THE SUBSEMIGROUP GENERATED BY NILPOTENTS IN THE SEMIGROUP OF PARTIAL ONE-TO-ONE ORDER-PRESERVING CONTRACTION MAPPINGS

${ }^{1}$ J. A. Agba, ${ }^{2}$ G. U. Garba and ${ }^{3}$ A. T. Imam
${ }^{1}$ Department of Mathematics, University of Calabar, Calabar, Nigeria
${ }^{2,3}$ Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

Abstract

Let $X_{n}=\{1,2, \ldots, n\}$. A partial one-to-one mapping α from X_{n} to itself is called orderpreserving if $x \leq y \Rightarrow x \alpha \leq y \alpha$ for all x, y in X_{n} and is called a contraction mapping if $|x \alpha-y \alpha| \leq|x-y|$ for all x, y in X_{n}. Let OCI_{n} be the semigroup of all partial one-to-one order-preserving contraction mappings on X_{n}. In this paper, we obtained the subsemigroup generated by the nilpotent elements in OCI_{n}.

1. Introduction and Preliminaries

If a finite semmigroup S contains zero, then it contains nipotents, and so it is natural to ask for a description of the subsemigroup of S generated by all nilpotents of S. In 1987, Gomes and Howie [1], and Sullivan [2] independently initiated the study of nilpotent generated subsemigroups of the semigroups of mappings on the set X_{n} by considering I_{n}, the symmetric inverse semigroup and P_{n}, the semigroup of all partial mappings on X_{n} respectively. In [3], and [4] Garba considered $I O_{n}$, the semigroup of all partial one-one order-preserving mappings and $P O_{n}$, semigroup of patial orderpreserving mappings on X_{n} respectively. Let
$O C I_{n}=\left\{\alpha \in I O_{n}:(\forall x, y \in \operatorname{dom}(\alpha))|x \alpha \leq y \alpha| \leq|x-y|\right\}$
a semigroup of partial one-to-one order-preserving contraction mappings. The Green's relations in $O C I_{n}$ have been characterised in [5]. Let N be set a set of all nilpotents in $O C I_{n}$, and $\langle\mathrm{N}\rangle$ the subsemigroup of $O C I_{n}$ generated by N. In section 2 , we give a characterisation of the elements of $\langle\mathrm{N}\rangle$.
For $1 \leq i \leq r$. An element α in $I O_{n}$ or $O C I_{n}$ is defined by
$\alpha=\left(\begin{array}{lll}a_{1} & a_{2} & \ldots \\ b_{1} \\ b_{1} & b_{2} & \ldots \\ b_{r}\end{array}\right)$
where $a_{i}, b_{i} \in X_{n}$ for $i=1,2, \ldots, r$. We now state some existing results that shall be used in the subsequent section. Following [3], we say that α in $I O_{n}$ has an upper jump of length k (a lower jump of length k) if there exists an i such that $a_{i+1}=a_{i}+k+1\left(b_{i+1}=b_{i}+k+1\right)$.
If $a_{i}=k+1\left(b_{i}=k+1\right)$ and $k \geq 1$, we say also that α has an upper jump of length k (a lower jump of length k).
Theorem 1.1 [3] For $n \geq 2$. Let $\alpha \in I O_{n}$. Then α is not a product of order-preserving nilpotents if and only if α satisfies the following:
(1) $a_{1}=1, a_{r}=n$ and all upper jumps are of length 1 ,
(2) $b_{1}=1, b_{r}=n$ and all lower jumps are of length 1

Theorem 1.1 [3] Let N be the set of all nilpotents in $I O_{n},\langle N\rangle$ the subsemigroup of $I O_{n}$ generated by the nilpotents, and Δ ($\langle N\rangle$) the unique k for which
$\langle N\rangle=N \cup N^{2} \cup \ldots \cup N^{k},\langle N\rangle \neq N \cup N^{2} \cup \ldots \cup N^{k-1}$.
Then $\Delta(\langle N\rangle)=3$ for all $n \geq 3$
Lemma 1.3 [5] Let α be in $I O_{n}$. Then α is a contraction if and only if
$b_{i+1}-b_{i} \leq a_{i+1}-a_{i}$ for each $1 \leq i \leq r-1$
Proposition 1.4 [6] Let α and β be partial mappings.Then
$\operatorname{dom}(\alpha . \beta)=(\operatorname{im} \alpha \cap \operatorname{dom} \beta) \alpha^{-1}$,
$\operatorname{im}(\alpha . \beta)=(\operatorname{im} \alpha \cap \operatorname{dom} \beta) \beta$,

Corresponding Author: Agba J.A., Email: maths4deworld @ gmail.com, Tel: +2348066083697
Journal of the Nigerian Association of Mathematical Physics Volume 52, (July \& Sept., 2019 Issue), 1 -8
and
$(\forall x \in \operatorname{dom}(\alpha . \beta)) \quad x(\alpha . \beta)=(x \alpha) \beta$.

2. The Nilpotent Generated Subsemigroup

An element $\alpha \in O C I_{n}$ is called nilpotents if $\alpha^{k}=0$ for some $k \geq 1$. First, we give in this investigation a characterisation of nilpotent elements in $O C I_{n}$.
Lemma 2.1 Let α be in $O C I_{n}$. Then α is a contraction nilpotent if and only if $x \alpha \neq x$ for every $x \in \operatorname{dom}(\alpha)$
Proof. If $\alpha=\emptyset$ (empty map). Then the result is trivial. If $\alpha \neq \emptyset$. Then α cannot be nilpotent if $x \alpha=x$ for some $x \in \operatorname{dom}(\alpha)$ for if $x \alpha=x$ for $x \in \operatorname{dom}(\alpha)$ then $x=x \alpha=x \alpha^{2}=\cdots$ Thus $\alpha^{n} \neq \emptyset$ for all $n \in N$. Hence α cannot be a contraction nilpotent.
Conversely, suppose that $x \alpha \neq x$ for all $x \in \operatorname{dom}(a)$ then $\operatorname{im}(\alpha) \neq \operatorname{dom}(\alpha)$ and so $\operatorname{dom}\left(\alpha^{2}\right) \subset \operatorname{dom}(\alpha)$. We now show that $\operatorname{dom}\left(\alpha^{k+1}\right) \subset \operatorname{dom}\left(\alpha^{k}\right)$ for all $k \in N$. Now by way of contradiction suppose that $\operatorname{dom}\left(\alpha^{k}\right) \neq \emptyset$ and $\operatorname{dom}\left(\alpha^{k+1}\right)=\operatorname{dom}\left(\alpha^{k}\right)$.

Then by proposition 1.4
$\operatorname{dom}\left(\alpha^{k}\right)=\operatorname{dom}\left(\alpha^{k+1}\right)=\operatorname{dom}\left(\alpha . \alpha^{k}\right)=\left(\operatorname{im}(\alpha) \cap \operatorname{dom} \alpha^{k}\right) \alpha^{-1}$
$\Rightarrow\left(\operatorname{dom}\left(\alpha^{k}\right)\right) \alpha=\operatorname{im}(\alpha) \cap \operatorname{dom}\left(\alpha^{k}\right)$
Since α is injective, $\left|\operatorname{dom}\left(\alpha^{k}\right)\right|=\left|\operatorname{im}(\alpha) \cap \operatorname{dom}\left(\alpha^{k}\right)\right|$ since n is finite $\operatorname{dom}\left(\alpha^{k}\right) \subseteq \operatorname{im}(\alpha)$. Then
$\operatorname{dom}\left(\alpha^{k}\right)=\operatorname{im}(\alpha) \cap \operatorname{dom}\left(\alpha^{k}\right)$
From (2.2) and (2.3) we have
$\operatorname{im}\left(\alpha^{k}\right)=\left(\operatorname{dom}\left(\alpha^{k}\right)\right) \alpha=\operatorname{im}(\alpha) \cap \operatorname{dom}\left(\alpha^{k}\right)=\operatorname{dom}\left(\alpha^{k}\right)$
which implies $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{dom}\left(\alpha^{k}\right)$. Since α is an order-preserving contraction so is α^{k}, and so $x \alpha^{k}=x$ for all $x \in$ $\operatorname{dom}\left(\alpha^{k}\right)$. Now fix $x^{\prime} \in \operatorname{dom}\left(\alpha^{k}\right)$ such that $x^{\prime} \alpha^{k}=x^{\prime}$, then since α is an order-preserving contraction and $\operatorname{dom}\left(\alpha^{k}\right) \subseteq \operatorname{dom}(\alpha)$ we have $x^{\prime} \alpha^{k+1}=x^{\prime}$. And so,
$x^{\prime}=x^{\prime} \alpha^{k+1}=x^{\prime} \alpha^{k} . \alpha=x^{\prime} \alpha$
Therefore, there exists at least one x^{\prime} in $\operatorname{dom}(\alpha)$ such that $x^{\prime} \alpha=x^{\prime}$. This is contrary to the earlier hypothesis that $x \alpha \neq x$ for all $x \in \operatorname{dom}(\alpha)$. Thus we have a proper inclusion
$\ldots \subset \operatorname{dom}\left(\alpha^{k+1}\right) \subset \operatorname{dom}\left(\alpha^{k}\right) \subset \cdots \subset \operatorname{dom}(\alpha)$
which implies there exists an $m \geq 1$ such that $\operatorname{dom}\left(\alpha^{m}\right)=\emptyset$. That is, $\alpha^{m}=0$.
Definition 2.4 Let $\alpha \in I O_{n}$. For $1 \leq i \leq r-1$, we define the length between a_{i} and a_{i+1}, as the number of missing points between a_{i} and a_{i+1} denoted by $\rho^{i}(\alpha)$ and the length between b_{i} and b_{i+1} as the number of missing points between b_{i} and b_{i+1} denoted by $\rho_{i}(\alpha)$. Let $\rho^{i^{*}}(\alpha)$ denotes any $\rho^{i}(\alpha) \geq 2$ whose length is atleast 2 greater than the corresponding $\rho_{i}(\alpha)$. We define $\mathrm{m}(\rho(\alpha))$ as
$m(\rho(\alpha))=\max \left\{\rho^{1}(\alpha), \rho^{2}(\alpha), \ldots, \rho^{r-1}(\alpha)\right\}$
For example, let
$\alpha=\binom{145812}{356911}$ and $\beta=\binom{1359132023}{3569111718}$ Then
$\rho^{1}(\alpha)=2, \rho^{2}(\alpha)=0, \rho^{3}(\alpha)=2, \rho^{4}(\alpha)=3, \rho_{1}(\alpha)=1, \rho_{2}(\alpha)=0, \rho_{3}(\alpha)=2, \rho_{4}(\alpha)=1, m(\rho(\alpha))=3$
and
$\rho^{1}(\beta)=1, \rho^{2}(\beta)=1, \rho^{3}(\beta)=3, \rho^{4^{*}}(\beta)=3, \rho^{5}(\beta)=6, \rho^{6^{*}}(\alpha)=2, \rho_{1}(\beta)=1, \rho_{2}(\beta)=0, \rho_{3}(\beta)=2, \rho_{4}(\beta)=1, \rho_{5}(\beta)=$ $5, \rho_{6}(\beta)=0, m(\rho(\alpha))=6, m(\rho(\beta))=6$

Lemma 2.5 Let α be in $O C I_{n}$. If α satisfies any of the following:
(i) $a_{1}=1, a_{r} \neq n, b_{1} \neq 1, b_{r}=n$
(ii) $a_{1} \neq 1, a_{r}=n, b_{1}=1, b_{r} \neq n$
then α is a contraction nilpotent.
Proof. Suppose that $\alpha \in O C I_{n}$ and satisfies (i). Let's assume by way of contradiction that α is not a contraction nilpotent. Then by lemma 2.1 there exists at least an $i(1 \leq i \leq r)$ such that $a_{i}=b_{i}$ for $a_{i} \in \operatorname{dom} \alpha, b_{i} \in \operatorname{im} \alpha$. Since $a_{r}<b_{r}$ we have $b_{r}-b_{i}>a_{r}-a_{i}$
Since α is order-preserving we have
$\left|b_{r}-b_{i}\right|=b_{r}-b_{i},\left|a_{r}-a_{i}\right|=a_{r}-a_{i}$
And so, from (2.6) and (2.7) we have
$\left|b_{r}-b_{i}\right|>\left|a_{r}-a_{i}\right|$
where $a_{i}, a_{r} \in \operatorname{dom} \alpha, b_{i}, b_{r} \in \operatorname{im} \alpha$ for some $i(1<i<r)$. Then by definition α is not a contraction. This is a contradiction. Thus, α must be a contraction nilpotent.
Suppose that α satisfies (ii). Since α is a contraction then for all $i(1 \leq i \leq r-1)$ we have
$\rho_{i}(\alpha) \leq \rho^{i}(\alpha)$
and so, $a_{1}>b_{1}, a_{r}>b_{r}$ and α being order-preserving implies
$a_{1}>b_{1}, a_{i+1}>b_{i+1}, \ldots, a_{r}>b_{r}$
It is clear from (2.8) that $a_{i} \alpha \neq a_{i}, a_{i} \in d o m \alpha$ for all $i(1 \leq i \leq r)$. Thus by lemma 2.1α is a contraction nilpotent.
Lemma 2.9 Let α be in $I O_{n}$. Then for $1 \leq i \leq r-1$,
$\rho^{i}(\alpha)+1=a_{i+1}-a_{i}$ and $\rho_{i}(\alpha)+1=b_{i+1}-b_{i}$
Proof. Since α is order-preserving it is clear that $a_{i+1}-a_{i}>0$ and $b_{i+1}-b_{i}>0$, and by definition 2.4 the result follows.
We give the following useful remark:
Remark 2.10 Let $\alpha \in I O_{n}$ have an upper jump of length $k a_{i+1}=a_{i}+k+1$ for some $(1 \leq i \leq r)$. Then $a_{i+1}-a_{i}=k+1$. And by lemma 2.9 we have $\rho^{i}(\alpha)=k$. This implies that the definition of upper jump between a_{i} and a_{i+1} in [3] and the definition of $\rho^{i}(\alpha)$ in definition 2.4 are equivalent and so, the two can be used interchangeably if need arises.

Lemma 2.11 Let α be in $I O_{n}$. If $\rho_{i}(\alpha)>\rho^{i}(\alpha)$ for some $i(1 \leq i \leq r-1)$, then α is not a contraction.
Proof. Suppose that $\rho_{i}(\alpha)>\rho^{i}(\alpha)$ for some $i(1 \leq i \leq r-1)$. Since α is order-preserving, it is clear that for each $i(1 \leq$ $i \leq r-1)$ we have
$\left|a_{i+1}-a_{i}\right|=a_{i+1}-a_{i}$
$\left|a_{i+1} \alpha-a_{i} \alpha\right|=\left|b_{i+1}-b_{i}\right|=b_{i+1}-b_{i}$
Since $\rho_{i}(\alpha)>\rho^{i}(\alpha)$ for some $i(1 \leq i \leq r-1)$
then by (2.12), (2.13) and lemma 2.9 we have
$\left|a_{i+1} \alpha-a_{i} \alpha\right|=b_{i+1}-b_{i}=\rho_{i}(\alpha)+1>\rho^{i}(\alpha)+1=a_{i+1}-a_{i}=\left|a_{i+1}-a_{i}\right|$
Where $a_{i}, a_{i+1} \in \operatorname{dom}(a)$ for some $i(1 \leq i \leq r-1)$. Then by definition α is not a contraction, hence the result.
Lemma 2.14 Let α be in $O C I_{n}$. If α is such that $b_{1}=1, b_{r}=n$. Then $a_{i}=b_{i}$ for all $i(1 \leq i \leq r)$
Proof. Suppose $\alpha \in \mathrm{OCI}_{\mathrm{n}}$ is such that $b_{1}=1, b_{r}=n$. Then if $r=2$ the result is obvious. Suppose that $r>2$. By way of contradiction let α be such that there exists at least an
$i(1 \leq i \leq r)$ such that $a_{i} \neq b_{i}, a_{i} \in \operatorname{dom} \alpha, b_{i} \in \operatorname{im} \alpha$. Then for $b_{1}=1, b_{r}=n, \alpha$ must have a case where $\rho_{i}(\alpha)>\rho^{i}(\alpha)$ for some $i(1 \leq i \leq r-1)$ and so, since α is order-preserving by lemma 2.11 it is not a contraction. This is a contradiction. Hence we must have $a_{i}=b_{i}$ for all $i(1 \leq i \leq r)$.
Theorem 2.15 For $n \geq 2$. Let $\alpha \in O C I_{n}$ Then α is not expressible as a product of contraction nilpotents if and only if it satisfies any of the following:
(1) $a_{1}=1, a_{r}=n$ and $\rho^{i^{*}}(\alpha)$ does not exist,
(2) $b_{1}=1, b_{r}=n$

Proof. Suppose that α satisfies neither (1) nor (2). We shall consider four different cases.
Case 1. $a_{1} \neq 1, b_{1} \neq 1$. We look for a set $A=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ such that $c_{i}<c_{i+1}$ for
$1 \leq i \leq r-1$ and $a_{i} \neq c_{i}, c_{i} \neq b_{i}$, for all i. Now define
$c_{i}=\left\{\begin{array}{l}\max \left\{a_{i}, b_{i}\right\}+1, \text { if } a_{r} \neq n, b_{r} \neq n \\ \min \left\{a_{i}, b_{i}\right\}-1, \text { if } a_{r}=n \text { or } b_{r}=n \text { or } a_{r}=b_{r}=n\end{array}\right.$
Since $a_{i}<a_{i+1}, b_{i}<b_{i+1}$ for $1 \leq i \leq r-1$ then
$\max \left\{a_{i}, b_{i}\right\}<\max \left\{a_{i+1}, b_{i+1}\right\}, \min \left\{a_{i}, b_{i}\right\}<\min \left\{a_{i+1}, b_{i+1}\right\}$
which implies
$\max \left\{a_{i}, b_{i}\right\}+1<\max \left\{a_{i+1}, b_{i+1}\right\}+1, \min \left\{a_{i}, b_{i}\right\}-1<\min \left\{a_{i+1}, b_{i+1}\right\}-1$.
And so, for all $i(1 \leq i \leq r-1)$ we have $c_{i}<c_{i+1}$. From the definition of c_{i}, it is clear that $a_{i} \neq c_{i}, c_{i} \neq b_{i}$, for all i. Thus, α is expressible as product of order-preserving nilpotents, that is,
$\alpha=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \ldots \alpha_{r} \\ c_{1} c_{2} \ldots c_{r}\end{array}\right)\left(\begin{array}{l}c_{1} c_{2} \ldots c_{r} \\ b_{1} \\ b_{1} \\ b_{2} \ldots b_{r}\end{array}\right)=n_{1} n_{2}$.
Since α is an order-preserving contraction then by the definition of c_{i} it is clear that for ($1 \leq i \leq r-1$), $c_{i+1}-c_{i} \leq a_{i+1}-a_{i}, b_{i+1}-b_{i} \leq c_{i+1}-c_{i}$.

And so, by lemma $1.3 n_{1}$ and n_{2} are contractions. Thus α is expressible as a product of contraction nilpotents.
Case 2. $a_{1}=1, b_{1} \neq 1$. There are two subcases to be considered here.
Case 2.1. $a_{r} \neq n$. We require a set $A=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ such that for $1 \leq i \leq r-1$ we will have $c_{i}<c_{i+1}$ and $a_{i} \neq c_{i}, c_{i} \neq$ b_{i}, for all i. Now if $b_{r}=n$ then by lemma 2.5(i) α is a contraction nilpotent. Thus there is nothing to prove, and so we consider $b_{r} \neq n$. We now define
$c_{i}=\max \left\{a_{i}, b_{i}\right\}+1$.
Since $a_{i}<a_{i+1}, b_{i}<b_{i+1}$ for $i(1 \leq i \leq r-1)$ then
$\max \left\{a_{i}, b_{i}\right\}<\max \left\{a_{i+1}, b_{i+1}\right\}$
which implies
$\max \left\{a_{i}, b_{i}\right\}+1<\max \left\{a_{i+1}, b_{i+1}\right\}+1$
Therefore, for all $i(1 \leq i \leq r-1)$ we have $c_{i}<c_{i+1}$. And by the definition of c_{i} it is easy to see that $a_{i} \neq c_{i}, c_{i} \neq b_{i}$, for all i. Thus α is expressible as a product of order-preserving nilpotents, that is,
$\alpha=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ c_{1} \\ c_{1} \\ c_{2} \ldots \alpha_{r}\end{array}\right)\left(\begin{array}{c}c_{1} c_{r}\end{array}\right)\left(\begin{array}{c}c_{2} \\ b_{1} \\ b_{1} \\ b_{2}\end{array} \ldots \mathrm{c}_{\mathrm{r}}, b_{r}\right.$.
Since α is an order-preserving contraction then by the definition of c_{i} it is clear that for $i(1 \leq i \leq r-1)$,
$c_{i+1}-c_{i} \leq a_{i+1}-a_{i}, b_{i+1}-b_{i} \leq c_{i+1}-c_{i}$.
And so, by lemma $1.3 n_{1}$ and n_{2} are contractions. Thus α is expressible as a product of contraction nilpotents.
Case 2.2. $a_{r}=n$. This case gives rise to another two subcases.
Case 2.2.1. $b_{r} \neq n$. Here we require two sets $A=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ and $B=\left\{d_{1}, d_{2}, \ldots, d_{r}\right\}$
such that for all $i(1 \leq i \leq r-1) c_{i}<c_{i+1}, d_{i}<d_{i+1}$ and $a_{i} \neq c_{i}, c_{i} \neq d_{i}, d_{i} \neq b_{i}$, for all i. Now since $a_{1}=1, a_{r}=n$, then it is clear that $\rho^{i^{*}}(\alpha)$ exists. Suppose $\rho^{i^{*}}(\alpha)$ occurs between a_{l} and a_{l+1}. Define
c_{i}
$=\left\{\begin{array}{l}a_{l}+1, \text { if } i \leq l \\ a_{l}-1, \text { if } i>l\end{array} \quad\right.$ and $\quad d_{i}=\max \left\{a_{i}, b_{i}\right\}+1$.
Then
$c_{l+1}=a_{l+1}-1 \geq\left(a_{l}+3\right)-1=a_{l}+2>c_{l}$.
And so for all $i(1 \leq i \leq r-1)$ we have $c_{i}<c_{i+1}$. Since for $i(1 \leq i \leq r-1)$,
$c_{i} \leq c_{i+1}, b_{i} \leq b_{i+1}$ then
$\max \left\{c_{i}, b_{i}\right\}<\max \left\{c_{i+1}, b_{i+1}\right\}$
which implies
$\max \left\{c_{i}, b_{i}\right\}+1<\max \left\{c_{i+1}, b_{i+1}\right\}+1$
Therefore $d_{i}<d_{i+1}$ for all $i(1 \leq i \leq r-1)$. And by the definitions of c_{i} and d_{i} we can easily see that $a_{i} \neq c_{i}, c_{i} \neq d_{i}$, $d_{i} \neq b_{i}$ for all i. Thus so α is expressible as a product of three order-preserving nilpotents. That is,
$\alpha=\left(\begin{array}{lll}\alpha_{1} & \alpha_{2} \ldots \alpha_{r} \\ c_{1} & c_{2} & \ldots c_{r}\end{array}\right)\left(\begin{array}{lll}c_{1} & c_{2} & \ldots c_{r} \\ d_{1} & d_{2} & \ldots c_{r}\end{array}\right)\left(\begin{array}{lll}d_{1} & d_{2} & \ldots d_{r} \\ b_{1} & b_{2} & \ldots b_{r}\end{array}\right)=n_{1} n_{2} n_{3}$.
Since α is an order-preserving contraction, then by the definitions of c_{i} and d_{i} it is clear that for alli $(1 \leq i \leq r-1)$,
$c_{i+1}-c_{i} \leq a_{i+1}-a_{i}, d_{i+1}-d_{i} \leq c_{i+1}-c_{i}, b_{i+1}-b_{i} \leq d_{i+1}-d_{i}$
Then by lemma $1.3 n_{1}, n_{2}$, and n_{3} are contractions. Thus α is expressible as a product of contraction nilpotents.
Case 2.2.2. $b_{r}=n$. Again we require two sets
$A=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ and $B=\left\{d_{1}, d_{2}, \ldots, d_{r}\right\}$ such that for all $i(1 \leq i \leq r-1)$
$c_{i}<c_{i+1}, d_{i}<d_{i+1}$ and $a_{i} \neq c_{i}, c_{i} \neq d_{i}, d_{i} \neq b_{i}$, for all i. Define
$c_{i}=\left\{\begin{array}{l}a_{l}+1, \text { if } i \leq l \\ a_{l}-1, \text { if } i>l\end{array} \quad\right.$ and $\quad d_{i}=\min \left\{a_{i}, b_{i}\right\}-1$.
Following a similar argument as in case 2.2.1 we see that,
$\alpha=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{\mathrm{r}} \\ c_{1} & c_{2} & \ldots & c_{r}\end{array}\right)\left(\begin{array}{cccc}c_{1} & c_{2} & \ldots & c_{r} \\ d_{1} & d_{2} & \ldots & d_{r}\end{array}\right)\left(\begin{array}{llll}d_{1} & d_{2} & \ldots & d_{r} \\ b_{1} & b_{2} & \ldots & b_{r}\end{array}\right)=n_{1} n_{2} n_{3}$
and n_{1}, n_{2}, and n_{3} are contractions.
Case 3. $a_{1} \neq 1, b_{1}=1$. If $a_{r}=n$ then by lemma 2.5 (ii) α is a contraction nilpotent. Thus there is nothing to prove, and so we consider the case where $a_{r} \neq n$. Here we require a set $A=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ such that for all $i(1 \leq i \leq r-1) c_{i}<c_{i+1}$ and $a_{i} \neq c_{i}, c_{i} \neq b_{i}$ for all i. Define

Journal of the Nigerian Association of Mathematical Physics Volume 52, (July \& Sept., 2019 Issue), 1 -8
$c_{i}=\max \left\{a_{i}, b_{i}\right\}+1$
Following the same argument as in case 2.1 we see that
$\alpha=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{r} \\ c_{1} & c_{2} & \ldots & c_{r}\end{array}\right)\left(\begin{array}{cccc}c_{1} & c_{2} & \ldots & c_{r} \\ b_{1} & b_{2} & \ldots & b_{r}\end{array}\right)=n_{1} n_{2}$
and n_{1} and n_{2} are contractions.
Case 4. $a_{1}=1, b_{1}=1$. This case gives rise to another two subcases.
Case 4.1. $a_{r} \neq n$. We look for a set $A=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ such that for all $i(1 \leq i \leq r-1)$
$c_{i}<c_{i+1}$ and $a_{i} \neq c_{i}, c_{i} \neq b_{i}$ for all i. Define
$c_{i}=\max \left\{a_{i}, b_{i}\right\}+1$
Following the same argument as in case 2.1 we see that
$\alpha=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{r} \\ c_{1} & c_{2} & \ldots & c_{r}\end{array}\right)\left(\begin{array}{cccc}c_{1} & c_{2} & \ldots & c_{r} \\ b_{1} & b_{2} & \ldots & b_{r}\end{array}\right)=n_{1} n_{2}$
and n_{1} and n_{2} are contractions.
Case 4.2. $a_{r}=n$. We look for two sets $A=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ and $B=\left\{d_{1}, d_{2}, \ldots, d_{r}\right\}$
such that for all $i(1 \leq i \leq r-1), c_{i}<c_{i+1}, d_{i}<d_{i+1}$ and $a_{i} \neq c_{i}, c_{i} \neq d_{i}, d_{i} \neq b_{i}$ for all i. Since $a_{1}=1, a_{r}=n$, then clearly $\rho^{i^{*}}(\alpha)$ exists. Suppose $\rho^{i^{*}}(\alpha)$ occurs between a_{l} and a_{l+1}. Define
$c_{i}=\left\{\begin{array}{l}a_{l}+1, \text { if } i \leq l \\ a_{l}-1, \text { if } i>l\end{array} \quad\right.$ and $\quad d_{i}=\max \left\{a_{i}, b_{i}\right\}+1$.
Following the same argument as in case 2.2.1 we see that
$\alpha=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{\mathrm{r}} \\ c_{1} & c_{2} & \ldots & c_{r}\end{array}\right)\left(\begin{array}{cccc}c_{1} & c_{2} & \ldots & c_{r} \\ d_{1} & d_{2} & \ldots & d_{r}\end{array}\right)\left(\begin{array}{llll}d_{1} & d_{2} & \ldots & d_{r} \\ b_{1} & b_{2} & \ldots & b_{r}\end{array}\right)=n_{1} n_{2} n_{3}$
and n_{1}, n_{2}, and n_{3} are contractions.
Conversely, suppose that α satisfies (1) and $m(\rho(\alpha)) \leq 1$. Then α is such that $a_{1}=1, a_{r}=n$ and $\rho^{i}(\alpha) \leq 1$ for all i $(1 \leq i \leq r-1)$. But $\alpha \in O C I_{n} \subset I O_{n}$, and so by remark 2.10 and theorem 1.1α is expressible as a product of neither orderpreserving nilpotents nor contraction nilpotents. Suppose that α satisfies (1) and $m(\rho(\alpha)) \geq 2$. Now since $\alpha \in O C I_{n} \subset I O_{n}$ and α is such that $m(\rho(\alpha)) \geq 2$, then we have $\rho^{i}(\alpha) \geq 2$ for some $i(1 \leq i \leq r-1)$, and so by remark 2.10 and theorem 1.1 α is expressible as a product of order-preserving nilpotents. Thus by theorem 1.2 either α is a product of two orderpreserving nilpotents or a product of three order-preserving nilpotents. Suppose that α is a product of two order-preserving nilpotents, that is,

and the set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is defined by
$c_{i}=\left\{\begin{array}{l}a_{l}+1, \text { if } i \leq l \\ a_{l}-1, \text { if } i>l\end{array}\right.$
where $\rho^{i}(\alpha) \geq 2$ occurs between a_{l} and a_{l+1}. Then, clearly we have $a_{l}<c_{l}$ and
$c_{l+1}<a_{l+1}$. And it is easy to see that $a_{l+1}-a_{l}$ is at least 2 greater than $c_{l+1}-c_{l}$, for c_{l} is atleast 1 greater than a_{l} and a_{l+1} is atleast 1 greater than c_{l+1}. So using lemma $2.9 \rho^{i}\left(n_{1}\right)+1$ is atleast 2 greater than $\rho_{i}\left(n_{1}\right)+1$ which implies $\rho^{i}\left(n_{1}\right)$ is at least 2 greater than $\rho_{i}\left(n_{1}\right)$ and so, $\rho^{i^{*}}\left(n_{1}\right)$ exists in n_{1} by definition 2.4. So, since $\rho^{i^{*}}(\alpha)$ does not exist in α, it follows that $b_{l+1}-b_{l}>c_{l+1}-c_{l}$ in n_{2}. Then by lemma 2.9 we have
$\rho_{i}\left(n_{2}\right)+1=b_{l+1}-b_{l}>c_{l+1}-c_{l}=\rho^{i}\left(n_{2}\right)+1$
$\Rightarrow \rho_{i}\left(n_{2}\right)>\rho^{i}\left(n_{2}\right)$ for some $i(1 \leq i \leq r-1)$.
Thus by lemma $2.11 n_{2}$ is not a contraction. Suppose that the set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is defined otherwise. Then since $a_{1}=1$, $a_{r}=n$ and $\rho^{i^{*}}(\alpha)$ does not exist, it implies $\rho^{i}(\alpha)$ is at most 1 greater than $\rho_{i}(\alpha)$ for all $i(1 \leq i \leq r-1)$. Thus, for some $i(1 \leq i \leq r-1)$ we must have either
$\rho_{i}\left(n_{1}\right)>\rho^{i}\left(n_{1}\right), \rho_{i}\left(n_{2}\right)>\rho^{i}\left(n_{2}\right)$ or $c_{r} \geq(n+1) \notin X_{n}$
But since α is expressible as a product of order-preserving nilpotents the case $c_{r} \geq(n+1) \notin X_{n}$ does not exist. So, the only possible case is either
$\rho_{i}\left(n_{1}\right)>\rho^{i}\left(n_{1}\right)$ or $\rho_{i}\left(n_{2}\right)>\rho^{i}\left(n_{2}\right)$
for some $i(1 \leq i \leq r-1)$. Then by lemma $2.11 n_{1}$ or n_{2} is not a contractions as the case may be. Suppose now that α is a product of three order-preserving nilpotents, that is,

and the set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is defined by
$c_{i}= \begin{cases}a_{l}+1, & \text { if } i \leq l \\ a_{l}-1, & \text { if } i>l\end{cases}$
where $\rho^{i}(\alpha) \geq 2$ occurs between a_{l} and a_{l+1}. Thus, we have $a_{l}<c_{l}$ and $c_{l+1}<a_{l+1}$. And so, $a_{l+1}-a_{l}$ is at least 2 greater than $c_{l+1}-c_{l}$. So using lemma $2.9 \rho^{i}\left(n_{1}\right)+1$ is at least 2 greater than $\rho_{i}\left(n_{1}\right)+1$ which implies $\rho^{i}\left(n_{1}\right)$ is at least 2 greater than $\rho_{i}\left(n_{1}\right)$ and so $\rho^{i^{*}}\left(n_{1}\right)$ exists in n_{1} by definition 2.4. Since $\rho^{i^{*}}(\alpha)$ does not exist in α, then it follows that
$b_{l+1}-b_{l}>c_{l+1}-c_{l}$,
which implies
$c_{l+1}-c_{l}<b_{l+1}-b_{l}$
We shall consider three cases
Case 1. $c_{l+1}-c_{l}<d_{l+1}-d_{l}$. Then by lemma 2.9
$\rho_{i}\left(n_{2}\right)+1=c_{l+1}-c_{l}>d_{l+1}-d_{l}=\rho^{i}\left(n_{2}\right)+1$
$\Rightarrow \rho_{i}\left(n_{2}\right)>\rho^{i}\left(n_{2}\right)$ for some $i(1 \leq i \leq r-1)$.
Thus by lemma $2.11 n_{2}$ is not a contraction
Case 2. $d_{l+1}-d_{l}<c_{l+1}-c_{l}$. Then by (2.16) we have $d_{l+1}-d_{l}<b_{l+1}-b_{l}$.
And by lemma 2.9
$\rho_{i}\left(n_{3}\right)+1=d_{l+1}-d_{l}>b_{l+1}-b_{l}=\rho^{i}\left(n_{2}\right)+1$
$\Rightarrow \rho_{i}\left(n_{3}\right)>\rho^{i}\left(n_{3}\right)$ for some $i(1 \leq i \leq r-1)$.
Then by lemma $2.11 n_{3}$ is not a contraction.
Case 3. $d_{l+1}-d_{l}=c_{l+1}-c_{l}$. Applying (2.16) we have $d_{l+1}-d_{l}<b_{l+1}-b_{l}$.
Then it follows from Case 2 that n_{3} is not a contraction.
Suppose that the set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is defined otherwise. Then $\rho^{i}(\alpha)$ is at most 1 greater than $\rho_{i}(\alpha)$ for all $i(1 \leq i \leq r-1)$ since $\rho^{i^{*}}(\alpha)$ does not exist. Thus, for $a_{1}=1, a_{r}=n$ and n_{1} a nilpotent we have either
$c_{i+1}-c_{i}<b_{i+1}-b_{i} \quad$ or $c_{r} \geq(n+1) \notin X_{n}$
for some $i(1 \leq i \leq r-1)$. But since α is expressible as a product of order-preserving nilpotents the case $c_{r} \geq(n+1) \notin X_{n}$ does not exist. So, only the following case is possible:
$c_{i+1}-c_{i}<b_{i+1}-b_{i}$
for some $i(1 \leq i \leq r-1)$. We shall again consider three cases
Case 1. $c_{i+1}-c_{l}<d_{i+1}-d_{i}$ for some $i(1 \leq i \leq r-1)$.
Then by lemma 2.9
$\rho_{i}\left(n_{2}\right)+1=c_{i+1}-c_{i}>d_{i+1}-d_{i}=\rho^{i}\left(n_{2}\right)+1$
$\Rightarrow \rho_{i}\left(n_{2}\right)>\rho^{i}\left(n_{2}\right)$ for some $i(1 \leq i \leq r-1)$.
Then by lemma $2.11 n_{2}$ is not a contraction.
Case 2. $d_{i+1}-d_{i}<c_{i+1}-c_{i}$ for some $i(1 \leq i \leq r-1)$.
Then applying (2.17) we have $d_{i+1}-d_{i}<b_{i+1}-b_{i}$ for some $i(1 \leq i \leq r-1)$,
and by lemma 2.9
$\rho_{i}\left(n_{3}\right)+1=d_{i+1}-d_{i}>b_{i+1}-b_{l}=\rho^{i}\left(n_{2}\right)+1$
$\Rightarrow \rho_{i}\left(n_{3}\right)>\rho^{i}\left(n_{3}\right)$ for some $i(1 \leq i \leq r-1)$.
Then by lemma $2.11 n_{3}$ is not a contraction.
Case 3. $d_{i+1}-d_{i}=c_{i+1}-c_{l}$ for some $i(1 \leq i \leq r-1)$.
Applying (2.17) we ha $d_{l+1}-d_{l}<b_{l+1}-b_{l}$ for some $i(1 \leq i \leq r-1)$. Then it follows from Case 2 that n_{3} is not a contraction.
Suppose now that α satisfies (2) and $m(\rho(\alpha)) \leq 1$. Then by lemma $2.14 a_{i}=b_{i}$ for all $(1 \leq i \leq r)$ and so $a_{1}=1, a_{r}=n$. But $\alpha \in O C I_{n} \subset I O_{n}$ and $m(\rho(\alpha)) \leq 1$ implies $\rho^{i}(\alpha) \leq 1$ for all $(1 \leq i \leq r)$ then by remark 2.10 and theorem 1.1α is expressible as a product of neither order-preserving nilpotents nor contraction nilpotents. Suppose that α satisfies (2) and $m(\rho(\alpha)) \geq 2$. If α satisfies (2) then by lemma $2.14 a_{i}=b_{i}$ for all $i(1 \leq i \leq r)$ and so $a_{1}=1, a_{r}=n$. Then since

Journal of the Nigerian Association of Mathematical Physics Volume 52, (July \& Sept., 2019 Issue), 1 -8
$\alpha \in O C I_{n} \subset I O_{n}$ is such that $m(\rho(\alpha)) \geq 2$ which implies $\rho^{i}(\alpha) \geq 2$ for some $i(1 \leq i \leq r)$, by remark 2.10 and theorem 1.1 α is expressible as a product of order-preserving nilpotents. Thus α is expressible as a product of either two order-preserving nilpotents or three order-preserving nilpotents by theorem 1.2. We now show that α is expressible as a product of at most two order-preserving nilpotents. Since α is expressible as a product of two order-preserving nilpotents, there must exist a set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ where $c_{i}<c_{i+1}$ for all $i(1 \leq i \leq r-1)$ such that the mapping $\binom{\alpha_{1} \alpha_{2} \ldots \alpha_{r}}{c_{1} c_{2} \ldots c_{r}}$ is an order-preserving nilpotent. Then the mapping $\binom{c_{1} c_{2} \ldots c_{r}}{b_{1} b_{2} \ldots b_{r}}$ is also an order-preserving nilpotent since by lemma $2.14 a_{i}=b_{i}$ for all $i(1 \leq i \leq r)$. Let $n_{1}=\binom{\alpha_{1} \alpha_{2} \ldots \alpha_{r}}{c_{1} c_{2} \ldots c_{r}}, n_{2}=\binom{c_{1} c_{2} \ldots c_{r}}{b_{1} b_{2} \ldots b_{r}}$
Since $n_{1}, n_{2} \in I O_{n}$ and $\operatorname{im}\left(n_{1}=\operatorname{dom}\left(n_{2}\right)\right.$, then we can write,
$\alpha=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{r} \\ c_{1} & c_{2} & \ldots & c_{r}\end{array}\right)\left(\begin{array}{cccc}c_{1} & c_{2} & \ldots & c_{r} \\ b_{1} & b_{2} & \ldots & b_{r}\end{array}\right)$
Thus α is expressible as a product of at most two order-preserving nilpotents. Suppose that the set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is define by $c_{i}=\left\{\begin{array}{l}a_{l}+1, \text { if } i \leq l \\ a_{l}-1, \text { if } i>l\end{array}\right.$
where $\rho^{i}(\alpha) \geq 2$ occurs between a_{l} and a_{l+1}. Then we have $a_{l}<c_{l}$ and $c_{l+1}<a_{l+1}$ and so $a_{l+1}-a_{l}$ is at least 2 greater than $c_{l+1}-c_{l}$ which implies $c_{l+1}-c_{l}<a_{l+1}-a_{l}$. Then $c_{l+1}-c_{l}<b_{l+1}-b_{l}$ since $a_{i}=b_{i}$ for all $\boldsymbol{i}(1 \leq i \leq r)$. By lemma 2.9 we have
$\rho^{i}\left(n_{2}\right)+1=c_{l+1}-c_{l}<b_{l+1}-b_{l}=\rho_{i}\left(n_{1}\right)+1$
$\Rightarrow \rho_{i}\left(n_{2}\right)>\rho^{i}\left(n_{2}\right)$ for some $i(1 \leq i \leq r-1)$.
Then by lemma $2.11 n_{2}$ is not a contraction. Suppose that the set $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is defined otherwise. Then since by lemma 2.14α is such that $a_{i}=b_{i}$ for all $\boldsymbol{i}(1 \leq i \leq r)$, we must have either
$\rho_{i}\left(n_{1}\right)<\rho^{i}\left(n_{1}\right)$ or $c_{r} \geq(n+1) \notin X_{n}$ for some $i(1 \leq i \leq r-1)$.
But since α is expressible as a product of order-preserving nilpotents the case $c_{r} \geq(n+1) \notin X_{n}$ does not exist. So, the only possible case is
$\rho_{i}\left(n_{1}\right)<\rho^{i}\left(n_{1}\right)$ for some $i(1 \leq i \leq r-1)$
This implies $\rho_{i}\left(n_{2}\right)>\rho^{i}\left(n_{2}\right)$ for some $i(1 \leq i \leq r-1)$ since $a_{i}=b_{i}$ for all $i(1 \leq i \leq r)$. Then by lemma $2.11 n_{1}$ or n_{2} not contractions as the case may be. Hence α is not expressible as a product of contraction nilpotents if it satisfies (1) or (2).
Corollary 2.18 For $n \geq 2$. Let $\alpha \in O C I_{n}$. Then α is expressible as a product of contraction nilpotents if and only if:
(1) $a_{1} \neq 1, b_{1} \neq 1$;
(2) $a_{1}=1, b_{1} \neq 1, a_{r} \neq n, b_{r} \neq n$;
(3) $a_{1}=1, b_{1} \neq 1, a_{r}=n, b_{r} \neq n$ and $\rho^{i^{*}}(\alpha)$ exists;
(4) $a_{1}=1, b_{1} \neq 1, a_{r}=n, b_{r}=n$ and $\rho^{i^{*}}(\alpha)$ exists;
(5) $a_{1} \neq 1, b_{1}=1$;
(6) $a_{1}=1, b_{1}=1, a_{r} \neq n$;
(7) $a_{1}=1, b_{1}=1, a_{r}=n$ and $\rho^{i^{*}}(\alpha)$ exists;
(8) $a_{1} \neq 1, b_{1} \neq 1, a_{r} \neq n, b_{r} \neq n$.

Remark 2.20 From remark 2.19 and thereom 1.1 it is easy to see that for $n \geq 2$ and $\alpha \in O C I_{n}$ is such that $m(\rho(\alpha)) \geq 2$ and $\rho^{i^{*}}(\alpha)$ does not exist, then α is expressible as a product of order-preserving nilpotents where at least one of the nilpotents is not a contraction if and only if it satisfies any of the following:
(1) $a_{1}=1, a_{r}=n$,
(2) $b_{1}=1, b_{r}=n$

References

[1] Gomes, G. M. S and Howie, J. M (1987b). Nilpotents in Symmetric Inverse Finite Semigroups. Proc. Edinburgh Math. Soc. 30, 383-395.
[2] Sullivan, R. P., (1997). Nilpotents in Partial Transformatios, Bull. Austral. Math. Soc., 55, 453-467.
[3] Garba, G. U., (1994a), Nilpotents in Semigroups of Partial One-to-one Order-preserving Mappings, Semigroup forum, 48, 37-49.

Journal of the Nigerian Association of Mathematical Physics Volume 52, (July \& Sept., 2019 Issue), 1 -8
[4] Garba, G. U., (1994b), Nilpotents in Semigroups of Partial Order-preserving Transformation, Proc. Edinburgh. Math. Soc., 37, 361 - 377
[5] Ibrahim, M. J., (2015), Algebraic Study of Certain Finite Semigroups of Contraction Mappings, PhD thesis, Ahmadu Bello University, Zaria-Nigeria.
[6] Howie, J. M., (1995), Fundamentals of Semigroup Theory, Oxford University Press.

