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Abstract 
 

We propose a second-order finite difference scheme to study the flow of a viscous fluid 

in a stationary horizontal channel with porous walls. Following conservation 

principles, we obtain the governing equation in the form of a convection-diffusion 

problem. Naive discretization leads to either oscillatory solutions or low order accurate 

schemes. So second-order and non-oscillatory scheme is desirable. We use the idea of 

information propagation as indicated by the convective term. This informs the use of a 

backward discretization for first spatial derivative leading to a non-oscillatory second-

order accurate scheme in space. The error estimates are obtained theoretically, and the 

method of manufactured solutions is adopted to verify the convergence of the method. 

The numerical results verify that the method is truly second-order in space, convergent 

and free of any numerical oscillations. We probe the effects of the model parameters 

on the flow and found that increasing the suction parameter decreases the magnitude 

of x-velocity component while increasing the pressure gradient increases the 

magnitude of x-velocity component. 

 
 

1. Introduction 

Understanding water flows in channels (closed and open) is very important due to their impact on man and environment. 

For example, flooding has caused the loss of over 500,000 lives and the damage of properties worth over twenty billion 

US dollars [1]. Such understanding can help to enhance evacuation during flood disasters, hence reduce the consequences 

on lives and properties. Flow understanding is also crucial in the design of drainage and other water supply systems. 

Therefore, studying the flow of fluids in channels remains an important research area. Computational fluid dynamics 

(CFD) has become an important approach to study fluid flows and related phenomena. Several applications of CFD are 

discussed in [2]. 

Hyperbolic shallow water models and conservative implicit method are developed for the study of both pipe and open 

channel flows in [3]. The numerical scheme is based on total variation diminishing methods. The performance of the 

model was tested in simplified looped pipe network and very good agreement was observed. Capart and collaborators [4] 

also carried out both numerical and experimental study of trans-critical flows in closed sewer pipes. They considered 

shock-capturing schemes and the numerical results were validated against experimental results. Other combined 

numerical and experimental studies of various flows are reported in [5, 6]. 

Bourdarias and Gerbi [7] proposed a dual model for pipe flows with both free surface and pressurized conditions. The 

interface between the two flow types is treated as a free boundary and a Roe-like conservative scheme is adapted. The 

numerical results are compared with experimental data obtained from a laboratory test, and the data was correctly 

reproduced. Malekpour and Karney [8] proposed a non-oscillatory Godunov-type scheme for pressurized pipe flows. The 

numerical results are verified using analytical solutions. 

The Preissmann slot method is adapted in Fernndez-Pato and GarcaNavarro [9], see also [10], to formulate a finite 

volume model for the simulation of networks of unpressurized pipe flows with isolated pressurization. The validation is 

against both analytical solutions and experimental data. Nanofluids flow between parallel plates are considered in [11]. 

Recent studies concerning pipe flows can be found in [12-15], see also [16]. 
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Here, we are interested in flows through closed channels with porous walls; drainages are examples. Such pressure 

driven porous-channel flows often result to convection-diffusion equations which are known to be intractable by naive 

numerical discretization [17-23]. In particular, naive high-order central schemes lead to oscillatory solutions and upwind 

methods are only first order accurate in space [24]. This justifies the need for high-oder methods that are non-oscillatory. 

Therefore, our goal in this paper is to formulate a channel flow model, propose a non-oscillatory, second-order scheme for 

the model, analyse and verify the scheme and use the implemented scheme to investigate the impact of flow parameters 

on the flow. 

The rest of the paper is organised as follows: section 2 derives the fluid dynamics model while section 3 presents the 

numerical scheme and theoretically prove the accuracy. In section 4 we present the numerical experiments first to verify 

the convergence and its order, second to demonstrate the non-oscillatory property and lastly to investigate the effect of 

flow parameters on the flow. The paper is concluded in section 5. 

 

2. Problem Formulation 

 
Figure 1: Physical set-up of Channel flow 
 

Let  and u∗ : R → R. Figure 1 depicts an infinitely long horizontal channel with the 

bottom and top walls at z = 0 and z = h respectively. The walls are assumed porous. Assuming that fluid flows 

horizontally along the channel, the flow is driven by a constant pressure gradient, and there is no other external forces on 

the fluid. The lateral width of the channel is also assumed infinitely long so that the lateral walls have no effect on the 

flow. Further, we assume that a velocity (in the form of suction) of magnitudeѡ ϵg(t) is directed towards the porous 

walls (along z−axis). The fluid is incompressible, Newtonian and has a unit kinematic viscosity, then by considering no-

slip conditions on the walls and assuming that the initial velocity is (u*(z) ,0, ϵg(t)), the fluid velocity component u along 

the channel is governed by the following problem: find the unknown u(z,t) such that: 

 (1) 

where 0 ≤ |g(t)| ≤ gmax<∞, for all t ∈ [0,T] and f(z,t) represents the sum of all external forces acting on the fluid, here 

assumed to be zero. We included f in the model since the numerical scheme to be formulated in the next section will be 

for a general model including the sources f. In this study, we assume g(t) = e
−kt

. We also define the pressure gradient term 

𝑃𝑥 =
1

𝜌

𝜕𝑃

𝜕𝑥
 

which is assumed constant. The constant shall be called the velocity parameter or suction parameter, while ρ is the fluid’s 

constant density. Our goal is to design a numerical scheme for the problem (1) which is secondorder and free of 

numerical oscillations, and to understand the effects of the flow parameters on the flow. 

 

3. Numerical Scheme 

In order to apply the method of manufactured solutions [25, 26] for verifications, we formulate the numerical schemes for 

problem (1) in a more general form including a source term f(z,t). 

Let M ∈ Z
+
;n = 0,1,2,··· ; and i= 0,1,2,3,··· ,M. Define ∆z ≔ h/Mand ∆t be given. We discretize the domain, zi= i∆z∀i, 

and in time t
n
= n∆t∀n, and let u

n
i≈ u(xi,t

n
). The most delicate term to discretize in (1) is the convective term. It is known 

that a central discretization (though second order) leads to oscillatory solution and a simple upwind scheme is only first-

order [24]. Here, we approach the problem following the fact that the convection coefficient is positive, hence we propose 

a second-order backward (upwind) discretization leading to the following numerical scheme: 
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The above scheme is complimented with the following conditions: 

 𝑢0
𝑛+1 = 𝑢𝑀

𝑛+1 = 0           ∀𝑛 

𝑢0
𝑖 =  𝑢∗ 𝑧𝑖                   ∀𝑖 

        (3) 

The scheme (2)-(3) form the complete numerical formulation. Before applying the scheme to simulate the flow, we 

first study its accuracy. Hence in the next sub-section we show that the scheme is second-order accurate in space and first-

order in time. 
 

3.1 Error Analysis 

We define the truncation error, Ti
n 
for the scheme (2)-(3), as follows: 

 
Theorem 3.1 (Consistency). The truncation error, Ti

n 
satisfies: 

   (4) 

for all n and for all i, 

where gmax:= max|g(t)|,Mtt:= max|utt(z,t)|,Mzzz:= max|uzzz(z,t)| and Mzzzz:= max|uzzzz(z,t)| taking all over (z,t) ∈ [0,1] × [0,T] . 

Note that subscript, z, indicates partial derivatives. 

Proof. By the Taylor’s theorem: 

. 

Hence, 

 
Hence, the scheme is second order accurate in space and first order in time. 
 

4. Numerical Results 

This section presents some numerical experiments first to verify the convergence of the proposed scheme, next to we 

demonstrate the non-oscillatory property of the computed solutions by comparing with those of a central scheme and a  
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backward (upwind) scheme. Finally, we investigate the flow variations with the velocity parameter and the pressure 

gradient term Px.Except otherwise stated, we investigate the results for h = 0.2 and k = 0.5. 

In the next two sub-sections, we use the method of manufactured solutions to verify the convergence and non-

oscillatory property of the method. To this end we consider the exact (”manufactured”) solution derived in [24] which is 

given by 

 
Where 

𝐴 =  
𝑃𝑥ℎ

2𝑘
     and   𝐵 =  

𝑃𝑥ℎ

2𝑘
(1+cos  ℎ 𝑘 )

sin  ℎ 𝑘 
 

This corresponds to the solution of problem (1) with a source term, 

, 

and the initial condition: u∗(z) = w(z,0). 

 

4.1 Experimental Order of Convergence (EOC) 

Here, we numerically verify the convergence (and its order) for the presented scheme. We set ∆t=0.005, ϵ=100, Px=1, and 

the following number of grid points, 3 × 2
j 
for j = 0,1,2,··· ,10. For each grid, we terminate the simulation after time t 

=0.5, and also the errors (in2-norm). The errors and experimental order of convergence (eoc) are shown in table 1. It can 

be seen that the scheme is second-order in space as theoretically proven. 
 

Table 1: Experimental Order of Convergence 

No. of Grid Points Error EOC 

4 0.00161095165193 - 

8 0.000404379131977 1.9941327424973307 

16 8.70609703385e-05 2.215610543856763 

32 2.73347528001e-05 1.67128977109692 

64 8.72271630915e-06 1.6478869542219423 

128 2.48438228713e-06 1.811890282383399 

256 6.61848390175e-07 1.9083145055951183 

512 1.7092562467e-07 1.9531320784028479 

1024 4.3716872774e-08 1.9671065892362483 

2048 1.13601499531e-08 1.9442083250712603 

4096 3.2223872909e-09 1.8177800748456838 

 

4.2 Comparison with Other Methods 

In this sub-section, we verify the non-oscillatory property of the method, comparing it with a central scheme and a 

backward (upwind) scheme. The exact solution is also the manufactured solution listed above in (5), see [24]. 

The numerical results computed with the scheme (2)-(3) and those of central and first-order backward schemes are 

displayed in figures 2-4 using 81, 41 and 21 grid points respectively. We can see that when 81 grid points (figure 2) are 

used, the proposed scheme and the central scheme highly agree with the exact solution, while the first-order backward 

scheme has the least accuracy. This is expected since the backward scheme is only first-order. 

Then, we coarsen the grids by using only 41 grid points in figure 3 and see that the solution computed by the central 

scheme begins to develop numerical oscillations while those of the first-order backward scheme becomes much less 

accurate, but those of the proposed scheme remains both highly accurate and non-oscillatory. 

We further coarsen the grid - using only 21 grid points - see figure 4. We can see clearly that the results computed by 

the central scheme gets highly oscillatory while that of the first-order backward scheme is poorly accurate. But the 

solution computed by the proposed scheme remains non-oscillatory while maintaining good accuracy. This verifies the 

non-oscillatory and high accuracy of the method. 
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Figure 2: Comparison of schemes using 81 grid points 

   
Figure 3: Comparison of schemes using 41 grid points                     Figure 4: Comparison of schemes using 21 grid points 
 

4.3 Flow Analysis 

In this final sub-section, we investigate the influence of the flow parameters, and Px, on the horizontal velocity 

components - see figures 5 and 6. The results are computed for problem (1) using f = 0 and u∗(z) = w(z,0) with w given in 

(5). We can observe that increasing the velocity parameter decreases the velocity magnitude (see figure 5), while an 

increase in the pressure gradient increases the velocity magnitude (see figure figures 6). These are the expected results 

since the velocity parameter tends to direct the flow towards the vertical direction (towards the walls) hence should 

decrease the velocity along the channel. Also, the flow is driven by pressure gradient, so an increase in it will also 

increase the flow (velocity) and that is what is exactly reproduced by the numerical experiment in 6. We conclude that the 

numerical results correctly reproduced the expected physical results. 

          
              Figure 5: Variation of velocity with   Figure 6: Variation of velocity with pressure gradient 

We have formulated a channel flow model, derived a high-order scheme for the model and numerically demonstrated the 

non-oscillatory nature of the computed solutions. We also demonstrated that the scheme is convergent and that the flow 

increases with increasing pressure gradient but decreases with increasing suction/velocity parameter. 
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