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Abstract 
 

Effects of tensor correlations on the positive parity states of even-even nuclei in the sd 

shell are examined. Two-body nuclear matrix elements are obtained by the lowest order 

constrained variational technique with and without tensor correlations. The matrix 

elements calculated are used as input into the NUSHELL shell model code to calculate 

the energy spectra of all the even-even nuclei with and without tensor correlations in 

the sd-shell region. We have found that the effects of tensor correlations is to open up 

the calculated energy spectra and provide reasonable agreement with experiment, 

whereas the energy spectra calculated without tensor correlations  compress the energy 

spectra and provide significant disagreement with experimental data. The results 

presented here re-emphasize the strong evidence found in nuclear structure 

calculations that tensor correlations are very important in nuclei and their presence 

cannot be ignored. 

 

Keywords: Shell Model Calculation, sd-Shell, Tensor Correlations, NUSHELL Code, Energy Spectra, Even-

Even nuclei. 

 

1.0 Introduction. 

In the rest-frame of the nucleus, the non-relativistic many nucleon Hamiltonian incorporating pairwise interactions can be 

written as [1] 
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where ijp  is the relative momentum,  jiij ppp 
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1 , AmAM N)(  is the total mass of the nucleons while ijV  is taken 

here to be the Nijmegen potential [2]. An effective Hamiltonian can be defined which takes the form [3,4]: 

ij

ji

ij

ij

ijeff fV
M

p
fH 

















2

,                                                                          (2)         

where the ijf  are two-body correlation operators. In earlier studies regarding nuclear matter and finite nuclei [4], the two-

body correlation functions were found to have three features. These included (i) the “wound” induced in the two - body wave 

function by the repulsive core of the NN interaction; (ii) the tensor correlations especially in the 
1

3

1

3 DS   channel and; (iii) 

the meson exchange corrections. The most important of these features was found to be the tensor correlations, hence, the two-

body correlation functions were parameterized in the form [5,6] 
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where the sum   is over all reaction channels and )( ijrf is parameterized as: 
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])(exp[1)( 2

cijij rrrf                                                                                              (4) 

In Eq. (4), 25.0cr fm  and 25 2fm  which represents the short-range repulsion of the bare NN interaction, 
ijS  is the 

usual tensor operator; )(A  is the strength of the tensor correlations which is measured by the condition: 

 1

3

1

3,0)( DSA  
.                                                                                                 (5) 

It should be noted that in this paper we have used a simple form of the two-body correlation functions. More sophisticated 

sets of two - body correlation functions are in use and are designed to be different in different partial waves. This present 

choice has been used because it is particularly suitable in studying the effects of tensor correlations on energy spectra of 

nuclei as this can be done by simply switching ‘on’ and ‘off’ the strength of the tensor correlations, )(A . 

Some years ago [7] we presented the above prescription for calculating an effective interaction in the rest-frame of the 

nucleus. We used the Reid Soft-Core potential. However, we did not calculate the energy spectra of corresponding nuclei 

with our interaction. We only compared our work with other fitted interactions. In this work we repeat our earlier prescription 

but this time we have calculated the energy spectra of selected nuclei with the more modern Nijmegen potential [2]. Our 

motivation in this work is to investigate the effects of tensor correlations on energy levels of all the even nuclei in the sd-

region and compare with the results of other workers [8-12]. To the best of our knowledge, a study on the interplay of energy 

levels and tensor correlations has not been investigated.     

The paper is divided as follows: In Section 2, we compare the matrix elements of the present interaction with those fitted to 

experimental data by Wildenthal [13]. In Section 3 we present the results of the variance between our matrix elements and 

those of Wildenthal [8]. In Section 4 we present the spectra of the energy levels of nuclei under question. Section 5 is 

concerned with summary and conclusion.  

 

2. Comparison of the Matrix Elements. 

The matrix elements of Eq.(2) were calculated in a harmonic oscillator basis. In calculating the matrix elements, we have 

only two free parameters to vary. These are the strength of the tensor correlations defined by )(A  described earlier and the 

oscillator size parameter )(A  contained in the wave function. As already discussed, the aim of this paper is to show the 

effect of tensor correlations induced by the tensor force component in 
ijV  on the energy spectra of nuclei. We do this by 

varying the strength of the tensor correlations as follows: By setting 0)( A , we have no tensor correlations. However, if 

we let )(A  assume a finite value, then we have tensor correlations.  

We next compared the calculated matrix elements described by the two conditions of )(A  above with the fitted interaction 

of Wildenthal [13]. It should be noted that the interaction described by Wildenthal [12] has been fitted to experimental data 

for nuclei in the range 4018  A  and it is mass dependent. The present interaction is also mass dependent through )(A , 

Eq. (1) and )(A . 

In ref. [7] it was found that the comparison between our matrix with those fitted to experimental data was good only to a 

constant shift, ∆ to the diagonal matrix elements. We have repeated the same analysis here and have found similar results. 

 

In Figures 1.1 to 1.4, we present the T = 1 and T = 0 diagonal and non - diagonal two-body matrix elements for the A = 20 

system for the present calculation and those of Wildenthal [13]. Figures 1.1 and 1.2 show the results when the strength of the 

tensor correlations is switched off i.e. 0)( A  (no tensor correlations) while Figures 1.2 and 1.4are the results when 

)(A  takes on a finite value ( 0550.0)( A in this case). In the case of Figure 1.1 (tensor correlations switched off) we 

have applied a constant shift of ∆  = 2.5 MeV to all the diagonal matrix elements  while in Figure 1.4 (tensor correlations 

switched on) a constant shift of ∆  = 2.4 MeV  has been applied to all the diagonal matrix elements. 
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Figure 1. 1T = 1 and T = 0 diagonal matrix elements for the present calculation and Wildenthal’s with 0000.0)( A , A  

= 20, 13  and ∆ = 2.5 MeV . Doted lines represent Wildenthal’s matrix elements while the solid lines are the present 

calculations. 

 

 
 

Figure 1.2. T = 1 and T = 0 non-diagonal matrix elements for the present calculation and Wildenthal’s with,

0000.0)( A , 20A  and 13 . 

Doted line represent Wildenthal’s matrix elements while the solid lines represent the present calculation. 

 
Figure 1.3.  T = 1 and T = 0 non-diagonal matrix elements for the present calculation and Wildenthal’s with

0550.0)( A , 20A ,  and 13 . 

Doted line represents Wildenthal’s matrix elements while the solid line represents present calculation. 
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Figure 1.4T = 1 and T = 0 diagonal matrix elements for the present calculation and Wildenthal’s with 0550.0)( A ,

20A ,∆ = 2.4MeVand 13 .Solid lines represent Wildenthal’s matrix elements while the doted lines represent 

present calculation 

  

3. Results of the Variance 

In Figures 2.1 – 2.8, we present the variance of our calculated matrix elements with those of the fitted interaction of 

Wildenthal [13]. We define the variance in the form 
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where the sum is over the sixty-three  two-body matrix elements. In Eq.(5), 
F

iME are the two-body matrix elements of the 

fitted interaction while C

iME are those of the present interaction. 

In Figure 2.1the variance  is plotted for 11 , and 0550.0  as a function of the shift in the diagonal two-body 

matrix elements,  . We have found that for every mass number, A , an optimized variance can be found which brings our 

calculated two-body matrix elements in line with the fitted data of Wildenthal. 

In the present choice the value of the optimized variance is, 1.0 . On the other hand, by repeating the above procedure  

and switching off the strength of the tensor correlations, as in Figure 2.2, the variance went up to 5.0 , showing a poor 

agreement with the fitted interaction of Wildenthal. We have repeated the same procedure in Figures 2.3, 2.4, 2.5, 2.6, 2.7 

and 2.8 for different values of   and )(A , and have found similar trend. 
 

4. The Energy Spectra. 

In Figures 3.1 – 3.7, we plot the calculated energy spectra of even-even nuclei in the range 4018  A  with and without 

the effect of tensor correlations. Figure3.1. isthe 18F spectrum. In this Figure, the lowest five experimental energy levels are 

reproduced with tensor correlations switched on. However, the energy spacing are higher than their experimental 

counterparts. In fact, the first 0+1and the first 5+0 levels have actually interchanged order.On the other hand, we cannot assign 

any of the experimental energy levels with the calculated energy levels when tensor correlations are turned off. Also 

comparison with other workers [14] shows poor agreement when Tensor correlations are turned off. 

The spectrum of 20Ne is depicted in Figure 3.2.The first five experimental energy levels are well reproduced when tensor 

correlations are switched on. On the other hand the same levels are also reproduced but the spectrum is somehow compressed 

when tensor correlations are switched off. Similar trend is observed in Figure.3.3 which shows the 24Mg spectrum. Here, the 

first six experimental levels are reproduced when tensor correlations are switched on except that the second 2+ state 

interchanges sign with the first 4+ state. On the other hand, the effect of switching off the tensor correlations compresses the 

spectrum and the agreement with experiment is poor. 

In Figure 3.4 wherethe 28Si spectrum is plotted, the first four experimental energy levels are well reproduced when tensor 

correlations are switched on. The pattern obtained here for this nucleus is similar with the works other researchers [15–17]. 

However, the calculated spectrum is severely compressed when tensor correlations are switched off, and agreement with the 

experimental spectrum becomes very poor.  
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As can be seen from our calculations pictorially illustrated in Figure 3.5 which presents 32S spectrum, the energy levels are 

not well reproduced on a one-to-one basis for 32S nucleus even when tensor correlations are switched on. However, as can be 

seen, switching on the tensor correlation opens up the spectrum while switching off the tensor correlations compresses the 

spectrum. 
 

The description of 36Ar Spectrum is given in Figure 3.6.The first six experimental levels are confirmed to be reproduced with 

tensor correlations switched on [17]. However, the first 4+  and the first 0+  levels have interchanged order. On the hand, the 

same spectrum in question is compressed when tensor correlations are switched off. Finally, the last nucleus investigated in 

the present work is Potassium 38K with its calculated spectrum depicted in Figure 3.7. The lowest five experimental energy 

levels are reproduced with tensor correlations switched on. On the other hand we cannot assign correctly any of the 

experimental energy levels with our calculated spectrum when tensor correlations are switched off.  
 

5. Summary and Conclusion. 
The study of the interplay of the various components of the nuclear force on measurable quantities such as the energy levels 

of nuclei is not an easy one. In this work we have studied the effect of the tensor correlations induced by the repulsive core of 

the NN force on the energy spectra of even - even nuclei in the range 4018  A . We have found that the strength of the 

tensor correlations is very important in obtaining reasonable agreement with experiment. Indeed we have found that when the 

strength of tensor correlations are switched off, the calculated energy spectrum either compress very severely or disagrees 

significantly with experiment.  We expect to find the same kind of trend on measurable quantities when studying 

astrophysical quantities where tensor correlations are involved.    

 
Figure 2.1 Graph of variance   for 11 , and 0550.0  as a function of shift∆ in the diagonal two-body matrix 

elements 

 

 

Figure 2.2 Graph of variance   for 11 , and 0000.0  as a function of shift∆ in the diagonal two-body matrix 

elements 
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Figure 2.3 Graph of variance   for 12 , and 0600.0  as a function of the shift ∆  in the diagonal two-body 

matrix elements 

 
Figure 2.4 Graph of variance   for 12 , and 0000.0  as a function of shift ∆  in the diagonal two-body matrix elements 
 

 
Figure 2.5 Graph of variance   for 13 , and 0600.0  as a function of shift ∆  in the diagonal two-body matrix elements 

 
Figure 2.6 Graph of variance   for 13 , and 0000.0  as a function of shift ∆  in the diagonal two-body matrix elements 
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Figure 2.7 Graph of variance   for 14 , and 0500.0  as a function of shift ∆  in the diagonal two-body matrix elements 

 

 

Figure 2.8 Graph of variance   for 14 , and 0000.0  as a function of shift ∆  in the diagonal two-body matrix elements 
 

 

Figure 3.1 F18
 Energy Spectrum. 0650.0,13   (with tensor), 0000.0  (without tensor) 
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Figure 3.2 Ne20
 Energy Spectrum. 0550.0,13   (with tensor), 0000.0  (without tensor) 

 

Figure 3.3 Mg24
 Energy Spectrum. 0550.0,13   (with tensor), 0000.0  (without tensor) 

 

 

Figure 3.4 Si28
 Energy Spectrum. 0550.0,11   (with tensor), 0000.0  (without tensor) 
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Figure 3.5 S32
 Energy Spectrum. 0500.0,11   (with tensor), 0000.0  (without tensor) 

 

 

Figure 3.6 Ar36
 Energy Spectrum. 0550.0,11   (with tensor), 0000.0  (without tensor) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 K38
 Energy Spectrum. 0500.0,11   (with tensor), 0000.0  (without tensor) 
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