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Abstract 

Considerable attention has been given in the literature to the estimation of 

Semiparametric Seemingly Unrelated Regression (SSUR) estimator and the Ordinary 

Least Squares (OLS) estimator when the regressors are correlated. The former has 

been shown to be more efficient.  This efficiency could be compromised depending on 

the degree of the correlation. However, in spite of the large number of studies on 

multicollinearity in SSUR model, there has been no attempt to investigate the tolerable 

level of correlation for which the SSUR estimator will still be more efficient when 

compared with the OLS estimator. This study was aimed at determining the Tolerable 

Non-orthogonal Correlation Point (TNCP) for the SSUR estimator. The TNCP was 

assessed using a modified Smith and Kohn four-equation SSUR model with a specified 

variance-covariance matrix ( ). In a Monte Carlo experiment a pair of parametric 

and non-parametric regressors was simulated at varying degrees of positive and 

negative correlations with both defined on a uniform distribution. Data sample sizes of 

25, 100 and 1000 were generated and replicated 5000 times in turn. The Cholesky 

decomposition was employed to partition . Two triangular (upper and lower) 

matrices resulted from the Cholesky decomposition. Strong contemporaneous 

relationships among the SSUR equations were obtained by the product of the 

partitioned matrices and their error terms. The Average Mean Square Error (AMSE) 

and Bartlett test were applied to test the homogeneity of variances. The Barlett test 

showed that the efficiency of SSUR estimators was preserved at 
1 2, 0.3x xTNCP 

 
for 

large sample sizes.  The results indicate that the exclusion of variables when regressors 

are correlated can be circumvented when the tolerable correlation points lies between -

0.3 and +0.3(or 0.3 ). 
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1.  Introduction 

Semiparametric model bridges the gap between a purely parametric structure and nonparametric structure; hence a 

semiparametric model is a flexible model. Researchers have used the Semiparametric Seemingly Unrelated Regression 

(SSUR) estimator to address both empirical and theoretical problems. For instance, [18] used the smoothing splines to 

simultaneously estimate a system of equations. In [15] a SSUR model was developed where data transformation may be 

required and/or outliers may exist in the data. Parametric SUR model was extended in [1, 9, 10] to SSUR and 

Geoadditive SUR models within a Bayesian context. Standard Linear Programming using the Newton Raphson steps was 

used by [8] to show that convergence is fast and there is efficiency improvement of SSUR over semiparametric OLS. 

The SSUR have also been applied in exciting empirical studies which include [16] who used a kernel based approach to 

estimate functional relationship between a brand’s unit sales and price discounts while modelling other predictors 

parametrically. The SSUR to sales of oranges using the cubic splines to show that SSUR is better than semiparametric 

OLS was applied by [10]. In [6] a semiparametric market share attraction model was used for the cubic smoothing 

splines to estimate price effects on a brand’s market share. In these empirical applications, both semiparametric models 

performed better compared to rigid parametric models in terms of MSE and Bayesian Information Criterion (BIC). 

Several other estimation procedures proposed within the SSUR frame- work could be found in [6, 10, 13].  In all the 

SSUR estimation procedures reported above, Zellner’s basic recommendation for contemporaneous correlation among 

the error vectors with uncorrelated explanatory variables within each response equation was maintained.  

Multicollinearity is the result of strong correlations between the regressors which inflates the variances of the parameter 
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estimates [4, 5]. However, in spite of the problems of multicollinearity, the selection method of covariates or remedy 

when this problem is encountered within the context of SSUR has not been adequately explored. Studies on 

multicollinearity in SUR model are still lacking or scarce in literature. However, a notable exception is [17] who 

investigated different correlation levels and determined the Tolerable Non-Orthogonal Correlation Points (TNCP). They 

found that at 0.2TNCP  , the efficiency of parametric SUR estimators would be preserved at all sample sizes. Although, 

the asymptotic property is achieved in both estimators, the parametric SUR superiority over the OLS is maintained 

whether or not some pairs of covariates in the system are correlated.  

 In the light of the above, it is worth investigating the TNCP in SSUR model. Although, this is relevant in practice, 

surprisingly to the best of our knowledge, such study is lacking in literature.  Following the above background 

discussion, we raise this main research question: What is the tolerable admissible level of multicollinearity in SSUR 

model so that the efficiency of the estimator is not compromised compared to OLS? 

 

2.    The Model 

The Semiparametric Seemingly Unrelated Regression Model considered in this study is specified as follows:
( ) ( ) 1,.......,

1,........,

ij j ij j ij ijY f X X i N

j M

    



       (1)  

The model in (1) consists of M  Seemingly Unrelated structural equations with N observations. Each structural equation 

is a component of both linear and unlinear functions.  
where 

ijy is the 1MT   vector of response variables 

ijX is the  MT k explanatory variables 

j  is the 1k   unknown regression parameters for the linear terms 

jf  are the unknown smooth functions for the nonlinear terms 

ij  are the disturbance terms 

The study by [15] specified and estimated a purely Nonparametric SUR model to the general case in (1) above. The 

model consists of four equations   

1 11 1

2 21 21 2

3 31 3

4 41 4

sin(8 ) 0.0551618

[ ( ;0.2,0.05) ( ;0.6,0.2)] / 4 0.4530935

1.5 0.8380343

cos(2 ) 0.1070571

i i

i i

i i

i i

y x

y x x

y x

y x

 
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 

  
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  

        (2) 

The covariates values are i.i.d samples from   

3

4
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      
        

The model in (2) is SSUR iff there is contemporaneous correlation among the error terms  . 

Therefore, these regressions are related through the correlated error term structure ~ (0, )nN I  . 

~ (0, )N   with  

1 0.96 0.64 0.93

1 0.98 0.9

1 0.85

1

 
 
  
 
 
 

                    (3) 

In order to investigate the effect of multicollinearity on this model, it is modified as follows: 

1 11 12 1

2 21 21 2

3 31 3

4 41 4

sin(8 ) 0.4 0.0551618

[ ( ;0.2,0.05) ( ;0.6,0.2)] / 4 0.4530935

1.5 0.8380343

cos(2 ) 0.1070571

i i

i i

i i

i i
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 

  



 
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   

  

  

                (4)  

The two models differ in terms of   1y  , a new parametric term  
120.4x   was added to the nonparametric term to make  

1y  semiparametric. 
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The covariance matrix    reported in (3) turned out not to be positive definite, so we adopted   given by [1]. 
1 0.7 0.6 0.9

1 0.7 0.9

1 0.7

1

 
 
  
 
 
 

          (5)  

 

3.   The Design of the Monte Carlo Experiments 

3.1 Derivation of the Error Structure 

The inverse of    was achieved through the use of Cholesky decomposition on the matrix. Since   is a positive definite 

matrix, we decomposed it by a non-singular upper triangular matrix P , such that 
'PP            (6)  

If  

* * * *

11 12 13 14

* * *

22 23 24

* *
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44
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 
 
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 
  
 

       (7) 

Then 

 

          (8) 

     

 

 

The following results were obtained for the lower and upper triangular matrices  

0.3551 0.2493 0.042 0.9 0.3551 0 0 0

0 0.4247 0.098 0.9 0.2493 0.4247 0 0

0 0 0.7141 0.7 0.042 0.098 0.7141 0

0 0 0 1 0.9 0.9 0.7 1

and

    
   

   
   
   
   

  respectively       (9) 

The four random disturbance series are established through the product of the partitioned matrix in (9) and their error 

terms, using 
'P e                                   (10) 

So that using (10), we have 
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                                                                    (11) 

3.2 The Simulation Procedure 

 In the standard computer algorithm written 
11 12 21, ,x x x  were generated from a U [0, 1] distribution while 

31 41,x x were 

generated from a normal distribution following [15]. 

31

41

0.5 1 0.6
( ,0.3 )

0.5 0.6 1

x
N

x

     
     

    
:

        

 

We then generated values for the four equations, 
1 2 3 4, , ,i i i iy y y y  as given in (2) (the dataset is available for interested 

readers).  The generation of samples and random disturbances, imposition of correlation between the parametric and 

nonparametric functions in 1iy , computations and estimation were carried out by writing a program in  STATA 9.0 Do- 

file editor (contact the authors for the program). The correlation between 
11 12x and x   in 

1iy  which is a semiparametric 

equation in the four- equation SSUR model was considered at various correlation levels 0.9, 0.8, 0.7, 0.6, 0.5,    

0.4 0.3 0.2, 0.1 0.0and     with each replicated  5000 times in turn for sample sizes 25, 50, 100 and 1000. 
 

4.0 Analysis and Discussion of the Results 

The performance of the estimators was evaluated by the Average Mean Square Error (AMSE).  The plots of AMSE 

against various sample sizes in Figs 1 and 2 show that despite the gain in efficiency by OLS estimators due to increased 

sample size, SSUR estimators were more efficient than OLS as shown by the AMSE plots for the positive and negative 

correlation. 
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Fig 1: The plot of AMSE values against different sample sizes when there is positive correlation between  
11 12&X X  

in 
1Y

 
 

 

Fig 2: The plot of AMSE values against different sample sizes when there is negative correlation between  
11 12&X X  

in  1Y
 

 

The Box-and-Whisker plots shown in Figs 3 and 4 of the median AMSE values also show lower AMSE values for SSUR 

estimators than that of the OLS. 
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Fig 3:  The Box- and Whisker plot for positive correlation. 

 

 

 
Fig 4: The Box- and Whisker plot for negative correlation. 

 

 
Fig 5:  The Box- and –Whisker plot of AMSE values for SSUR estimator at different sample sizes for 

1Y  depicting decreasing trend in 

the median AMSE as the sample size increases when there is positive correlation. 
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Fig 6:  The Box- and –Whisker plot of AMSE values for SSUR estimator at different sample sizes for 
1Y  depicting 

decreasing trend in the median AMSE as the sample size increases when there is negative correlation. 

 

Figs 5- 8 also show that the AMSE values for the SSUR estimators decrease as sample size increases. 

 

Fig 7: The SSUR estimators when there is positive correlation between 11 12&X X  in equation 1Y
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Fig 8:  The SSUR estimators when there is negative correlation between  
11 12&X X  in equation 

1Y  

 

5 Discussion of Results  

The different positive and negative correlation level values are given in Tables 1 and 2 respectively for sample size 

25n  . In Table 1 below, the intercept AMSE values are fixed for both the SSUR and OLS estimators when replicated 

5000 times in turn. That is, 
10 20 30 40, , ,     with AMSE values 0.1263,0.0346,0.0193,0.1328 for the SSUR estimator 

and 0.1661,0.0451,0.0210,0.1467  for the OLS estimators. Since we are interested in the nonparametric function 

11f  and parametric function 
12   most of our discussions will centre on the two estimators.  The  

orthogonalAMSE at 

which the predictors are purely uncorrelated for the SSUR estimators are  0.1328,0.1115while for the OLS estimators 

0.1430,0.3886 for 5000 replicates.  The 
orthogonalAMSE

 
at which the predictors are purely uncorrelated for the SSUR 

estimator is 0.1387,0.1876  while for the OLS estimators  0.1430,0.3886  for 5000 . The AMSE values of the SSUR 

estimators were considerably lower than that of the OLS estimators. In Table 1, when 
11 12, 0.9x x  , 

AMSE values for 

SSUR and OLS estimators were 0.2163, 0.2867 and 0.2903,0.3886 which shows that SSUR is more efficient that OLS 

estimators. Similar results were also obtained for the AMSE values of the negative correlation levels. Another 

remarkable result is the loss in the efficiency of the SSUR estimators as the collinearity levels became severe. This is 

obvious from the following randomly selected values: 
11 12, 0.9,0.6,0.4,0.0x x   which are given as 0.2163, 0.2003, 

0.1987, 0.1328 and 0.2867, 0.2712, 0.2119, 0.1115 for SSUR estimators while 0.2903, 0.2800, 0.2345, 0.1430 and 

0.3886, 0.3886, 0.3886, 0.3886 for OLS estimators. For the negative correlation levels in Table 2, 

11 12, 0.9, 0.6, 0.4, 0.2x x       the AMSE values are given as: 0.2081, 0.2021, 0.1975, 0.1889 and 0.2764, 0.2661, 

0.2623, 0.2599 for SSUR estimators while 0.2903, 0.2800, 0.2200, 0.2345, 0.2800, 0.2903 and 0.3886, 0.3886, 0.3886, 

0.3886. The different positive and negative correlation levels values are given in Tables 3 and 4  for sample size 

100n  . The 
orthogonalAMSE at which the predictors are purely uncorrelated for the SSUR estimators are  

0.0065,0.0055while for the OLS estimators are 0.0074,0.0060  for 5000  replicates . In Table 3, when 
11 12, 0.9x x 

, 

AMSE values for SSUR and OLS estimators were 0.0274, 0.0260 and 0.0336,0.0318 which shows that SSUR estimators 

are more efficient that OLS estimators. Similar results were also obtained for the AMSE values of the negative 

correlation levels. There was also loss in the efficiency of the SSUR estimators as the collinearity levels became severe. 

This is obvious from the following randomly selected values: 
11 12, 0.9,0.6,0.4,0.0x x 

 which 
are given as 0.0274, 0.0093, 

0.0075, 0.0065 and 0.0260, 0.0082, 0.0066, 0.0055 for SSUR estimators while 0.0336, 0.0109, 0.0086, 0.0074 and 

0.0318, 0.0094, 0.0072, 0.0060 for OLS estimators. For the negative correlation levels at 
11 12, 0.9, 0.6, 0.4, 0.2x x       

the AMSE values are given as 0.0276, 0.0092, 0.0075, 0.0064 and 0.0279, 0.0085, 0.0066, 0.0056 for SSUR estimators 

while 0.0319, 0.0103, 0.0082, 0.0074 and 0.0312, 0.0093, 0.0074, 0.0062 for OLS estimators. 
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Table 1:  AMSE of SSUR and OLS estimators for equation 
1Y with 

11 12X and X   positively correlated.(n= 25) 
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AMSE  (n=25, r =5000) 

 SSUR OLS 

11 12,x x

 

10  
11f  

12  
20  

21  
30  

31  
40  

41f  
10  

11f  
12  

20  
21  

30  
31  

40  
41f  

0.9 0.1263 0.2163 0.2867 0.0346 0.9999 0.0193 0.1090 0.1328 1.1710 0.1661 0.2903 0.3886 0.0451 0.1377 0.0210 0.1361 0.1467 2.6761 

0.8 0.1263 0.2157 0.2852 0.0346 0.9995 0.0193 0.1090 0.1328 1.1700 0.1661 0.2879 0.3327 0.0451 0.1377 0.0210 0.1361 0.1467 1.7230 

0.7 0.1263 0.2010 0.2763 0.0346 0.9995 0.0193 0.1088 0.1328 0.9925 0.1661 0.2803 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 1.1533 

0.6 0.1263 0.2003 0.2712 0.0346 0.9995 0.0193 0.1088 0.1328 0.8973 0.1661 0.2800 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 1.0999 

0.5 0.1263 0.1999 0.2345 0.0346 0.9995 0.0193 0.1088 0.1328 0.8643 0.1661 0.2792 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 1.0567 

0.4 0.1263 0.1987 0.2119 0.0346 0.9995 0.0193 0.1088 0.1328 0.6745 0.1661 0.2345 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 0.8998 

0.3 0.1263 0.1967 0.1674 0.0346 0.9995 0.0193 0.1088 0.1328 0.5612 0.1661 0.2245 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 0.8003 

0.2 0.1263 0.1943 0.1453 0.0346 0.9989 0.0193 0.1088 0.1328 0.4321 0.1661 0.2200 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 0.7556 

0.1 0.1263 0.1674 0.1329 0.0345 0.9989 0.0193 0.1088 0.1328 0.3321 0.1661 0.1975 0.3886 0.0450 0.1377 0.0210 0.1360 0.1467 0.6785 

0.0 0.1263 0.1328 0.1115 0.0345 0.9989 0.0193 0.1088 0.1328 0.1765 0.1661 0.1430 0.3886 0.0450 0.1377 0.0210 0.1360 0.1467 0.3452 

 AMSE (n=25, r =5000) 

 SSUR OLS 

11 12,x x

 

10  
11f  

12  
20  

21  
30  

31  
40  

41f  
10  

11f  
12  

20  
21  

30  
31  

40  
41f  

-0.9 0.1195 0.2081 0.2764 0.0347 0.1004 0.0193 0.0936 0.1349 1.7752 0.1661 0.2903 0.3886 0.0451 0.1377 0.0210 0.1361 0.1467 2.6761 

-0.8 0.1195 0.2049 0.2722 0.0347 0.1004 0.0193 0.0931 0.1349 1.1368 0.1661 0.2879 0.3886 0.0451 0.1377 0.0210 0.1361 0.1467 1.7230 

-0.7 0.1195 0.2022 0.2677 0.0347 0.1004 0.0193 0.0931 0.1349 0.7382 0.1661 0.2803 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 1.1533 

-0.6 0.1195 0.2021 0.2661 0.0347 0.1004 0.0193 0.0931 0.1349 0.5288 0.1661 0.2800 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 1.0999 

-0.5 0.1195 0.1989 0.2638 0.0347 0.0995 0.0193 0.0927 0.1349 0.4149 0.1661 0.2792 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 1.0567 

-0.4 0.1195 0.1975 0.2623 0.0347 0.0995 0.0193 0.0927 0.1349 0.3404 0.1661 0.2345 0.3886 0.0451 0.1377 0.0210 0.1360 0.1467 0.8998 

-0.3 0.1195 0.1963 0.2606 0.0347 0.0987 0.0193 0.0925 0.1349 0.2925 0.1661 0.2243 0.3886 0.0451 0.1377 0.0209 0.1360 0.1467 0.8003 

-0.2 0.1195 0.1889 0.2599 0.0347 0.0985 0.0193 0.0923 0.1349 0.2675 0.1661 0.2200 0.3886 0.0451 0.1377 0.0209 0.1360 0.1467 0.7554 

-0.1 0.1195 0.1423 0.2595 0.0346 0.0964 0.0193 0.0923 0.1349 0.2550 0.1661 0.1975 0.3886 0.0450 0.1377 0.0209 0.1360 0.1467 0.6785 

0.0 0.1195 0.1387 0.1876 0.0346 0.0962 0.0193 0.0923 0.1349 0.2427 0.1661 0.1430 0.3886 0.0450 0.1377 0.0209 0.1360 0.1467 0.3452 

Table 2:  AMSE of SSUR and OLS estimators for equation 
1Y with 

11 12X and X   negatively correlated (n=25) 
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Table 4:  AMSE of SSUR and OLS estimators for model 
1Y with 

11 12X and X   negatively correlated.(n=100) 
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 AMSE ( n=100, r = 5000) 

SSUR OLS 

11 12,x x

 

10  
11f  

12  
20  

21  
30  

31  
40  

41f  
10  

11f  
12  

20  
21  

30  
31  

40  
41f  

0.9 0.0059 0.0274 0.0260 0.0089 0.0251 0.0052 0.0308 0.0356 0.0753 0.0061 0.0336 0.0318 0.0099 0.0291 0.0053 0.0331 0.0364 0.0923 

0.8 0.0059 0.0152 0.0140 0.0089 0.0251 0.0052 0.0304 0.0353 0.0741 0.0061 0.0184 0.0168 0.0099 0.0291 0.0053 0.0331 0.0360 0.0896 

0.7 0.0059 0.0113 0.0101 0.0089 0.0251 0.0052 0.0299 0.0352 0.0689 0.0061 0.0134 0.0118 0.0099 0.0291 0.0053 0.0331 0.0359 0.0828 

0.6 0.0059 0.0093 0.0082 0.0089 0.0251 0.0052 0.0295 0.0352 0.0651 0.0061 0.0109 0.0094 0.0099 0.0291 0.0053 0.0331 0.0359 0.0773 

0.5 0.0059 0.0082 0.0071 0.0089 0.0251 0.0052 0.0291 0.0350 0.0622 0.0061 0.0095 0.0081 0.0099 0.0291 0.0053 0.0331 0.0359 0.0732 

0.4 0.0059 0.0075 0.0066 0.0088 0.0251 0.0052 0.0287 0.0349 0.0599 0.0061 0.0086 0.0072 0.0099 0.0291 0.0053 0.0331 0.0358 0.0695 

0.3 0.0059 0.0069 0.0059 0.0088 0.0250 0.0052 0.0284 0.0347 0.0582 0.0061 0.0080 0.0066 0.0099 0.0291 0.0053 0.0331 0.0354 0.0665 

0.2 0.0059 0.0065 0.0056 0.0088 0.0249 0.0052 0.0280 0.0347 0.0564 0.0061 0.0076 0.0065 0.0099 0.0291 0.0053 0.0331 0.0354 0.0638 

0.1 0.0059 0.0065 0.0055 0.0088 0.0249 0.0052 0.0278 0.0347 0.0551 0.0061 0.0075 0.0065 0.0099 0.0291 0.0053 0.0331 0.0354 0.0614 

0.0 0.0059 0.0065 0.0055 0.0088 0.0249 0.0052 0.0275 0.0347 0.0543 0.0061 0.0074 0.0060 0.0099 0.0291 0.0053 0.0331 0.0354 0.0594 

 AMSE  (n=100, r =5000) 

 SSUR OLS 

11 12,x x

 

10  
11f  

12  
20  

21  
30  

31  
40  

41f  
10  

11f  
12  

20  
21  

30  
31  

40  
41f  

-0.9 0.0058 0.0276 0.0279 0.0089 0.0252 0.0052 0.0277 0.0345 0.3739 0.0060 0.0319 0.0312 0.0099 0.0289 0.0053 0.0329 0.0352 0.4492 

-0.8 0.0058 0.0153 0.0149 0.0089 0.0252 0.0052 0.0270 0.0343 0.2463 0.0060 0.0174 0.0164 0.0099 0.0289 0.0053 0.0329 0.0352 0.3045 

-0.7 0.0058 0.0112 0.0106 0.0089 0.0252 0.0052 0.0266 0.0342 0.1860 0.0060 0.0126 0.0116 0.0099 0.0289 0.0053 0.0329 0.0352 0.2322 

-0.6 0.0058 0.0092 0.0085 0.0089 0.0251 0.0052 0.0266 0.0342 0.1518 0.0060 0.0103 0.0093 0.0099 0.0289 0.0053 0.0329 0.0352 0.1895 

-0.5 0.0058 0.0080 0.0072 0.0089 0.0251 0.0052 0.0266 0.0340 0.1289 0.0060 0.0090 0.0079 0.0099 0.0289 0.0053 0.0329 0.0352 0.1602 

-0.4 0.0058 0.0075 0.0066 0.0088 0.0251 0.0052 0.0265 0.0339 0.1116 0.0060 0.0082 0.0070 0.0099 0.0289 0.0053 0.0329 0.0351 0.1380 

-0.3 0.0058 0.0068 0.0059 0.0088 0.0250 0.0052 0.0265 0.0338 0.0986 0.0060 0.0077 0.0065 0.0099 0.0289 0.0053 0.0329 0.0351 0.1212 

-0.2 0.0058 0.0065 0.0056 0.0088 0.0249 0.0052 0.0265 0.0337 0.0887 0.0060 0.0074 0.0062 0.0099 0.0289 0.0053 0.0329 0.0351 0.1085 

-0.1 0.0058 0.0064 0.0054 0.0088 0.0249 0.0052 0.0264 0.0337 0.0808 0.0060 0.0072 0.0060 0.0099 0.0289 0.0053 0.0329 0.0351 0.0982 

0.0 0.0058 0.0064 0.0054 0.0088 0.0248 0.0052 0.0264 0.0337 0.0743 0.0060 0.0072 0.0059 0.0099 0.0289 0.0053 0.0329 0.0351 0.0898 

Table 3:  AMSE of SSUR and OLS estimators for model 
1Y with 

11 12X and X   positively correlated.(n=100) 
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 AMSE (n=1000, r = 5000) 

 SSUR OLS 

11 12,x x  
10  

11  
12  

20  
21  

30  
31  

40  
41  

10  
11  

12  
20  

21  
30  

31  
40  

41  

0.9 0.0006 0.0028 0.0028 0.0009 0.0026 0.0005 0.0026 0.0036 0.0079 0.0006 0.0032 0.0032 0.0010 0.0029 0.0005 0.0027 0.0036 0.0091 

0.8 0.0006 0.0015 0.0015 0.0009 0.0026 0.0005 0.0026 0.0036 0.0076 0.0006 0.0017 0.0017 0.0010 0.0029 0.0005 0.0027 0.0036 0.0089 

0.7 0.0006 0.0011 0.0011 0.0009 0.0026 0.0005 0.0025 0.0036 0.0071 0.0006 0.0012 0.0012 0.0010 0.0029 0.0005 0.0027 0.0036 0.0082 

0.6 0.0006 0.0009 0.0009 0.0009 0.0026 0.0005 0.0025 0.0036 0.0066 0.0006 0.0010 0.0010 0.0010 0.0029 0.0005 0.0027 0.0036 0.0076 

0.5 0.0006 0.0007 0.0007 0.0009 0.0026 0.0005 0.0025 0.0036 0.0062 0.0006 0.0008 0.0008 0.0010 0.0029 0.0005 0.0027 0.0036 0.0071 

0.4 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0025 0.0036 0.0059 0.0006 0.0008 0.0008 0.0010 0.0029 0.0005 0.0027 0.0036 0.0065 

0.3 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0024 0.0036 0.0056 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0061 

0.2 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0024 0.0036 0.0053 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0058 

0.1 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0023 0.0036 0.0051 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0054 

0.0 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0023 0.0036 0.0048 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0051 

 AMSE (n=1000, r =5000) 

 SSUR OLS 

11 12,x x

 

10  
11f  

12  
20  

21  
30  

31  
40  

41f  
10  

11f  
12  

20  
21  

30  
31  

40  
41f  

-0.9 0. 

0006 

0.0029 0.0030 0.0009 0.0026 0.0005 0.0024 0.0036 0.0376 0.0006 0.0032 0.0032 0.0010 0.0029 0.0005 0.0027 0.0036 0.0435 

-0.8 0.0006 0.0015 0.0016 0.0009 0.0026 0.0005 0.0023 0.0036 0.0255 0.0006 0.0017 0.0017 0.0010 0.0029 0.0005 0.0027 0.0036 0.0305 

-0.7 0.0006 0.0011 0.0011 0.0009 0.0026 0.0005 0.0023 0.0036 0.0194 0.0006 0.0012 0.0012 0.0010 0.0029 0.0005 0.0027 0.0036 0.0235 

-0.6 0.0006 0.0009 0.0009 0.0009 0.0026 0.0005 0.0023 0.0036 0.0157 0.0006 0.0010 0.0010 0.0010 0.0029 0.0005 0.0027 0.0036 0.0191 

-0.5 0.0006 0.0008 0.0008 0.0009 0.0026 0.0005 0.0023 0.0036 0.0133 0.0006 0.0009 0.0009 0.0010 0.0029 0.0005 0.0027 0.0036 0.0161 

-0.4 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0023 0.0036 0.0115 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0138 

-0.3 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0023 0.0036 0.0101 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0121 

-0.2 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0023 0.0036 0.0091 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0108 

-0.1 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0023 0.0036 0.0083 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0098 

0.0 0.0006 0.0006 0.0006 0.0009 0.0026 0.0005 0.0023 0.0036 0.0076 0.0006 0.0007 0.0007 0.0010 0.0029 0.0005 0.0027 0.0036 0.0089 

Table 5:  AMSE of SSUR and OLS estimators for model 
1Y with 

11 12X and X   positively correlated. (n=1000) 

 

Table 6: AMSE of SSUR and OLS estimators for model 
1Y with 

11 12X and X   negatively correlated.(n=1000) 
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The different positive and negative correlation level values are given in Tables 5 and 6 for sample size 1000n 

respectively. In Table 5, the intercept AMSE values are also fixed for both the SSUR and OLS estimators when replicated 

5000 times in turn. That is, 
10 20 30 40, , ,     with AMSE values 0.0006,0.0009,0.0005,0.0036 for the SSUR estimator and 

0.0006,0.0010,0.0005,0.0036  for the OLS estimators.  The 
orthogonalAMSE at which the predictors are purely uncorrelated 

for the SSUR estimators are  0.0006,0.0006 while for the OLS estimators 0.0007,0.0007.  

Although, the difference in the AMSE values was generally low compared to other sample sizes, however the efficiency of 

the SSUR estimators reduced as the collinearity levels became severe.  This is obvious from the following randomly selected 

values: 
11 12, 0.9,0.7,0.5,0.2x x  which are given as 0.0028, 0.0011, 0.0007, 0.0006 and 0.0028, 0.0011, 0.0007, 0.0006 

for SSUR estimators while 0.0032, 0.0012, 0.0008, 0.0007 and 0.0032, 0.0012, 0.0008, 0.0007 for OLS estimators. Similar 

results were also obtained for the negative correlation values. 
 

Table 7: AMSE for SSUR Estimators  
11 12f and   of model 

1Y  at TNCP = +0.3 
 

11f  
Barlett test 

12  
  Barlett test  

Sample 
Size 

orthogonal

SUR

AMSE

 

Nonorthogonal

SUR

AMSE

 difference 2  
p-value 

orthogonal

SUR

AMSE

 

Nonorthogonal

SUR

AMSE

 difference 2  
p-value 

25 0.1328 0.1967 0.0639 0.0923 0.041 0.1115 0.1674 0.0559 0.1056 0.027 

100 0.0065 0.0069 0.0004 0.8341 0.657 0.0055 0.0059 0.0004 0.1231 0.985 

1000 0.0006 0.0006 0.0000 0.9925 0.834 0.0006 0.0006 0.0000 0.1345 0.917 

 

Table 8: AMSE for SSUR Estimators  
11 12f and   of model 

1Y  at TNCP = -0.3 

 
11f  

Barlett test 
12  

  Barlett 
test 

 

Sample 
Size 

orthogonal

SUR

AMSE
 

Nonorthogonal

SUR

AMSE

 
difference 2  

p-
value 

orthogonal

SUR

AMSE

 

Nonorthogonal

SUR

AMSE
 

difference 2  
p-
value 

25 0.1387 0.1963 0.0576 0.0811 0.032 0.1876 0.2606 0.0730 0.989 0.031 

100 0.0064 0.0068 0.0004 0.5630 0.736 0.0054 0.0059 0.0004 0.1432 0.976 

1000 0.0006 0.0006 0.0000 0.7914 0.814 0.0006 0.0006 0.0000 0.1568 0.889 
 

6.0 Summary  
As earlier stated, the objective of this study is to determine the admissible correlation level (TNCP) among the predictors in 
separate equation of SSUR model. We considered the TNCP point as the correlation point or a range of correlation values at 
which AMSE of SSUR estimator with non-orthogonal (correlated) covariates (

NonOrthogonalAMSE ) do not differ from its 

AMSE values (
OrthogonalAMSE ) at which the predictors are purely orthogonal (uncorrelated). The study revealed fairly stable 

results with large sample sizes (n= 100, 1000). Therefore, our judgments are based on large sample sizes. From Table 3, the 

OrthogonalAMSE  values for 
11 12,f  (n =100) SSUR estimators are 0.0065 and 0.0055 respectively. These are their AMSE values 

at 
11 12, 0.0x x   . Also, the 

NonOrthogonalAMSE  values for 
11 12,f   for the SSUR estimators at 

11 12, 0.3x x   are 0.0069 and 

0.0059 respectively. Therefore, the simple difference (
NonOrthogonalAMSE  - 

OrthogonalAMSE ) between these two sets of AMSE 

for each of the 
11 12,f   gave 0.0004, 0.0004  0.000 respectively. The 

NonOrthogonalAMSE  at  
11 12, 0.3x x   agrees with the 

OrthogonalAMSE  up to three decimal places for SSUR estimators with the large sample sizes. However, there was obvious loss 

in the efficiency of the SSUR estimators when we take the difference between the 
NonOrthogonalAMSE   and 

OrthogonalAMSE

values at other higher correlation levels beyond the range TNCP  0.3. We also examined the negative correlation values and 
found almost similar results that we got for the positive values. The results obtained supported the TNCP threshold levels of ±0.3. 
However, it was noted that at higher sample size n= 1000 that there was perfect agreement between the 

NonOrthogonalAMSE  and 

OrthogonalAMSE  even beyond the TNCP threshold levels of ±0.3. These results pointed out one of the remedies of 

multicollinearity, which is working with larger sample size(s). However, the higher correlation levels beyond ±0.3 at which  
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such perfect agreement was achieved are ignored.  For instance, the SSUR estimators remain efficient (both 

NonOrthogonalAMSE  and 
OrthogonalAMSE  remain the same) up to the collinearity level of  ±0.6  at n =1000. This apparent 

efficiency is not, however, sustained at sample size n = 100  after the collinearity level of ±0.3 at each of these sample sizes. 

Since the SSUR estimator is found to be efficient in the presence of collinearity levels up to ±0.3 and at a sample size n = 

100, shows that its efficiency will obviously improve at higher sample sizes even at collinearity levels beyond the TNCP 

threshold values. The equality or otherwise of the AMSE is further established at TNCP = ± 0.3 using the Bartlett’s test for 

homogeneity of variances (see Table 7).  

This study also reveals the efficiency of SSUR estimator over OLS method at different sample sizes. Therefore, taking 

cognizance of the contemporaneous correlation among the response variables improves the efficiency of estimators from 

SSUR models over OLS. This work further reveals that efficiency of SSUR estimator over the OLS is more of a function of 

contemporaneous correlation and the sample size rather than the presence of multicollinearity alone which is the most 

commonly cited scenario. The various collinearity levels considered for the two covariates X11 and X12 of equation Y1 only 

affected the regression estimates for equation 
1Y  while the estimates of equations Y2, Y3, Y4 remain the same under specific 

cases considered. This is because the two covariates that are collinear belong to equation Y1 only. Therefore, the changes in 

the levels of their collinearity can only affect the regression estimates of equation Y1. 
 

7.   Conclusion 

Therefore, this study found the TNCP to fall within the two ends -0.3 and +0.3. That is, TNCP ≤ 0.3. This is the admissible 

correlation range of values that could exist between any pair of predictors in SSUR system of equations at which the 

efficiency of SSUR estimators would still be preserved at large sample sizes. This is specifically true for SSUR models that 

satisfied the conditions established for the simulation studies in this work. 
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