The general standard symbols for the probability distributions are:

M= Exponentially distributed inter-arrival service time (M is an abbreviation for
Markovian)

D= deterministic (or constant, regular) inter-arrival or service time

E,= Erlangian distribution of order n for inter-arrival or service time

Gl=  general independent distribution of inter-arrival time

G= general distribution of service time

The model of Poisson input, exponential service, and single server is denoted by M/M/1.

3.0 Model Description and Mathematical Formulation

In this model we impose a limitation on the total number of customers should be in the system at any time. M is the total
number of customers allowed to be in the entire system, with not more than M — 1 persons permitted to wait in the queue line
at any instant. If a customer arrives when M persons are already in the system, then the customer is restricted from entering,
and is said to be lost from the system. The finite-queue model presented in this paper allows a statistical equilibrium to be
reached for any value of the intensity ratio A /u.

The simplest single-server model having both input and service processes described probabilistically is one with exponential
inter-arrival and service times (denoted by M/M/1). Specifically, assume

Exponential inter-arrival density = Ae ™™ .. ... ... (1a)

Exponential service time density = e~ ... (1b)

Define the number of customers n in the system at any point in time as including the persons waiting in line plus those in
service. Let t = O represent the system’s starting point in time, and define

P.(T) = probability that n customers are in the system at Time T............... 2)

Actually Pn(T) depends on the number of customers in the system at Time 0, but this dependence is suppressed in the
notation.

Let h > 0 be a very small interval of time. If there are n > 0 customers in the system at Time T + h, then we consider only the
possibilities that there were either n — 1, n or n + 1 customers at Time T. Any other possibilities are of relatively insignificant
probability. Consequently, for n > 0.

Po(T+h) = (A h) (L - wh)Pya(T) + (1 - A ) (L - ) Py(T) + (A h)(uh)Po(T) + (1 - A h)

(1 - uh) Prie(T) (hsmall) e e e e (3)

The first term on the right corresponds to the event of one arrival and no departure when n — 1 customers are in the system at
Time T. The second and third terms refer to the events of no arrival and no departure, and of one arrival and a departure when
n customers are in the system at Time T. and the final term relates to the event of no arrival and one departure when there are
n + 1 customers in the system at Time T. As the symbol (=) indicates, the expression in (3) is approximate; it can be made
exact by adding probability terms with coefficients h*, where k > 2.

Bringing the term P,(T) to the left-hand side of (3), dividing by h, and letting h—0, yields

ZF_;_n = AP (T)—=(A+ )P (T)+ 1P, ,(T) forn>0.......cooi 4)
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This expression is exact because the terms neglected in (3) become 0 as h—0.
Similarly, one can show that

dP _

dF:_/lpo(T)"'/uPl(T) FOrN =0, ).
With moderately advanced analysis it is possible to solve the system of linear differential equations (4) and (5) for each
P,(T). (To do so, we must also state the number of customers i in the system at Time 0). The result is called the Transient

solution, since it depends directly on the value of T.
Suppose, however, we examine the values of P (T)as T — oo. If P (T)approaches a limiting value, say, P, and if E[n] is

finite for this limiting distribution, then we will say that the system reaches statistical equilibrium. We denote the resulting
P, values as equilibrium or stationary probabilities. The label “stationary” derives from the property that if the number of
customers in the system at any Time t is given according to the probability distribution P, then for any h > 0, P, is also the
probability that n customers are in the system at Time t + h. The value of P,, can also be interpreted as the limiting fraction of
an arbitrarily long period of time during which the queue contains n customers.

Provided
A . . :

p= — < 1 (traffic intensity assumption),...............ccceeeieiennnne (6)
U

the stationary probabilities P, always exist; the symbol p (rho) in (6) is frequently called the traffic intensity.
We can find the equilibrium solution Pn(T) =P, for all T, by using the consequence that each dP,/dT must equal 0O, if the

solution P, is indeed independent of T. Hence to obtain P, all we need to do is set the time derivatives in (4) and (5) equal to
0, yielding

0=APu— (A +u@)Py+uPysy forn=1,2,3..................... 7)

0=- AP, +uP; forn=0.......cccooiiiiiini (8)

The system of difference equations (7) and (8) is easily solved recursively, starting with (8),

P, =P, (%] 2 Pttt 9)

And proceeding to (7) forn=1,2, ...,

P = PO0 e (10)
It is easy to verify that P, in (10) does satisfy (7). Given (6),
= = P

P — P n_ 0 :l .................................................. (11)
HZ:(; n 0”2:(;,0 1
and it follows that P, = 1 — p, so that
P,=(1-p)p" forn=0, 1,2,... (geometric distribution).......... (12)
with

number of

.................... 13

E| customers | = E[n] =1L =% Var [n] =% (13)

in system AT a=r)
P[n >N] = p"

Notice that the probability distribution in (12) depends only on the traffic intensity ratio (A /u = p). Since p(= 1 — Py) is also
the fraction of time the server is busy, the quantity p is sometimes called the system’s utilization factor. It is significant that
this interpretation of p remains valid even when both the inter-arrival and service time distributions are general (that is, for
the model GI/G/1).

» Letting P, (T/i) denote the transient solution to (4) and (5) when i customers are in the queue at t = 0, it can be shown

that

() [Po(T]i)- Py @ T2/

Consequently, P,(T | i) approaches P, at least exponentially by a factor proportional to T. Note, however, that the
proportionality factor, which can be written as (ﬁ _ \/;)2 (approaches 0 as A approaches . Hence T may have to be very

large before P,(T | i) and P, are nearly equal; this is especially so when p is large and i is small.
Operating characteristics. The expected line length can be found by noting that
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line length = {number in systemifn=0

.......... (14)
Number in system — 1 if n > 0,
so that
E[line length] =0. Po+ S~ _1p =S pp" =S p
2 (-, =3nP" -3 P,
=E[N]-(1-Po)= £° _ 2 (15)

1-p  u(u—2)
Next consider the time intervals when the server is idle. Since these begin when a service terminates and end when a new
arrival occurs, the length of the idle periods has the same distribution as the inter-arrival time, that is, exponential with mean

1/ A . Let the period of length T be so long that we can safely utilize expected values. Then the server is idle for [TP, = T(1 -
p)] units of time, and [T(1 - p)(I/A) = A T(1 - p)] is the number of separate idle periods during T. Because idle and busy

periods alternate, A T(1 - p) is also the number of separate busy periods during T, and pT is the total duration of all busy
periods.

Consequently,

E[length of busy period]=__ AT _ 1 . .(16)
ATA=p) wu-4

and

E{numberof customers}_ E{Ienght of }_1 __________________ (17)

served per busy period busy period| 1-p

The relations (16) and (17) are actually valid for any service time distribution.

Now turn to the probability density for the time a customer spends in the system, which is defined as the interval a customer
waits in line plus the time in service. Suppose the system is in statistical equilibrium, so that when a new customer arrives, he
finds n customers in the system ahead of him with probability P, given by (12). Assume that the queue discipline is first
come, first served. Then the total time the customer spends in the system is comprised of the sum of n + 1 independent and
identically distributed exponential random variables, and has a gamma density.

[Total time the customer spends in the system]

= L) Y for >0, (18)

n!
as we already saw in (15). Hence the density of time that a customer who arrives at an arbitrary instant spends in the system
is given by

hw) :i(lp)pn[u(ﬂwr)ﬂ e } ........................................... (19)
n=0 -

u= (1 - p)e*" (exponential distribution),

with

E[time in "ne] — E[W] — 1 — i’ ............................... (20)

ul-p) wu—-4

E[time in line] = E[time in system] — E[service time] =

1 [ P ): PP (21)

w\l-p) p(u-2)

For fixed p, the expected times in the system and in line vary inversely with the service rate . Suppose you look at only the time that a
customer waits in line, where we exclude the person’s service time as well as that of any customers who arrive when the server is idle, then
it can be proved that the conditional probability density of the time spent in line by those customers who do have to wait in line is also
given by (19) for any inter-arrival distribution, that is, for the model GI/M/1. Consequently, E[w] in (20) is also the conditional expected
time waiting in line given that a customer does have to wait in line.

The steady-state difference equations (7) and (8) still apply forn=0, 1,..., M — 1, but the equation for n= M is

O N (22)
The corresponding solution forn=0, 1,..., M is
1',0 LT AP 23
P, = (1_pM+1]p forA= u (23)
1
for A=
M 11 a
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Of course, when A <pand M — oo, P, in (23) agrees with (12). By elementary calculations it can be shown that for 4 #p
number of

E| customers |=E[n]= (110’0){
in system

__p (M)

- 1-p - 1_pM+l

Observe when A <y, the expected number of customers in this system is smaller than for the previous case of unlimited line

length (13). Similarly, it can be proved that A =p
number of

E| customers |= E(n) =% fori=u
in system

1-(M +1)p™ + MpM*
1_pM+1

A delicate question arises in defining the amount of time a customer spends in the system (and waiting in line). If a customer
arrives when there are already M persons in the system, the customer does not enter and consequently literally spends no time
in the system. Hence average time spent in the system can be defined so as to refer either to all customers who arrive,
regardless of whether they enter, or only to those customers who are permitted to enter. We adopt the latter, since in most
situations the interest in delay time is only for those who actually do enter the system. So, referring to a customer arriving at
an arbitrary moment who does join the system, and given that the discipline is first come, first served, it can be shown that

E{timein} _Ew)=-_ 7 {1—pr1+(M -1p" }+l

system u(1-p) 1-p" u
M
1 MpM FOF At g, ++ooeveesrsesmsmsosssmsmsmniniisiain (26)
ul-p) ul-p"™)
and
timei
E{ 'me'”}EE[W]zll L @7)
system u 2

4.0 Sensitivity Analysis:
Various operating characteristics of this simple queuing system are displayed in Table 1 for different values of traffic

intensity p and service rate u.

Notice that as the traffic intensity p increases, the expected values of the number of customers, the line length, the time in the
system, and the time in line [formulas (13), (15), (20),] and (21) above] all increase rapidly. Although these quantities can be
made arbitrarily large for sufficiently large p < 1, the system may take an accordingly long time to reach steady-state
equilibrium. For a given service rate x4, when intensity p is small, most of the expected time a customer spends in the system
is due to the average service time 1/u; but as intensity p increases (that is, as the arrival rate A increases), most of the
expected time spent in the system is due to waiting in line.

For the sake of illustration, suppose the unit of time in Table 1 is an hour (or 60 minutes) and that p = .8, then on the average,
the server is idle .2 hour (or 12 minutes per hour) and there are four persons in the system. If 4 = 10, so that the service rate is
10 per hour (or at the rate of six minutes per customer), then the average time a customer spends in the system is .5 hour (or
30 minutes), and .4 hour (or 24 minutes) of this is due to waiting in line. If p remains .8 but both the arrival rate and service
rate double, so that u = 20, then the average times spent in the system and in waiting are cut in half.
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Table 1: Operating Characteristics of M/M/1 System.
Probability Expected Expected u=10 uw=20
Traffic of Server Number in Line Timein | Timein Time Time in
Intensit | Idle=1-p System = Length=| , System Line 1 in Line
2
yp P plL-p System
1-p
A .9 A1 .01 1 A1 .01 2 .06 .01
3 N4 43 A3 3 14 .04 6 .07 .02
5 5 1.00 .50 5 20 10 10 10 .05
N4 3 2.33 1.63 7 .33 .23 14 A7 A2
8 2 4.00 3.20 8 .50 40 16 .25 .20
9 1 9.00 8.10 9 1.00 .90 18 .50 45
.95 .05 19.00 18.05| 9.5 2.00 1.90 19 1.00 .95
.99 .01 99.00 98.01 | 9.9 10.00 9.90 19.8 5.00 4.95
.999 .001 999.00 998.00 | 9.99 100.00 99.90 | 19.98 | 50.00 49.95

A =arrival rate per unit of time. Note: E[length of Busy Period]= E[time in System]

W = service rate per unit of time

5.0

p = A /u traffic intensity

Conclusions

Queuing systems are prevalent throughout society. The adequacy of these systems can have an important effect on the
quality of life and productivity. In this paper we have derived a single-server model with Poisson input and exponential

service.

This model imposed a constraint on the number of customers expected to wait in line at any given time. From

the sensitivity analysis of the model, it is observed that as the traffic intensity increases, the number the number of
customers the line length, the time in the line increases rapidly.
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