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Abstract 

Principal components analysis is a widely used multivariate technique where by 

researchers attempt to reduce the dimension of a large number of interrelated variables 

into few non related variables and retaining as much as possible the variation present 

in the data set. To decide how many components to be retained in principal 

components analysis remained a very challenging task to researchers. A decision 

which if made wrongly has drastic effect. Several methods were introduced or modified 

in many studies. In this study, two new modifications were introduced. The first 

method looked at confidence intervals around each eigenvalue and components are 

retained, if the square root of the entire eigenvalue is greater than one (1.0). Method of 

Monte Carlo was used to simulate multivariate normal data for the analysis. Three 

different levels of sample size, components loading strengths and numbers of 

components were used to perform principal components analysis based on correlation 

matrix.  Results from this first method (HGR1) shows that the method is better than the 

traditional Guttmann rule (GR) and has the same bias as MGR. The second method 

(HGR2) uses the square root of eigenvalues, and then confidence intervals are 

constructed around these eigenvalues. Components are therefore selected if the entire 

confidence interval is greater than one (1.0). HGR2 was the best overall method in all 

conditions. 
  

            Keywords: Gutmann’s rule, principal component, eigenvalue, confidence interval 

1. Introduction 

The origin of Principal Components Analysis techniques are often difficult to trace. However, it is generally accepted that the 

earliest descriptions of the technique now known as Principal Components Analysis(PCA) were first given by [1],[2]. 

However, Pearson’s comments regarding computations for over 50 years before the widespread availability of computers are 

interesting. He states that his methods ‘can be easily applied to numerical problems,’ and although he says that the 

calculations become ‘cumbersome’ for four or more variables, he suggests that they are still quite feasible. Thirty two (32) 

years between Pearson’s and Hotelling’s papers, very little relevant material seems to have been published, although in [3] 

indicates that [4] adopted a similar approach to that of Pearson. Also, a footnote in [2] suggests that while [5] was working 

along similar lines to Hotelling. Hotelling chooses his ‘components’ so as to maximize their successive contributions to the 

total of the variances of the original variables, and calls the components that are derived in this way the ‘principal 

components. Hotelling’s derivation of PCs uses Lagrange multipliers and ending up with an eigenvalue/eigenvector problem, 

but it differs in three respects. First, he works with a correlation, rather than covariance matrix, second, he looks at the 

original variables expressed as linear functions of the components rather than components expressed in terms of the original 

variables; and third, he does not use matrix notationin [6]. 

In PCA, selecting the right number of components to retain is very challenging. Also, in [7], a method called Guttmann rule 

(GR) was introduced, all components whose eigenvalue is greater than one (1.0) were selected. Also, in[8], a modification of  
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the Guttmann rule was proposed. In their work, confidence intervals were computed around each eigenvalue and components 

were selected when the entire confidence interval of the eigenvalue is greater than one (1.0). The modification shows a better 

performance than the Guttmann rule. Their new method tends to over select the components to be retained. 

A further modification to the Guttmann rule which is called Hybrid Guttmann rule I (HGR1) will be proposed in this work. 

Firstly, Confidence interval will be computed around all eigenvalues, and then components will be selected if the square root 

of the absolute values of the entire confidence interval is greater than one (1.0). 

Secondly, square root of all absolute values of eigenvalues will be computed and confidence intervals will be built around 

each eigenvalue, then number of components to be retained will be selected if the entire confidence interval is greater than 

one (1.0) and this modification will be known as Hybrid Guttmann rule II (HGR2). 

However, the purpose of this work is to introduce a new method which may help in determining the correct number of 

components to be retained with the smallest bias in PCA. 

As such, in [8], a modification of Guttmann rule in determining the number of factors in Exploratory Factor Analysis was 

proposed. In their study, confidence intervals were created around eigenvalues and factors were retained if the entire 

confidence interval is greater than 1.0. Simulated data were used at different levels of sample size, loading strength and 

number of factors. The new method outperforms the traditional Guttmann rule but does not outperform the Mean Average 

Partial and Parallel Analysis. 

Also, in [9] is another researcher who worked in similar area, his study comprised of two phases. The first phase explore the 

Guttmann rule, Scree plot, Bartlett’s chi-square test, Parallel analysis on normal data using the estimation method of 

maximum likelihood. Single outlier was introduced in generating sample correlation matrix for different conditions (sample 

size, number of variables and estimation method). The second phase explored the Guttmann rule, Scree plot, Mean Average 

Partial and Parallel Analysis of data also containing outlier at different levels of sample size, number of variables and 

estimation method. The performance of Parallel Analysis and Guttmann rule were generally best across all conditions. 

 

2. Methodology 

It is the intention of this work to introduce a further modification of Guttmann rule known as Hybrid Guttmann rule (HGR) 

and to compare between the traditional Guttmann rule (GR), modified Guttmann rule (MGR) and the Hybrid Guttmann rules. 
 

Simulation 

Simulated data will be the consideration of this study. Simulated data with sample sizes of 30, 150 and 240 were used. The 

number of components considered are 15, 30 and45. Also, 0.3, 0.5 and 0.7 are used as our components loading strengths. 
 

Monte Carlo Simulation 
Method of Monte Carlos with R was used to simulate data having similar characteristics (sample size, loading strengths and 

number of components) with the data used in previous study. There are twenty four different conditions for simulations. 

However, simulation of multivariate random numbers with P=15, 30, 45, loading strengths=0.3, 0.5, 0.7 and Sample sizes of 

30, 150 and 240. 
 

Guttmann’s Rule 

This traditional method introduced by [7], was used to determine the relevant components in PCA as one of the methods, 

eigenvalues were computed from correlation matrix using R. All components with eigenvalues greater than one (1.0) are 

retained as the most relevant components. Below is the command that computed eigenvalues from correlation matrix when 

p= 0.3, n=30 and loading strength =0.3; 

> x=rnorm(450,0:0.3) 

> x=matrix(data=x,nrow=30)      

>princomp(x) 

Call: 

princomp(x = x) 

Standard deviations: 

Comp.1       Comp.2      Comp.3     Comp.4    Comp.5      Comp.6    Comp.7     Comp.8  

1.6463562 1.4838177 1.4188540 1.3405194 1.2006445 1.1208342 1.0782320 0.9434674  

Comp.9       Comp.10    Comp.11  Comp.12   Comp.13   Comp.14    Comp.15  

0.9051163 0.7385262 0.7276066 0.6153441 0.5652622 0.4307268 0.3334864  

 15 variables and 30 observations. 

> R<-cor(x) 

>eigen(R) 

$values 

[1] 2.3247442 2.0194171 1.8733817 1.4648847 1.3919827 1.1310513 1.0633430 
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[8] 0.9143492 0.6627826 0.5776558 0.5036371 0.4294573 0.3412821 0.1834562 

[15] 0.1185748 

The number of components with eigenvalues greater than one are seven, therefore original Guttmann rule suggests that the 

number of relevant components to be selected is seven (𝑀 = 7) 
 

Bartlett’s Test for n=30, p=15, and loading strengths =0.3 

𝐻0: 𝑙14 =  𝑙15   (The 14
th

 and 15
th

 components contributed the same amount of variation) 

𝐻1: 𝑙14 ≠  𝑙15   (The 14
th

 and 15
th

 components contributed different amount of variation) 

This means that the true number of relevant components is fourteen (M=14). 

𝐶𝑘 =  −  𝑛 −
2𝑝 + 11

6
  ln 𝑙𝑘                                                                    (1)

15

𝐾=14

 

=  −  30 −
41

6
   ln 0.1186 + ln 0.1835  

=88.6715 and 

χ
1−α ,   P 

P−1

2
                                                                                                                                              (2)

2  

=  𝜒0.05,105  
2  

= 124.342 

Since 𝑐𝑘  < 𝜒0.05,105  
2 we accept 𝐻0 and continue to test further until  𝐻0 is rejected. 

Testing further, we have; 

𝐻0: 𝑙13 = 𝑙14 =  𝑙15   (The 13
th

, 14
th

 and 15
th

 components contributed the same amount of variation) 

𝐻1: 𝑙13 ≠ 𝑙14 ≠  𝑙15   (The 13
th 

to 15
th

 components contributed different amount of variation) 

This means that the true number of relevant components is thirteen (M=13). 

𝑐𝑘  =  −  30 −
41

6
   ln 0.1186 + ln 0.1835 + ln 0.3413  

= 113.5755 

𝐻0: 𝑙12 = 𝑙13 = 𝑙14 =  𝑙15   (The 12
th

 to 15
th

 components contributed the same amount of variation) 

𝐻1: 𝑙12 ≠ 𝑙13 ≠ 𝑙14 ≠  𝑙15   (The 12
th

 to 15
th

 components contributed different amount of variation). This means that the true 

number of relevant components is twelve (M=12). 

𝑐𝑘  =  − 23.1667  −5.7476 =  133.15 

𝐻0is now rejected with M=12, therefore GR bias = 𝑀 − 𝑀 = 12 − 7 = 5 
 

This was how bias was computed for twenty four (24) different conditions (three levels of sample size, loading strengths and 

number of observed components). 
 

Modified Guttmann Rule 

From the modification of Guttmann rule proposed by [8], confidence intervals (CI) were created around each eigenvalue and 

components are retain if the entire eigenvalue is greater than one (1.0). The equation for calculating confidence interval of 

eigenvalues is 

𝑙𝑖 ±  𝑍1−
𝛼

2

  
2𝑙𝑖

2

𝑛
                                                                                                                 (3) 

Where, 𝑙𝑖represents the observed eigenvalue, 𝑍1−
𝛼

2
  represents the appropriate Z- value for the confidence interval, n is the 

sample size, and  𝛼 is the level of confidence. 

From Bartlett’s test, M=12 

𝑙11 = 0.5036 

CI = 0.5036 ± 1.96(0.13) 

MGR= 0.7585+0.2487= 1.0072 which is ˃ 1 

for𝑙12 = 0.4295 

CI = 0.4295 ± 1.96(0.1109) 

MGR= 0.6494 + 0.2121= 0.8615 which is ˂ 1 

So 𝑀 = 11 

MGR bias = 12-11= 1 
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Hybrid Guttmann Rule I (HGR1) 
This is one of the new methods that is introduced in this study, eigenvalues from correlation matrix were used for all the 

different data sets. 

 

𝐻𝐺𝑅1 =  𝑀𝐺𝑅                                                                                             (4) 

From Bartlett’stest , M=12 

Taking 𝑙11 = 0.5036 

𝐻𝐺𝑅1 =  𝑀𝐺𝑅 

=  1.007 

=1.0036 and is ˃ 1 

For 𝑙12 = 0.4295 

𝐻𝐺𝑅1 =  0.8615 = 0.9282 Which is ˂ 1 

So,𝑀 = 11and 𝐻𝐺𝑅1𝑏𝑖𝑎𝑠 = 12 − 11 = 1 

 

Hybrid Guttmann Rule II (HGR2) 

This is another approach also introduced in this work;  

𝐿𝑖 =  |𝑙𝑖|                                                                                                      (5) 

Where 𝑙𝑖  is the observed eigenvalue. Confidence interval for 𝐿𝑖  are computed and all components with entire eigenvalue (𝐿) 

greater than one (1.0) will be retained. 

Confidence interval for 𝐿𝑖  is 

𝐿𝑖 ± 𝑍1−
𝛼

2

  
2𝐿𝑖

2

𝑛
  

From P=15, n=30 and loading strength = 0.3, we have M=12 

With 𝑙13 = 0.3413, 

𝐿𝑖 =  0.3413 = 0.5842 

CI = 0.5842 ± 1.96(0.1508) 

HGR2 = 0.8798+0.2886=1.1684 this is > 1 

𝐻𝐺𝑅2𝑏𝑖𝑎𝑠 = 11 − 12 = −1 

This was how bias are computed for all the different levels of p, n and loading strengths that were used in this study. 
 

3. Results 

Table 1: Summary of Barttlet test with Loading Strength = 0.3  

N P=15 

M 

P=30 

M 

P=45 

M 

30 

150 

240 

12 

14 

14 

28 

29 

29 

- 

44 

44 

α= 0.05 

Table 1 showsthe required number of relevant components (M) that should be retained when loading strength is 0.3 for 

different samples sizes and numbers of components. 

Table 2: Summary of Barttlet test with Loading Strength = 0.5 

N P=15 

M 

P=30 

M 

P=45 

M 

30 

150 

240 

11 

14 

14 

29 

29 

29 

- 

44 

44 

α= 0.05 

Table 4.02 showsthe actual number of relevant components (M) that should be retained when loading strength is 0.5 for 

different number of samples (n) and different number of components (P). 
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Table 3 summary of Barttlet test when Loading Strength = 0.7 

N P=15 

M 

P=30 

M 

P=45 

M 

30 

150 

240 

12 

14 

14 

29 

29 

29 

- 

44 

44 

α= 0.05 

Table 4.03 showsthe actual number of relevant components (M) that should be retained when loading strength is 0.7 for 

different number of samples (n) and different number of components (P). 

Table 4: Descriptive Statistics of Bias for the Four Methods 

Statistic GR  Bias MGR  Bias HGR1  Bias HGR2  Bias 

Mean 

Median 

Std. Deviation 

Minimum 

Maximum 

14.33 

15.00 

7.26 

5.00 

25.00 

3.58 

1.50 

4.54 

-1.00 

12.00 

3.58 

1.50 

4.54 

-1.00 

12.00 

0.17 

-1.00 

2.93 

-2.00 

8.00 

95% confidence intervals were used for MGR, HGR1 and HGR2. 

Table 4 shows the descriptive statistics for the bias of all the four methods averaged across all number of observed 

components, sample sizes and loading strengths. As clearly shown, HGR2 method generally performs better than the other 

methods with a mean and standard deviation bias of 0.17 and respectively.The second least bias method in determining the 

number of relevant components in PCA is HGR1 and MGR with mean bias of 3.58 and median bias of 1.50. 

Table 5: Mean Bias across Number of components. 

Number of components GR(SD) MGR(SD) HGR1(SD) HGR2(SD) 

15 

30 

45 

6.33(1.32) 

15.56(0.88) 

24.33(0.52) 

-0.33(1.00) 

5.11(4.99) 

7.17(2.48) 

-0.33(1.00) 

5.11(4.99) 

7.17(2.48) 

-1.11(0.33) 

1.89(4.34) 

-0.5(0.55) 

95% confidence intervals were used for MGR, HGR1 and HGR2. 

Table 5 shows the mean bias across number of observed components for all the four methods. The HGR2 method 

outperforms the rest of the methods with a mean bias of -0.5 when number of components is 45. Surprisingly, MGR and 

HGR1 methods exhibit the same bias all through. 

Table 6: Mean Bias across components loading strengths 

components 

loading strength 

GR (SD) MGR (SD) HGR1 (SD) HGR2(SD) 

0.3 

0.5 

0.7 

14.25(7.6298) 

14.375(7.67) 

14.25(7.48) 

3.75(4.62) 

3.75(4.92) 

3.35(4.68) 

3.75(4.62) 

3.75(4.92) 

3.35(4.68) 

0.125(2.80) 

0.125(3.23) 

0.25(3.15) 

95% confidence intervals were used for MGR, HGR1 and HGR2. 

Table 4.06 is mean bias across three different loading strengths. From the above table it is seen that HGR2 is the best with a 

mean bias of 0.25 when loading strength is 0.7. 

Table 7: Mean Bias across different sample sizes 

N GR (SD) MGR (SD) HGR1 (SD) HGR2(SD) 

30 

150 

240 

10.83(6.4) 

15.33(8.23) 

15.67(6.95) 

6.33(5.83) 

3.56(4.64) 

1.78(2.64) 

6.33(5.83) 

3.56(4.64) 

1.78(2.64) 

3.17(4.95) 

-0.67(0.50) 

-1.00(0.00) 

95% confidence intervals were used for MGR, HGR1 and HGR2. 

From the above table, HGR2 outperformed the remaining methods with mean bias of -1.00 and standard deviation of 0.00. 

Table 8: Mean Bias for different Ratios of Sample Sizes to Number of Observed components by Methods 

Ratio GR(SD) MGR(SD) HGR1 (SD) HGR2(SD) 

2:1 

5:1 

8:1 

10:1 

16:1 

5(0) 

15(0) 

15(0) 

6(0) 

8(0) 

1.00(0) 

2.33(1.15) 

1.33(0.58) 

-1.00(0) 

-1.00(0) 

1.00(0) 

2.33(1.15) 

1.33(0.58) 

-1.00(0) 

-1.00(0) 

-1.33(0.58) 

-1.00(0) 

-1.00(0) 

-1.00(0) 

-1.00(0) 
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95% confidence intervals were used for MGR, HGR1 and HGR2. 

Table 8 shows the mean bias for different ratios of sample sizes to number of observed components by methods. From the 

results above, HGR2 method performs better than the rest methods with a mean bias of -1.33. 

 

4. Discussion of Results 

Descriptive Statistics 

Table 4.04 shows descriptive statistics for the bias of allfour methods through alllevels of observed components, sample sizes 

and loading strengths. It can be seen that HGR2 technique is the most favorable with an average bias of 0.17. Next to this are 

HGR2 and MGR with exactly the same average bias of 3.58. 

Number of observed components 

The various levels of number of components used are 15, 30 and 45. The average bias across these levels as shown in Table 

4.05 is quite revealing and interesting. The mean bias tends to be directly proportional to the number of components in all the 

methods considered.HGR2 almost appear to have a different pattern with others when number of components is 45.the 

method tends to over factor with large number of observed components. However the method (HGR2) is better than the rest 

three methods with average bias of 1.89. 

Factor loading strengths 

The average bias across loading strengths in Table 4.06 shows that as loading strengths increases, mean bias appears to 

decrease in MGR and HGR1 methods, but GR and HGR2 exhibit opposite behavior. In HGR2 the mean bias remain constant 

at 0.3 and 0.5 as loading strengths and suddenly decrease when loading strength moved to 0.7. Average bias across all the 

loading strength indicates that HGR2 has the least bias of 0.125 and is chosen as the best method. 

Number of sample sizes 

From the mean bias across three different sample sizes, HGR2 is mostly influenced by sample size. The method shows the 

smallest mean bias of -1.00 when sample size is 240. The mean bias continue to decrease with increase number of sample 

sizes. 

Ratio of sample size to number of observed components 

The mean bias as presented in Table 4.08 shows that HGR2 is the most affected by different ratio of sample sizes. Other 

methods are fairly sensitive to changes in sample sizes.  

 

5. Conclusion 

To identify the most suitable method of selecting the relevant number of components in PCA is very challenging; GR, MGR, 

HGR1 and HGR2 were compared in this study to ascertain the best method using different levels of sample size, loading 

strengths and number of observed components. HGR2 was found to be an improvement over MGR that was introduced in 

previous study by Russell and Ross (2014). 
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