THE SUBSEMIGROUP GENERATED BY NILPOTENTS IN THE SEMIGROUP OF PARTIAL ONE-TO-ONE ORDER-PRESERVING CONTRACTION MAPPINGS

¹J. A. Agba, ²G. U. Garba and ³A. T. Imam

¹Department of Mathematics, University of Calabar, Calabar, Nigeria ^{2,3}Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

Abstract

Let $X_n = \{1, 2, ..., n\}$. A partial one-to-one mapping α from X_n to itself is called orderpreserving if $x \le y \Rightarrow x\alpha \le y\alpha$ for all x, y in X_n and is called a contraction mapping if $|x\alpha - y\alpha| \le |x - y|$ for all x, y in X_n . Let OCI_n be the semigroup of all partial oneto-one order-preserving contraction mappings on X_n . In this paper, we obtained the subsemigroup generated by the nilpotent elements in OCI_n .

1. Introduction and Preliminaries

If a finite semmigroup S contains zero, then it contains nipotents, and so it is natural to ask for a description of the subsemigroup of S generated by all nilpotents of S. In 1987, Gomes and Howie [1], and Sullivan [2] independently initiated the study of nilpotent generated subsemigroups of the semigroups of mappings on the set X_n by considering I_n , the symmetric inverse semigroup and P_n , the semigroup of all partial mappings on X_n respectively. In [3], and [4] Garba considered IO_n , the semigroup of all partial one-one order-preserving mappings and PO_n , semigroup of patial order-preserving mappings on X_n respectively. Let

 $OCI_n = \{ \alpha \in IO_n : (\forall x, y \in dom(\alpha)) \mid x\alpha \le y\alpha \mid \le \mid x - y \mid \}$

a semigroup of partial one-to-one order-preserving contraction mappings. The Green's relations in OCI_n have been characterised in [5]. Let N be set a set of all nilpotents in OCI_n , and $\langle N \rangle$ the subsemigroup of OCI_n generated by N. In section 2, we give a characterisation of the elements of $\langle N \rangle$.

For $1 \le i \le r$. An element α in IO_n or OCI_n is defined by

 $\alpha = \begin{pmatrix} a_1 & a_2 & \dots & a_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix}$

where a_i , $b_i \in X_n$ for i = 1, 2, ..., r. We now state some existing results that shall be used in the subsequent section. Following [3], we say that α in IO_n has an *upper jump* of length k (a *lower jump* of length k) if there exists an i such that $a_{i+1} = a_i + k + 1$ ($b_{i+1} = b_i + k + 1$).

If $a_i = k + 1$ ($b_i = k + 1$) and $k \ge 1$, we say also that α has an upper jump of length k (a lower jump of length k). **Theorem 1.1** [3] For $n \ge 2$. Let $\alpha \in IO_n$. Then α is not a product of order-preserving nilpotents if and only if α satisfies the

following:

(1) $a_1 = 1$, $a_r = n$ and all upper jumps are of length 1,

(2) $b_1 = 1, b_r = n$ and all lower jumps are of length 1

Theorem 1.1 [3] Let *N* be the set of all nilpotents in IO_n , $\langle N \rangle$ the subsemigroup of IO_n generated by the nilpotents, and $\Delta(\langle N \rangle)$ the unique *k* for which

 $\langle N\rangle = N \cup N^2 \cup \ldots \cup N^k, \langle N\rangle \neq N \cup N^2 \cup \ldots \cup N^{k-1}.$

Then $\Delta(\langle N \rangle) = 3$ for all $n \ge 3$

Lemma 1.3 [5] Let α be in IO_n . Then α is a contraction if and only if

 $b_{i+1} - b_i \le a_{i+1} - a_i$ for each $1 \le i \le r - 1$

Proposition 1.4 [6] Let α and β be partial mappings. Then $dom(\alpha, \beta) = (im\alpha \cap dom\beta)\alpha^{-1}$, $im(\alpha, \beta) = (im\alpha \cap dom\beta)\beta$,

Corresponding Author: Agba J.A., Email: maths4deworld@gmail.com, Tel: +2348066083697

and

 $(\forall x \in dom(\alpha, \beta)) \ x(\alpha, \beta) = (x\alpha)\beta.$

2. The Nilpotent Generated Subsemigroup

An element $\alpha \in OCI_n$ is called nilpotents if $\alpha^k = 0$ for some $k \ge 1$. First, we give in this investigation a characterisation of nilpotent elements in OCI_n .

Lemma 2.1 Let α be in OCI_n . Then α is a contraction nilpotent if and only if $x\alpha \neq x$ for every $x \in dom(\alpha)$

Proof. If $\alpha = \emptyset$ (empty map). Then the result is trivial. If $\alpha \neq \emptyset$. Then α cannot be nilpotent if $x\alpha = x$ for some $x \in dom(\alpha)$ for if $x\alpha = x$ for $x \in dom(\alpha)$ then $x = x\alpha = x\alpha^2 = \cdots$ Thus $\alpha^n \neq \emptyset$ for all $n \in N$. Hence α cannot be a contraction nilpotent.

Conversely, suppose that $x\alpha \neq x$ for all $x \in dom(\alpha)$ then $im(\alpha) \neq dom(\alpha)$ and so $dom(\alpha^2) \subset dom(\alpha)$. We now show that $dom(\alpha^{k+1}) \subset dom(\alpha^k)$ for all $k \in N$. Now by way of contradiction suppose that $dom(\alpha^k) \neq \emptyset$ and $dom(\alpha^{k+1}) = dom(\alpha^k)$.

Then by proposition 1.4 $dom(\alpha^{k}) = dom(\alpha^{k+1}) = dom(\alpha.\alpha^{k}) = (im(\alpha) \cap dom\alpha^{k})\alpha^{-1}$ $\Rightarrow (dom(\alpha^{k}))\alpha = im(\alpha) \cap dom(\alpha^{k}) \qquad (2.2)$ Since α is injective, $| dom(\alpha^{k}) |=| im(\alpha) \cap dom(\alpha^{k}) |$ since n is finite $dom(\alpha^{k}) \subseteq im(\alpha)$. Then $dom(\alpha^{k}) = im(\alpha) \cap dom(\alpha^{k}) \qquad (2.3)$ From (2.2) and (2.3) we have $im(\alpha^{k}) = (dom(\alpha^{k}))\alpha = im(\alpha) \cap dom(\alpha^{k}) = dom(\alpha^{k})$ which implies $im(\alpha^{k}) = dom(\alpha^{k})$. Since α is an order-preserving contraction so is α^{k} , and so $x\alpha^{k} = x$ for all $x \in$ $dom(\alpha^{k})$. Now fix $x' \in dom(\alpha^{k})$ such that $x'\alpha^{k} = x'$, then since α is an order-preserving contraction and

$$dom(\alpha^k) \subseteq dom(\alpha)$$
 we have $x'\alpha^{k+1} = x'$. And so

$$x' = x' \alpha^{k+1} = x' \alpha^k \cdot \alpha = x' \alpha$$

Therefore, there exists at least one x' in $dom(\alpha)$ such that $x'\alpha = x'$. This is contrary to the earlier hypothesis that $x\alpha \neq x$ for all $x \in dom(\alpha)$. Thus we have a proper inclusion

 $... \subset dom(\alpha^{k+1}) \subset dom(\alpha^k) \subset \cdots \subset dom(\alpha)$

which implies there exists an $m \ge 1$ such that $dom(\alpha^m) = \emptyset$. That is, $\alpha^m = 0$.

Definition 2.4 Let $\alpha \in IO_n$. For $1 \le i \le r - 1$, we define the length between a_i and a_{i+1} , as the number of missing points between a_i and a_{i+1} denoted by $\rho^i(\alpha)$ and the length between b_i and b_{i+1} as the number of missing points between b_i and b_{i+1} denoted by $\rho_i(\alpha)$. Let $\rho^{i^*}(\alpha)$ denotes any $\rho^i(\alpha) \ge 2$ whose length is atleast 2 greater than the corresponding $\rho_i(\alpha)$. We define $m(\rho(\alpha)) = max\{\rho^1(\alpha), \rho^2(\alpha), ..., \rho^{r-1}(\alpha)\}$ For example, let $\alpha = \binom{145812}{356911}$ and $\beta = \binom{1359132023}{3569111718}$ Then $\rho^1(\alpha) = 2, \rho^2(\alpha) = 0, \rho^3(\alpha) = 2, \rho^4(\alpha) = 3, \rho_1(\alpha) = 1, \rho_2(\alpha) = 0, \rho_3(\alpha) = 2, \rho_4(\alpha) = 1, m(\rho(\alpha)) = 3$ and $\rho^1(\beta) = 1, \rho^2(\beta) = 1, \rho^3(\beta) = 3, \rho^{4^*}(\beta) = 3, \rho^5(\beta) = 6, \rho^{6^*}(\alpha) = 2, \rho_1(\beta) = 1, \rho_2(\beta) = 0, \rho_3(\beta) = 2, \rho_4(\beta) = 1, \rho_5(\beta) = 5, \rho_6(\beta) = 0, m(\rho(\alpha)) = 6$

Lemma 2.5 Let α be in OCI_n . If α satisfies any of the following:

(i) $a_1 = 1, a_r \neq n, b_1 \neq 1, b_r = n$ (ii) $a_1 \neq 1, a_r = n, b_1 = 1, b_r \neq n$ then α is a contraction nilpotent. **Proof.** Suppose that $\alpha \in OCI_n$ and satisfies (i). Let's assume by way of contradiction that α is not a contraction nilpotent. Then by lemma 2.1 there exists at least an $i \ (1 \le i \le r)$ such that $a_i = b_i$ for $a_i \in dom\alpha$, $b_i \in im\alpha$. Since $a_r < b_r$ we have $b_r - b_i > a_r - a_i$ (2.6) Since α is order-preserving we have $|b_r - b_i| = b_r - b_i, |a_r - a_i| = a_r - a_i$ (2.7) And so, from (2.6) and (2.7) we have $|b_r - b_i| > |a_r - a_i|$

(2.8)

J. of NAMP

where $a_i, a_r \in dom\alpha, b_i, b_r \in im\alpha$ for some i (1 < i < r). Then by definition α is not a contraction. This is a contradiction. Thus, α must be a contraction nilpotent.

Suppose that α satisfies (ii). Since α is a contraction then for all $i \ (1 \le i \le r - 1)$ we have

 $\rho_i(\alpha) \leq \rho^i(\alpha)$

and so, $a_1 > b_1$, $a_r > b_r$ and α being order-preserving implies $a_1 > b_1, a_{i+1} > b_{i+1}, \dots, a_r > b_r$

It is clear from (2.8) that $a_i \alpha \neq a_i$, $a_i \in dom\alpha$ for all $i \ (1 \le i \le r)$. Thus by lemma 2.1 α is a contraction nilpotent.

Lemma 2.9 Let α be in IO_n . Then for $1 \le i \le r - 1$,

 $\rho^{i}(\alpha) + 1 = a_{i+1} - a_{i}$ and $\rho_{i}(\alpha) + 1 = b_{i+1} - b_{i}$

Proof. Since α is order-preserving it is clear that $a_{i+1} - a_i > 0$ and $b_{i+1} - b_i > 0$, and by definition 2.4 the result follows. We give the following useful remark:

Remark 2.10 Let $\alpha \in IO_n$ have an upper jump of length $k a_{i+1} = a_i + k + 1$ for some $(1 \le i \le r)$. Then $a_{i+1} - a_i = k + 1$. And by lemma 2.9 we have $\rho^i(\alpha) = k$. This implies that the definition of upper jump between a_i and a_{i+1} in [3] and the definition of $\rho^i(\alpha)$ in definition 2.4 are equivalent and so, the two can be used interchangeably if need arises.

Lemma 2.11 Let α be in IO_n . If $\rho_i(\alpha) > \rho^i(\alpha)$ for some $i \ (1 \le i \le r-1)$, then α is not a contraction.

Proof. Suppose that $\rho_i(\alpha) > \rho^i(\alpha)$ for some $i \ (1 \le i \le r-1)$. Since α is order-preserving, it is clear that for each $i \ (1 \le i \le r-1)$. $i \leq r - 1$) we have

$$|a_{i+1} - a_i| = a_{i+1} - a_i$$
(2.12)

$$|a_{i+1}\alpha - a_i\alpha| = |b_{i+1} - b_i| = b_{i+1} - b_i$$
(2.13)

 $|a_{i+1}\alpha - a_i\alpha| = |b_{i+1} - b_i| = b_{i+1} - b_i$

Since $\rho_i(\alpha) > \rho^i(\alpha)$ for some $i (1 \le i \le r - 1)$

then by (2.12), (2.13) and lemma 2.9 we have

 $|a_{i+1}\alpha - a_i\alpha| = b_{i+1} - b_i = \rho_i(\alpha) + 1 > \rho^i(\alpha) + 1 = a_{i+1} - a_i = |a_{i+1} - a_i|$

Where $a_i, a_{i+1} \in dom(a)$ for some $i \ (1 \le i \le r-1)$. Then by definition α is not a contraction, hence the result.

Lemma 2.14 Let α be in OCI_n . If α is such that $b_1 = 1$, $b_r = n$. Then $a_i = b_i$ for all $i (1 \le i \le r)$

Proof. Suppose $\alpha \in OCI_n$ is such that $b_1 = 1$, $b_r = n$. Then if r = 2 the result is obvious. Suppose that r > 2. By way of contradiction let α be such that there exists at least an

 $i (1 \le i \le r)$ such that $a_i \ne b_i$, $a_i \in dom\alpha$, $b_i \in im\alpha$. Then for $b_1 = 1$, $b_r = n$, α must have a case where $\rho_i(\alpha) > \rho^i(\alpha)$ for some i $(1 \le i \le r - 1)$ and so, since α is order-preserving by lemma 2.11 it is not a contraction. This is a contradiction. Hence we must have $a_i = b_i$ for all $i (1 \le i \le r)$.

Theorem 2.15 For $n \ge 2$. Let $\alpha \in OCI_n$ Then α is not expressible as a product of contraction nilpotents if and only if it satisfies any of the following:

(1) $a_1 = 1$, $a_r = n$ and $\rho^{i^*}(\alpha)$ does not exist,

(2) $b_1 = 1, b_r = n$

Proof. Suppose that α satisfies neither (1) nor (2). We shall consider four different cases.

Case 1. $a_1 \neq 1, b_1 \neq 1$. We look for a set $A = \{c_1, c_2, ..., c_r\}$ such that $c_i < c_{i+1}$ for $1 \le i \le r - 1$ and $a_i \ne c_i, c_i \ne b_i$, for all *i*. Now define $c_{i} = \begin{cases} max\{a_{i}, b_{i}\} + 1, if a_{r} \neq n, b_{r} \neq n\\ min\{a_{i}, b_{i}\} - 1, if a_{r} = n \text{ or } b_{r} = n \text{ or } a_{r} = b_{r} = n \end{cases}$ Since $a_i < a_{i+1}, b_i < b_{i+1}$ for $1 \le i \le r - 1$ then

 $max\{a_i, b_i\} < max\{a_{i+1}, b_{i+1}\}, min\{a_i, b_i\} < min\{a_{i+1}, b_{i+1}\}$ which implies

 $max\{a_i, b_i\} + 1 < max\{a_{i+1}, b_{i+1}\} + 1, min\{a_i, b_i\} - 1 < min\{a_{i+1}, b_{i+1}\} - 1.$

And so, for all i $(1 \le i \le r - 1)$ we have $c_i < c_{i+1}$. From the definition of c_i , it is clear that $a_i \ne c_i$, $c_i \ne b_i$, for all i. Thus, α is expressible as product of order-preserving nilpotents, that is,

 $\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \dots \alpha_r \\ c_1 & c_2 \dots c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 \dots c_r \\ b_1 & b_2 \dots b_r \end{pmatrix} = n_1 n_2.$

Since α is an order-preserving contraction then by the definition of c_i it is clear that for $(1 \le i \le r - 1)$, $c_{i+1} - c_i \le a_{i+1} - a_i, b_{i+1} - b_i \le c_{i+1} - c_i.$

And so, by lemma 1.3 n_1 and n_2 are contractions. Thus α is expressible as a product of contraction nilpotents.

Case 2. $a_1 = 1, b_1 \neq 1$. There are two subcases to be considered here.

Case 2.1. $a_r \neq n$. We require a set $A = \{c_1, c_2, \dots, c_r\}$ such that for $1 \leq i \leq r-1$ we will have $c_i < c_{i+1}$ and $a_i \neq c_i, c_i \neq i \leq r-1$. b_i , for all i. Now if $b_r = n$ then by lemma 2.5(i) α is a contraction nilpotent. Thus there is nothing to prove, and so we consider $b_r \neq n$. We now define

 $c_i = max\{a_i, b_i\} + 1.$

Since $a_i < a_{i+1}, b_i < b_{i+1}$ for $i \ (1 \le i \le r - 1)$ then $max\{a_i, b_i\} < max\{a_{i+1}, b_{i+1}\}$ which implies

 $max\{a_i, b_i\} + 1 < max\{a_{i+1}, b_{i+1}\} + 1$

Therefore, for all i $(1 \le i \le r - 1)$ we have $c_i < c_{i+1}$. And by the definition of c_i it is easy to see that $a_i \ne c_i, c_i \ne b_i$, for all *i*. Thus α is expressible as a product of order-preserving nilpotents, that is,

$$\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \dots \alpha_r \\ c_1 & c_2 \dots c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 \dots c_r \\ b_1 & b_2 \dots b_r \end{pmatrix} = n_1 n_2.$$

Since α is an order-preserving contraction then by the definition of c_i it is clear that for i ($1 \le i \le r - 1$),

$$c_{i+1} - c_i \le a_{i+1} - a_i, b_{i+1} - b_i \le c_{i+1} - c_i.$$

And so, by lemma 1.3 n_1 and n_2 are contractions. Thus α is expressible as a product of contraction nilpotents.

Case 2.2. $a_r = n$. This case gives rise to another two subcases.

Case 2.2.1. $b_r \neq n$. Here we require two sets $A = \{c_1, c_2, \dots, c_r\}$ and $B = \{d_1, d_2, \dots, d_r\}$ such that for all i $(1 \le i \le r-1)$ $c_i < c_{i+1}$, $d_i < d_{i+1}$ and $a_i \ne c_i$, $c_i \ne d_i$, $d_i \ne b_i$, for all i. Now since $a_1 = 1$, $a_r = n$, then it is clear that $\rho^{i^*}(\alpha)$ exists. Suppose $\rho^{i^*}(\alpha)$ occurs between a_l and a_{l+1} . Define C_i

$$= \begin{cases} a_l + 1, & \text{if } i \le l \\ a_l - 1, & \text{if } i > l \end{cases} \text{ and } d_i = max\{a_i, b_i\} + 1.$$

Then

 $c_{l+1} = a_{l+1} - 1 \ge (a_l + 3) - 1 = a_l + 2 > c_l.$ And so for all i $(1 \le i \le r - 1)$ we have $c_i < c_{i+1}$. Since for i $(1 \le i \le r - 1)$, $c_i \leq c_{i+1}, b_i \leq b_{i+1}$ then $max\{c_i, b_i\} < max\{c_{i+1}, b_{i+1}\}$ which implies $max\{c_i, b_i\} + 1 < max\{c_{i+1}, b_{i+1}\} + 1$

Therefore $d_i < d_{i+1}$ for all i $(1 \le i \le r-1)$. And by the definitions of c_i and d_i we can easily see that $a_i \ne c_i, c_i \ne d_i$, $d_i \neq b_i$ for all *i*. Thus so α is expressible as a product of three order-preserving nilpotents. That is,

$$\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \dots \alpha_r \\ c_1 & c_2 \dots c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 \dots c_r \\ d_1 & d_2 \dots d_r \end{pmatrix} \begin{pmatrix} d_1 & d_2 \dots d_r \\ b_1 & b_2 \dots b_r \end{pmatrix} = n_1 n_2 n_3$$

Since α is an order-preserving contraction, then by the definitions of c_i and d_i it is clear that for all i $(1 \le i \le r-1)$, $c_{i+1} - c_i \le a_{i+1} - a_i, d_{i+1} - d_i \le c_{i+1} - c_i, b_{i+1} - b_i \le d_{i+1} - d_i$

Then by lemma 1.3 n_1 , n_2 , and n_3 are contractions. Thus α is expressible as a product of contraction nilpotents.

Case 2.2.2. $b_r = n$. Again we require two sets

 $A = \{c_1, c_2, ..., c_r\}$ and $B = \{d_1, d_2, ..., d_r\}$ such that for all $i \ (1 \le i \le r - 1)$ $c_i < c_{i+1}, d_i < d_{i+1}$ and $a_i \neq c_i, c_i \neq d_i, d_i \neq b_i$, for all *i*. Define $c_i = \begin{cases} a_l + 1, & \text{if } i \leq l \\ c_i = c_i = l \end{cases}$ and $d_i = min\{a_i, b_i\} - 1$. $(a_{l} - 1, if i > l)$

Following a similar argument as in case 2.2.1 we see that,

$$\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \dots & \alpha_r \\ c_1 & c_2 \dots & c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 \dots & c_r \\ d_1 & d_2 \dots & d_r \end{pmatrix} \begin{pmatrix} d_1 & d_2 \dots & d_r \\ b_1 & b_2 \dots & b_r \end{pmatrix} = n_1 n_2 n_3$$

and $n_1 = n_2$ and n_2 are contractions

and n_1 , n_2 , and n_3 are contractions.

Case 3. $a_1 \neq 1$, $b_1 = 1$. If $a_r = n$ then by lemma 2.5(ii) α is a contraction nilpotent. Thus there is nothing to prove, and so we consider the case where $a_r \neq n$. Here we require a set $A = \{c_1, c_2, \dots, c_r\}$ such that for all $i (1 \le i \le r - 1) c_i < c_{i+1}$ and $a_i \neq c_i, c_i \neq b_i$ for all *i*. Define

 $c_i = max\{a_i, b_i\} + 1$

Following the same argument as in case 2.1 we see that $(\alpha_1 \ \alpha_2 \ \dots \ \alpha_r) \ (C_1 \ C_2 \ \dots \ C_r)$

$$\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_r \\ c_1 & c_2 & \dots & c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 & \dots & c_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix} = n_1 n_2$$

and n_1 and n_2 are contractions.

Case 4. $a_1 = 1$, $b_1 = 1$. This case gives rise to another two subcases.

Case 4.1. $a_r \neq n$. We look for a set $A = \{c_1, c_2, \dots, c_r\}$ such that for all $i \ (1 \le i \le r - 1)$

 $c_i < c_{i+1}$ and $a_i \neq c_i, c_i \neq b_i$ for all *i*. Define

 $c_i = max\{a_i, b_i\} + 1$

Following the same argument as in case 2.1 we see that

$$\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \dots & \alpha_r \\ c_1 & c_2 \dots & c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 \dots & c_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix} = n_1 n_2$$

and n_1 and n_2 are contractions.

Case 4.2. $a_r = n$. We look for two sets $A = \{c_1, c_2, ..., c_r\}$ and $B = \{d_1, d_2, ..., d_r\}$ such that for all i $(1 \le i \le r-1)$, $c_i < c_{i+1}$, $d_i < d_{i+1}$ and $a_i \ne c_i$, $c_i \ne d_i$, $d_i \ne b_i$ for all i. Since $a_1 = 1$, $a_r = n$, then

clearly $\rho^{i^*}(\alpha)$ exists. Suppose $\rho^{i^*}(\alpha)$ occurs between a_l and a_{l+1} . Define and $d_i = max\{a_i, b_i\} + 1.$

 $c_i = \begin{cases} a_l+1, \ if \ i \leq l \\ a_l-1, \ if \ i > l \end{cases}$

Following the same argument as in case 2.2.1 we see that

$$\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \dots & \alpha_r \\ c_1 & c_2 \dots & c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 \dots & c_r \\ d_1 & d_2 \dots & d_r \end{pmatrix} \begin{pmatrix} d_1 & d_2 \dots & d_r \\ b_1 & b_2 \dots & b_r \end{pmatrix} = n_1 n_2 n_3$$

and n_1 , n_2 , and n_3 are contractions.

Conversely, suppose that α satisfies (1) and $m(\rho(\alpha)) \leq 1$. Then α is such that $a_1 = 1$, $a_r = n$ and $\rho^i(\alpha) \leq 1$ for all i $(1 \le i \le r-1)$. But $\alpha \in OCI_n \subset IO_n$, and so by remark 2.10 and theorem 1.1 α is expressible as a product of neither orderpreserving nilpotents nor contraction nilpotents. Suppose that α satisfies (1) and $m(\rho(\alpha)) \ge 2$. Now since $\alpha \in OCI_n \subset IO_n$ and α is such that $m(\rho(\alpha)) \ge 2$, then we have $\rho^i(\alpha) \ge 2$ for some $i \ (1 \le i \le r - 1)$, and so by remark 2.10 and theorem 1.1 α is expressible as a product of order-preserving nilpotents. Thus by theorem 1.2 either α is a product of two orderpreserving nilpotents or a product of three order-preserving nilpotents. Suppose that α is a product of two order-preserving nilpotents, that is,

 $\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 \dots \alpha_r \\ c_1 & c_2 \dots c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 \dots c_r \\ b_1 & b_2 \dots b_r \end{pmatrix} = n_1 n_2$ and the set $\{c_1, c_2, \dots, c_r\}$ is defined by $c_{i} = \begin{cases} a_{l} + \tilde{1}, & \text{if } i \leq l \\ a_{l} - 1, & \text{if } i > l \end{cases}$

where $\rho^{l}(\alpha) \geq 2$ occurs between a_{l} and a_{l+1} . Then, clearly we have $a_{l} < c_{l}$ and

 $c_{l+1} < a_{l+1}$. And it is easy to see that $a_{l+1} - a_l$ is at least 2 greater than $c_{l+1} - c_l$, for c_l is at least 1 greater than a_l and a_{l+1} is at least 1 greater than c_{l+1} . So using lemma 2.9 $\rho^i(n_1) + 1$ is at least 2 greater than $\rho_i(n_1) + 1$ which implies $\rho^i(n_1)$ is at least 2 greater than $\rho_i(n_1)$ and so, $\rho^{i^*}(n_1)$ exists in n_1 by definition 2.4. So, since $\rho^{i^*}(\alpha)$ does not exist in α , it follows that $b_{l+1} - b_l > c_{l+1} - c_l$ in n_2 . Then by lemma 2.9 we have

 $\rho_i(n_2) + 1 = b_{l+1} - b_l > c_{l+1} - c_l = \rho^i(n_2) + 1$

$$\Rightarrow \rho_i(n_2) > \rho^i(n_2) \text{ for some } i \ (1 \le i \le r-1).$$

Thus by lemma 2.11 n_2 is not a contraction. Suppose that the set $\{c_1, c_2, ..., c_r\}$ is defined otherwise. Then since $a_1 = 1$, $a_r = n$ and $\rho^{i^*}(\alpha)$ does not exist, it implies $\rho^i(\alpha)$ is at most 1 greater than $\rho_i(\alpha)$ for all $i \ (1 \le i \le r - 1)$. Thus, for some $i (1 \le i \le r - 1)$ we must have either

 $\rho_i(n_1) > \rho^i(n_1), \rho_i(n_2) > \rho^i(n_2) \text{ or } c_r \ge (n+1) \notin X_n$

But since α is expressible as a product of order-preserving nilpotents the case $c_r \ge (n+1) \notin X_n$ does not exist. So, the only possible case is either

 $\rho_i(n_1) > \rho^i(n_1)$ or $\rho_i(n_2) > \rho^i(n_2)$

for some i $(1 \le i \le r - 1)$. Then by lemma 2.11 n_1 or n_2 is not a contractions as the case may be. Suppose now that α is a product of three order-preserving nilpotents, that is,

J. of NAMP

 $\alpha = \begin{pmatrix} \alpha_1 \alpha_2 \dots \alpha_r \\ c_1 c_2 \dots c_r \end{pmatrix} \begin{pmatrix} c_1 c_2 \dots c_r \\ d_1 d_2 \dots d_r \end{pmatrix} \begin{pmatrix} d_1 d_2 \dots d_r \\ b_1 b_2 \dots b_r \end{pmatrix} = n_1 n_2 n_3.$ and the set $\{c_1, c_2, \dots, c_r\}$ is defined by $c_i = \begin{cases} a_l+1, \ if \ i \leq l \\ a_l-1, \ if \ i > l \end{cases}$ where $\rho^i(\alpha) \ge 2$ occurs between a_l and a_{l+1} . Thus, we have $a_l < c_l$ and $c_{l+1} < a_{l+1}$. And so, $a_{l+1} - a_l$ is at least 2 greater than $c_{l+1} - c_l$. So using lemma 2.9 $\rho^i(n_1) + 1$ is at least 2 greater than $\rho_i(n_1) + 1$ which implies $\rho^i(n_1)$ is at least 2 greater than $\rho_i(n_1)$ and so $\rho^{i^*}(n_1)$ exists in n_1 by definition 2.4. Since $\rho^{i^*}(\alpha)$ does not exist in α , then it follows that $b_{l+1} - b_l > c_{l+1} - c_l,$ which implies $c_{l+1} - c_l < b_{l+1} - b_l$ (2.16)We shall consider three cases Case 1. $c_{l+1} - c_l < d_{l+1} - d_l$. Then by lemma 2.9 $\rho_i(n_2) + 1 = c_{l+1} - c_l > d_{l+1} - d_l = \rho^i(n_2) + 1$ $\Rightarrow \rho_i(n_2) > \rho^i(n_2)$ for some $i \ (1 \le i \le r-1)$. Thus by lemma 2.11 n_2 is not a contraction Case 2. $d_{l+1} - d_l < c_{l+1} - c_l$. Then by (2.16) we have $d_{l+1} - d_l < b_{l+1} - b_l$. And by lemma 2.9 $\rho_i(n_3) + 1 = d_{l+1} - d_l > b_{l+1} - b_l = \rho^i(n_2) + 1$ $\Rightarrow \rho_i(n_3) > \rho^i(n_3)$ for some $i (1 \le i \le r - 1)$. Then by lemma 2.11 n_3 is not a contraction. Case 3. $d_{l+1} - d_l = c_{l+1} - c_l$. Applying (2.16) we have $d_{l+1} - d_l < b_{l+1} - b_l$. Then it follows from Case 2 that n_3 is not a contraction. Suppose that the set $\{c_1, c_2, ..., c_r\}$ is defined otherwise. Then $\rho^i(\alpha)$ is at most 1 greater than $\rho_i(\alpha)$ for all i $(1 \le i \le r-1)$ since $\rho^{i^*}(\alpha)$ does not exist. Thus, for $a_1 = 1$, $a_r = n$ and n_1 a nilpotent we have either or $c_r \ge (n+1) \notin X_n$ $c_{i+1} - c_i < b_{i+1} - b_i$ for some *i* $(1 \le i \le r-1)$. But since α is expressible as a product of order-preserving nilpotents the case $c_r \ge (n+1) \notin X_n$ does not exist. So, only the following case is possible: $c_{i+1} - c_i < b_{i+1} - b_i$ (2.17)for some i ($1 \le i \le r - 1$). We shall again consider three cases Case 1. $c_{i+1} - c_l < d_{i+1} - d_i$ for some $i(1 \le i \le r - 1)$. Then by lemma 2.9 $\rho_i(n_2) + 1 = c_{i+1} - c_i > d_{i+1} - d_i = \rho^i(n_2) + 1$ $\Rightarrow \rho_i(n_2) > \rho^i(n_2)$ for some $i \ (1 \le i \le r-1)$. Then by lemma 2.11 n_2 is not a contraction. Case 2. $d_{i+1} - d_i < c_{i+1} - c_i$ for some $i \ (1 \le i \le r - 1)$. Then applying (2.17) we have $d_{i+1} - d_i < b_{i+1} - b_i$ for some $i (1 \le i \le r - 1)$, and by lemma 2.9 $\rho_i(n_3) + 1 = d_{i+1} - d_i > b_{i+1} - b_l = \rho^i(n_2) + 1$ $\Rightarrow \rho_i(n_3) > \rho^i(n_3)$ for some $i (1 \le i \le r - 1)$. Then by lemma 2.11 n_3 is not a contraction. Case 3. $d_{i+1} - d_i = c_{i+1} - c_l$ for some $i \ (1 \le i \le r - 1)$. Applying (2.17) we han $d_{l+1} - d_l < b_{l+1} - b_l$ for some $i (1 \le i \le r - 1)$. Then it follows from Case 2 that n_3 is not a contraction. Suppose now that α satisfies (2) and $m(\rho(\alpha)) \le 1$. Then by lemma 2.14 $a_i = b_i$ for all $(1 \le i \le r)$ and so $a_1 = 1$, $a_r = n$. But $\alpha \in OCI_n \subset IO_n$ and $m(\rho(\alpha)) \leq 1$ implies $\rho^i(\alpha) \leq 1$ for all $(1 \leq i \leq r)$ then by remark 2.10 and theorem 1.1 α is expressible as a product of neither order-preserving nilpotents nor contraction nilpotents. Suppose that α satisfies (2) and $m(\rho(\alpha)) \ge 2$. If α satisfies (2) then by lemma 2.14 $a_i = b_i$ for all $i (1 \le i \le r)$ and so $a_1 = 1, a_r = n$. Then since

J. of NAMP

 $\alpha \in OCI_n \subset IO_n$ is such that $m(\rho(\alpha)) \ge 2$ which implies $\rho^i(\alpha) \ge 2$ for some $i \ (1 \le i \le r)$, by remark 2.10 and theorem 1.1 α is expressible as a product of order-preserving nilpotents. Thus α is expressible as a product of either two order-preserving nilpotents or three order-preserving nilpotents by theorem 1.2. We now show that α is expressible as a product of at most two order-preserving nilpotents. Since α is expressible as a product of two order-preserving nilpotents, there must exist a set $\{c_1, c_2, ..., c_r\}$ where $c_i < c_{i+1}$ for all $i \ (1 \le i \le r-1)$ such that the mapping $\binom{\alpha_1 \alpha_2 ... \alpha_r}{c_1 c_2 ... c_r}$ is an order-preserving nilpotent. Then the mapping $\binom{c_1 c_2 ... c_r}{b_1 b_2 ... b_r}$ is also an order-preserving nilpotent since by lemma 2.14 $a_i = b_i$ for all $i \ (1 \le i \le r)$. Let $n_1 = \binom{\alpha_1 \alpha_2 ... \alpha_r}{c_1 c_2 ... c_r}$, $n_2 = \binom{c_1 c_2 ... c_r}{b_1 b_2 ... b_r}$.

 $\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_r \\ c_1 & c_2 & \dots & c_r \end{pmatrix} \begin{pmatrix} c_1 & c_2 & \dots & c_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix}$

Thus α is expressible as a product of at most two order-preserving nilpotents. Suppose that the set $\{c_1, c_2, ..., c_r\}$ is define by $c_1 = \{a_l + 1, if i \le l\}$

$$a_l - 1, if i > l$$

where $\rho^i(\alpha) \ge 2$ occurs between a_l and a_{l+1} . Then we have $a_l < c_l$ and $c_{l+1} < a_{l+1}$ and so $a_{l+1} - a_l$ is at least 2 greater than $c_{l+1} - c_l$ which implies $c_{l+1} - c_l < a_{l+1} - a_l$. Then $c_{l+1} - c_l < b_{l+1} - b_l$ since $a_i = b_i$ for all $i (1 \le i \le r)$. By lemma 2.9 we have

$$\rho^{i}(n_{2}) + 1 = c_{l+1} - c_{l} < b_{l+1} - b_{l} = \rho_{i}(n_{1}) + 1$$

 $\Rightarrow \rho_i(n_2) > \rho^i(n_2) \text{ for some } i \ (1 \le i \le r-1).$

Then by lemma 2.11 n_2 is not a contraction. Suppose that the set $\{c_1, c_2, ..., c_r\}$ is defined otherwise. Then since by lemma 2.14 α is such that $a_i = b_i$ for all $i \ (1 \le i \le r)$, we must have either

 $\rho_i(n_1) < \rho^i(n_1)$ or $c_r \ge (n+1) \notin X_n$ for some $i \ (1 \le i \le r-1)$.

But since α is expressible as a product of order-preserving nilpotents the case $c_r \ge (n+1) \notin X_n$ does not exist. So, the only possible case is

 $\rho_i(n_1) < \rho^i(n_1)$ for some $i \ (1 \le i \le r - 1)$

This implies $\rho_i(n_2) > \rho^i(n_2)$ for some i $(1 \le i \le r - 1)$ since $a_i = b_i$ for all i $(1 \le i \le r)$. Then by lemma 2.11 n_1 or n_2 not contractions as the case may be. Hence α is not expressible as a product of contraction nilpotents if it satisfies (1) or (2). **Corollary 2.18** For $n \ge 2$. Let $\alpha \in OCI_n$. Then α is expressible as a product of contraction nilpotents if and only if:

(1) $a_1 \neq 1, b_1 \neq 1;$

(2) $a_1 = 1, b_1 \neq 1, a_r \neq n, b_r \neq n;$

(3) $a_1 = 1, b_1 \neq 1, a_r = n, b_r \neq n \text{ and } \rho^{i^*}(\alpha) \text{ exists};$

(4) $a_1 = 1, b_1 \neq 1, a_r = n, b_r = n$ and $\rho^{i^*}(\alpha)$ exists;

(5) $a_1 \neq 1, b_1 = 1;$

(6) $a_1 = 1, b_1 = 1, a_r \neq n;$

(7) $a_1 = 1$, $b_1 = 1$, $a_r = n$ and $\rho^{i^*}(\alpha)$ exists;

(8) $a_1 \neq 1, b_1 \neq 1, a_r \neq n, b_r \neq n$.

Remark 2.20 From remark 2.19 and thereom 1.1 it is easy to see that for $n \ge 2$ and $\alpha \in OCI_n$ is such that $m(\rho(\alpha)) \ge 2$ and $\rho^{i^*}(\alpha)$ does not exist, then α is expressible as a product of order-preserving nilpotents where at least one of the nilpotents is not a contraction if and only if it satisfies any of the following:

(1) $a_1 = 1, a_r = n,$ (2) $b_1 = 1, b_r = n$

References

- [1] Gomes, G. M. S and Howie, J. M (1987b). *Nilpotents in Symmetric Inverse Finite Semigroups*. Proc. Edinburgh Math. Soc. 30, 383-395.
- [2] Sullivan, R. P., (1997). Nilpotents in Partial Transformatios, Bull. Austral. Math. Soc., 55, 453-467.
- [3] Garba, G. U., (1994a), *Nilpotents in Semigroups of Partial One-to-one Order-preserving Mappings*, Semigroup forum, 48, 37 49.

The Subsemigroup Generated by...

J. of NAMP

- [4] Garba, G. U., (1994b), *Nilpotents in Semigroups of Partial Order-preserving Transformation*, Proc. Edinburgh. Math. Soc., 37, 361 – 377
- [5] Ibrahim, M. J., (2015), Algebraic Study of Certain Finite Semigroups of Contraction Mappings, PhD thesis, Ahmadu Bello University, Zaria-Nigeria.
- [6] Howie, J. M., (1995), *Fundamentals of Semigroup Theory*, Oxford University Press.