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Abstract 

Transmutation is one of the preferred path way of dealing with LLFP in fission 

reactors therefore, in this work, the calculation of neutron capture reaction on some 

LLFPs which are problematic in radioactive waste management in the neutron energy 

range of 0 – 20 MeV where performed using the EMPIRE 3.2 Code. The EMPIRE 

Code is a hybrid of several codes for addressing different reaction mechanisms of 

particle-induced reactions. Results of neutron capture reaction cross sections on 

LLFPs determined using the EMPIRE Code are compared with experimental data 

were available to select the most appropriate model for predicting the neutron capture 

reaction cross sections on the LLFPs that are scanty and discrepant. The results of the 

calculated cross sections are in good agreement with the measurements from EXFOR 

data of IAEA. The comparison of the calculated and the measured cross sections 

indicates that the models used in the calculation are suitable for practical applications. 
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1. INTRODUCTION 

The need for the transmutation of Long-Lived Fission Products (LLFPs) cannot be over emphasized considering the health 

implication of the uncontrolled exposure to the radiations. As of today, there is no set of consistent measured or evaluated 

cross section data that covers all the LLFPs which are problematic radioactive waste in spent nuclear fuel. Therefore 

evaluation of a set of consistent, accurate and precise cross section data, based on sound physics, is required for the 

transmutation of these isotopes for safe management and disposal. In nuclear transmutation technology, various kinds of 

particle beams from accelerators and neutron flux in nuclear reactors are used. The set of evaluated data thus have the 

important advantage of providing insight into the important physical considerations for these isotopes. For all transmutation 

studies a large number of additional nuclear data, which have not yet been available, is needed [1]. 

Of the possible nuclear reactions in the reactor, fission is the best in terms of energy production (about 200 MeV) and 

sustainable number of neutrons. The second best alternative is capture. It also releases energy, but much less (about 8 MeV) 

and photons which do not induce chain reactions. Thus capture is the choice only for elements which cannot fission, like the 

rest products after fissions, e.g technetium or iodine. Neutron Capture reaction on LLFPs results in nuclei that are often stable 

or short lived decaying into stable nuclei. The models used are presented in section two. The result of the neutron capture 

calculated with neutron energy up to 20 MeV using EMPIRE 3.2 code is presented in section 3.  
 

2.  MATERIALS AND METHOD 

The backbones of the EMPIRE system are bash-shell UNIX scripts that provide for seamless console operation of EMPIRE 

on Linux, Mac OS X, and Microsoft Windows with GNU gfortran compiler installed. The graphical interface provides for an 

easy operation of the system on Linux, Mac OS X and virtual Linux machines running on Microsoft Windows.  

For this work, the EMPIRE 3.2 (Malta) was installed on a Fedora Operating System on an Acer Laptop with Intel CORE i3- 
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380M processor - 2.53 GHz, 3MB L3 cache, 4 GB DDR3 Memory and 320 GB Hard Disk Drive. The PC was partitioned 

and WINDOWS and LINUX Operating Systems where installed to dual boot. The EMPIRE 3.2 modular code was installed 

on the LINUX Fedora 16 Operating System. As a part of the system software requirements, C++-compiler, gnuplot, Tcl/Tk, 

itcl were installed before the installation of the EMPIRE 3.2 Code. EMPIRE code files are available for download on 

http://www.nndc.bnl.gov/empire/ and consists of .tgz (compressed) files and the installation script (install. sh). The .tgz files 

are: EMPIRE-3.2-MALTA.tgz, C4-latest.tgz, Active Tcl 8.4.19.6.295590-linux-ix86.tgz, and Install.sh – the installation 

script. Out of these files only empire-3.2-MALTA.tgz is required to run calculations. The installation can be done using the 

graphical or non- graphical method. The installation method used for this work was the Non-graphical Installation, done as 

follows:  

 

First, the files were downloaded and placed in a temporary directory (e.g. ~/empire-tmp/). Then the setup.sh script was run 

with the following command: $ sh install.sh and followed the on screen instructions. The installation script detected the 

optional files in temporary directory and installed them.  

To run empire, a working subdirectory was created from empire root as ~/empire-3.2-malta/ads and changed to it. Then the 

EMPIRE GUI was launched with the command: empire3 

 

The models used to describe the reactions include a non-dispersive phenomenological global optical model potential 

employed to describe the neutron interaction with the spherical targets. ECIS06 optical model was employed to calculate the 

direct reaction and the neutron transmission coefficients with a neutron optical model potential with RIPL number 2405 by 

[2]. The optical model potential is relativistic covering 1KeV to 200MeV energy range and 70 nuclei with mass range from 

27 to 209.   

 

The exciton model PCROSS as used as the pre-equilibrium model to calculate the gamma emission of the reactions at the 

pre-equilibrium level.  

Hauser-Feshbach [3] and Hofmann-Richard-Tepel-Weidenmüller - HRTW [4] versions of the statistical model with full 

gamma-cascade were employed to treat the compound nucleus. The EMPIRE default nuclear level density, Enhanced 

Generalized Superfluid Model - EGSM, was used for the description of the nuclear structure. The discrete levels were taken 

from the RIPL-3 level file, based on the 2007 version of Evaluated Nuclear Structure Data File - ENDSF [5]. The gamma ray 

strength function Plujko Modified Lorentzian (MLO) RIPL-2 was used. The electronic dipole (E1) strength function was set 

to RIPL modified Lorentzian version 1 while Giant Dipole Resonance parameters (GDR) were taken from 

RIPL/Exp.data+Plujko systematic. All the deformation parameters are to take care of any deformation that could arise as a 

result of excitation. 

 

These models and parameters fully describe the reactions and give good results as compared with the measured data from 

EXFOR in section 3. 

 

3. RESULTS AND DISCUSSION 
The results of the neutron capture reactions are presented as discussed below: 
79Se(n,γ)80Se has only one point measurement of the cross section by [6]. The one point is well predicted by this work as 

shown in Fig. 1. The measured data area is shown clearly in Fig. 1 (b). 

 
Fig 1: (a). The excitation function of 79Se(n,γ)80Se up to 20 MeV compared with measured data.       
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Fig. 1: (b). The excitation function of 79Se(n,γ)80Se in the region of available measured data. 

 

Most of the cross section measurements of 90Sr(n,γ)91Sr coincide and are well predicted by this work as shown in Fig. 2.  

 
                 Fig. 2: (a). The excitation function of 90Sr(n,γ)91Sr  with energy up to 20 MeV.                

  
          Fig. 2: (b). The excitation function of 90Sr(n,γ)91Sr showing the measured data area. 

 

The measured cross sections of 93Zr(n,γ)94Zr are well predicted by this work as shown in Fig. 3. 

 
 Fig. 3: (a). The excitation function of 93Zr(n,γ) 94Zr  with energy up to 20 MeV.    
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         Fig. 3: (b). The excitation function of 93Zr(n,γ) 94Zr showing the measured data area. 
107Pd(n,γ)108Pd reaction has measured cross sections beyond 20 Mev. Generally , the measured reaction cross sections are 

well predicted by this work as shown in Fig. 4.  

 
              Fig. 4: (a). The cross section of 107Pd(n,γ)108Pd  with energy up to 20 MeV. 

 
            Fig. 4: (b). The excitation function of 107Pd(n,γ)108Pd showing the measured data area. 
99Tc(n,γ)100Tc has measurements up to 20 MeV. The measurements are well predicted by this work as shown in Fig. 5. 

 
         Fig. 5: The excitation function of 99Tc(n,γ)100Tc with energy up to 20 MeV. 
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The cross sections of 126Sn(n,γ)127Sn are as shown in Fig. 6. The one point each measured by [36] and [6] are well predicted 

by this work. 

 
              Fig. 6: (a). The excitation function of 126Sn(n,γ)127Sn with energy up to 20 MeV.     

            
     Fig. 6: (b). The cross section of of 126Sn(n,γ)127Sn  showing the measured data areas. 

 

The measured cross sections of 129I(n,γ)130I are well predicted by this work as shown in Fig. 7. 

 
                       

                 Fig.7: (a). The excitation function of 129I(n,γ)130I with energy up to 20 MeV.           

       

 
Fig. 7: (b). The excitation function of 129I(n,γ)130I  showing the measured data area. 
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The 135Cs(n,γ)136Cs reactions has measurements up to 1MeV and they are all well predicted by this work as shown in Fig. 8. 

 
             Fig. 8: (a). The excitation function of 135Cs(n,γ)136Cs with energy up to 20 MeV.   
               

 
      Fig. 8: (b). The excitation function of 135Cs(n,γ)136Cs showing the measured data area. 

 

The measurements of 137Cs(n,γ)138Cs cross sections are very close and are over predicted by this work as shown in Fig. 9. 

 
               Fig. 9: (a). The excitation function of 137Cs(n,γ)138Cs  with energy up to 20 MeV . 

 
              Fig. 9: (b). The cross section of 137Cs(n,γ)138Cs  showing the measured data area. 
 

151Sm(n,γ)152Sm reaction has measurements with high energy of about 1MeV as shown in Fig. 10. All the measurements are 

well predicted by this work. 
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        Fig. 10: (a). The excitation function of 151Sm(n,γ)152Sm  with energy up to 20 MeV .    

 
        Fig. 10: (b). The excitation function of 151Sm(n,γ)152Sm showing the measured data area. 

 

It could be seen that generally the (n,γ) reactions show continuous increase of neutron absorption as the energy decreases and 

there is no  threshold energy as can be seen in Fig.11 

 
Fig. 11. Comparison of all the (n,γ) reaction cross sections of LLFPs.  
Fig. 1 to 11 present the excitation functions for the neutron induced reaction on 79Se, 90Sr, 93Zr, 99Tc, 107Pd, 126Sn, 129I, 135Cs, 137Cs and 
151Sm from threshold to 20 MeV.  Most of the available measurements are within the thermal energy range and the evalauted results drop 

steeply within the thermal region  confirming that the (n,γ) reaction is an open channel within thermal energy range and not favoured by 

higher energy.   

The results of the neutron capture cross section show  that the models used in the calculations acurately discribe the measurements except 

for 137Cs(n,γ)138Cs (Fig. 9b) were the calculation over predicts the measured data. The spherical optical model in which the direct 

population of collective levels in the incident channel is suppressed, suitably deacribes the optical model contribution. The spherical, 

relativistic, non dispersive potential which cover isotopes within 13≤A≤83, 29≤A≤209 and 0 – 200 MeV inicident energy was suitably 

used for this spherical optical model contribution as the neurton potential.  

Furthermore, the compound nucleus has been accounted for by an advanced implementation of the Hauser Feshbach theory with exact 

angular momentum and parity coupling which also suitably accounted for the full γ-cascade in the residual nuclei which is necessary for a 

good description of radiative capture cross section. This compound nucleus mechanism also suitably account for the correlation between 

incident and exit channels in elastic scattering  through the HRTW  width fluctuation correction which was tested and optimized at 3 MeV. 

The Enhanced Generalized Superfluid Model improved the cross section result by suitably using the super-fluid model below critical 

excitation energy and the Fermi Gas model above. In this case the improvement is due to a proper accounting for the spin distribution in the 

Fermi Gas model by including a more accurate treatment of high angular momenta which are important in some reaction. The Gamma Ray 

Strength Function was also properly accounted for with a suitable form of the Modified Lorentzian.  

For the pre-equilibrium contribution, the phenomenological exciton model PCROSS appropriately accounted for gamma emission at 

the pre-equilibrium level.          
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For the observed poor agrreement with measurement  in 137Cs(n,γ)138Cs (see Fig. 9(b)), the mesurement may be better accounted by the use 

of a couple channel option for the optical model or the selection of an apporiate potential or a more descriptive gamma ray strength model. 

It shoul be noted that 137Cs, as one of the principal long-lived fission products responsible for most of the radioactivity of spent nuclear fuel 

is a strong emitter of gamma radiation and has a very low rate of neutron capture, as shown by the measurement and this evaluation, such 

that it cannot be feasibly disposed through the (n,γ) transmutation and must be allowed to decay.  

Generally, the results show that EMPIRE-3.2 has very strong capability of describing the avialable experimental results and provides 

suitable models and parameter description for the evaluation of cross section of LLFP usefull in the design  and operation of a reactor 

system for  transmutation purposes.  

CONCLUSION 
The results of the determination of the cross section data of (n,γ) reaction on LLFPs is thus significant in the context of the nuclear data 

base available for the isotopes. The comparison of the calculated results with the measured data shows that EMPIRE-3.2 code is quite 

suitable in predicting the cross-section of the (n,γ) for neutron energy up to 20 MeV region. Optimal models and parameters which give 

results in good agreement with standard EXFOR cross section data for proton induced and neutron capture reactions were determined to 

include spherical optical model with RIPL number 2405 for neutron incident channel. This is enhanced with HRTW set to 3 MeV. 

Enhanced Generalized Super-fluid Model approach of the level density accounted for the nuclei structures. Modified Lorentzian (MLO 1) 

for the gamma ray strength function accounted for the gamma radiation is an appropriate model. Further enhancement is obtained with 

PCROSS to account for the pre-equilibrium contribution.  The results show that EMPIRE 3.2 has a strong predictive abilities of the (n,γ) 

reaction on LLFPS.  
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