
41 
 

Journal of the Nigerian Association of Mathematical Physics 

Volume 51 (May, 2019 Issue), pp41 – 46 

© J. of NAMP 
 

DYNAMICAL SYSTEM ANALYSIS AND CONTROL MEASURES OF A WATERBORNE 

DISEASE MODEL WITH SOCIO-ECONOMIC CLASSES 
 

1O.C. Collins and 2J.E. Okeke 

 
1Department of Mathematics, University of Nigeria, Nsukka 

2Department of Mathematics, Chukwuemeka Odumegwu Ojukwu University, Anambra State, Nigeria 
 

Abstract 
 

Waterborne diseases are among the major health challenge facing the world today. We 

consider a 2-patch waterborne disease model with each patch representing a particular 

socio-economic class (SEC) formulated by Collins et al. [1]. We extend the model by 

introducing treatment of infected individuals as a control measure. To investigate the 

benefits of these control measure, we determine some of the important mathematical 

features of the model and analyze them accordingly. Particularly, we investigate the 

impact of the control measure in reducing the spread of waterborne disease for a 

situation where individuals belong to two different socio-economic classes (low socio-

economic class and high socio-economic class). Our analytical predictions are 

supported by numerical simulations. 

 
   Keywords:   Waterborne disease, control measure, socio-economic class, basic reproduction number,  

disease dynamics 

 

1. Introduction 

Waterborne diseases such as Cholera, Cryptosporidium, Hepatitis A and E, Giardia and Rotavirus are among the 

major health challenge facing the world today. This particular health challenge is very common in developing countries 

where access to clean water is very limited. According to World Health Organization (WHO), unsafe water supply, poor 

sanitation and poor hygiene are major causes of waterborne diseases [2]. Available statistics revealed that approximately 1.1 

billion people globally do not have access to sources of clean water [3]. Statistics also revealed that approximately 700,000 

children die every year from diarrhoea caused by unsafe water and poor sanitation [4]. These death due to waterborne 

diseases could be reduced through access to clean water, provision of adequate sanitation facilities and better hygiene 

practices [2]. Control intervention strategies such as vaccination, quarantine, water purification and treatment of infected 

individuals are among the most effective methods of controlling the spread of these diseases [5-7]. 

Socio-economic status or socio-economic class can be defined as the position of an individual or group respectively 

within a hierarchical social structure [8]. Socio-economic status or socio-economic depends on income, occupation and 

education. Studies have shown that individuals in low socio-economic class (SEC) are characterized with poverty, 

malnutrition, poor sanitation, limited access to clean water and low standards of living. Consequently, these individuals are 

more exposed to waterborne disease. On the other hand, individuals in a high SEC are known for high standards of living, 

quality education, good jobs with higher income, clean living environments and access to clean water. Individuals in this 

group have less chances of contacting waterborne disease. Studies have also shown that socio-economic classes have impact 

in the spread of waterborne disease [1, 9, 10]. For instance, Collins et al [1] formulated a waterborne disease model with 

socio-economic classes and used the model to investigate the impact of socio-economic classes on the dynamics of 

waterborne disease. Hove-Musekwa et al [9] studied the effects of malnutrition in the spread of cholera using a mathematical 

model. Other mathematical models that have been used to explore the dynamics of waterborne diseases and other infectious 

diseases can be found [7, 9, 11-21]. There is no doubt that these studies have contributed immensely to the understanding of 

the dynamics and possible control strategies of waterborne disease. To the best of our knowledge, the impact of control 

measures on the spread of waterborne disease for a situation where individuals belong to different socio-economic classes 
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 have not yet been explored. The aim of this study is to fill this gap. Particularly, we will study the impact of control measure 

(treatment of infected individuals) on the spread of waterborne disease for a community where individuals belong to two 

different socio-economic classes. 

 

2. Model development 

In this section, we extended a two socioeconomic class model for waterborne disease proposed by Collins et al [1] by 

introducing treatment of infected individuals as a control measures to obtain 
𝑑𝑆1

𝑑𝑡
= 𝑁1𝜇1 −  𝑏1𝑆1𝑊1 − (𝜇1 + 𝛿12)𝑆1 +  𝛿21𝑆2 

𝑑𝐼1

𝑑𝑡
=  𝑏1𝑆1𝑊1 − (𝛾1 +   𝜇1 + 𝑙12 +  𝜃1)𝐼1 +  𝑙21𝐼2       

𝑑𝑇1

𝑑𝑡
= 𝜃1𝐼1 − (𝜇1 + 𝜉1)𝐼1         

𝑑𝑊1

𝑑𝑡
= 𝜈1𝐼1 − (𝜎1 + 𝑑1)𝑊1          

𝑑𝑅1

𝑑𝑡
= 𝛾1𝐼1 − 𝜇1𝑅1          

𝑑𝑆2

𝑑𝑡
= 𝑁2𝜇2 −  𝑏2𝑆2𝑊2 − (𝜇2 +  𝛿21)𝑆2 +  𝛿12𝑆1                                       (1) 

𝑑𝐼2

𝑑𝑡
=  𝑏2𝑆2𝑊2 − (𝛾2 +  𝜇2 + 𝑙21 +  𝜃2)𝐼2 +  𝑙12𝐼1  

𝑑𝑇2

𝑑𝑡
= 𝜃2𝐼2 − (𝜇2 + 𝜉2)𝐼2  

𝑑𝑊2

𝑑𝑡
= 𝜈2𝐼2 − (𝜎2 + 𝑑2)𝑊2          

𝑑𝑅2

𝑑𝑡
= 𝛾2𝐼2 − 𝜇2𝑅2. 

 

The meaning of the variables and parameters can be found in Tables (1) and (2) respectively. To carry out the qualitative 

analysis of model (1), it is advisable to rescale the model so that we can deal  with non-dimensional variables. Hence,  to non-

dimensionalized the model, we rescale it as follows: ij =, sj  =
Sj

𝑁
, τj  =

Tj

𝑁
, rj  =

Rj

𝑁
, wj = σj

Wj

𝜈𝑗𝑁 
 and β

j
=

bjνjN

𝜎𝑗
 for j = 1,2  

and obtain the non-dimensionalized model given by 
𝑑𝑠1

𝑑𝑡
= 𝑛1𝜇1 − 𝛽1𝑠1𝑤1 − (𝜇1 + 𝛿12)𝑠1 +  𝛿21𝑠2 

𝑑𝑖1

𝑑𝑡
=  𝛽1𝑠1𝑤1 − (𝛾1 +  𝜇1 +  𝑙12 +  𝜃1)𝑖1 +  𝑙21𝑖2       

𝑑𝜏1

𝑑𝑡
= 𝜃1𝑖1 − (𝜇1 + 𝜉1)𝑖1          

𝑑𝑤1

𝑑𝑡
= 𝜎1 (𝑖1 − (1 +

𝑑1

𝜎1
) 𝑤1)          

𝑑𝑟1

𝑑𝑡
= 𝛾1𝑖1 − 𝜇1𝑟1           

𝑑𝑠2

𝑑𝑡
= 𝑛2𝛽2𝑠2𝑤2 − (𝜇2 +  𝛿21)𝑠2 +  𝛿12𝑠1                                (2) 

𝑑𝑖2

𝑑𝑡
=  𝑏2𝑆2𝑊2 − (𝛾2 +  𝜇2 + 𝑙21 +  𝜃2)𝑖2 + 𝑙12𝑖1  

𝑑𝜏2

𝑑𝑡
= 𝜃2𝐼2 − (𝜇2 + 𝜉2)𝑖2  

𝑑𝑤2

𝑑𝑡
= 𝜎2 (𝑖2 − (1 +

𝑑2

𝜎2
) 𝑤2)          

𝑑𝑟2

𝑑𝑡
= 𝛾2𝑖2 − 𝜇2𝑟2, 

where  sj + ij + τj + rj = nj  𝑎𝑛𝑑 𝑛1 + 𝑛2 = 1 . All parameters are assumed positive. 
 

The initial conditions are assumed as follows:   

sj(0) >  0;  𝑖𝑗(0) >  0; τj(0) > 0; wj(0) >  0; rj(0) >  0: 

The subscript 1 is used to denote the lower SEC, or SEC 1, while the subscript 2 is used to denote the higher SEC, or SEC 2. 

Table 1: Variables of the model (1) and their meanings 

Variables  Meaning 

N(t) total human population 

Sj(t)  susceptible individuals in the jth SEC 

Ij(t)  infected individuals in the jth SEC 

Tj(t)  treated individuals in the jth SEC 

Rj(t)  recovered individuals in the jth SEC 

Wj(t)  measure of pathogen concentration in water reservoir of the jth SEC 
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Table 2: Parameters of the model (1) and their meanings 

Parameters Meaning 

𝑏𝑗 transmission rate between Sj(t) and Wj(t) 

𝛽𝑗 scaled transmission rate between Sj(t) and Wj(t) 

𝑙𝑗𝑘 rate at which individuals migrate from Sj(t) to Sk(t) 

𝛿𝑗𝑘 rate at which individuals migrate from Ij(t) to Ik(t) 

𝛾𝑗 recovery rate of Ij(t) 

𝜈𝑗 shedding rate of pathogens by Ij(t) 

𝜎𝑗 net decay rate of pathogens in water source Wj 

𝜇𝑗 natural death/birth rate in SEC j 

𝜉𝑗 recovery rate due to treatment in SEC j 

𝜃𝑗 treatment rate in SEC j 
 

3. Model analyses 

In this section, we present a detail qualitative analysis of model (2). This is necessary for improving our understanding on the 

dynamics and control of waterborne disease for a community where this disease is endemic. Particularly, we will explore 

waterborne disease dynamics for a situation where individuals in the community belong to difference socio-economic classes. 
 

3.1 Basic reproduction number 

Model (2) has a unique disease free equilibrium (DFE) given by 

(s1
∗,   i1

∗ ,   τ1
∗ ,   w1

∗,   s2
∗ ,   i2

∗ ,   τ2
∗ ,   w2

∗) = (
𝛿21

δ12  + δ21

, 0, 0, 0,   
𝛿12

δ12  + δ21

, 0, 0, 0) .  

Obviously, the DFE depends on the migration rates of susceptible individuals across the SECs.  

Epidemiologically, the basic reproduction number is the average number of secondary infections that result from introducing 

a single typical infected individual into a completely susceptible population. We determine the basic reproduction number of 

model (2) using the next generation matrix approach of van den Driessche and Watmough (2002) [22]and is given by  

R0
c  =  

 𝑅11
𝑐 + 𝑅22

𝑐 +   √(𝑅11
𝑐 + 𝑅22

𝑐 )
2

+4(𝑅12
𝑐 𝑅21

𝑐 − 𝑅11
𝑐 𝑅22

𝑐 ) 

2
    (3) 

where  

 𝑅11
𝑐 =   

β
1

s1
∗σ1(k2 − θ2)

𝜎1((k1 − θ1)(k2 − θ2) − l12l21)
,    𝑅12

𝑐 =   
β

1
s1

∗σ1l21

𝜎1((k1 − θ1)(k2 − θ2) − l12l21)
,      

 𝑅22
𝑐 =   

β
2

s2
∗σ2(k1 − θ1)

𝜎1( (k1 − θ1)(k2 − θ2) − l12l21)
,    𝑅21

𝑐 =   
β

2
s2

∗σ2l12

𝜎1( (k1 − θ1)(k2 − θ2) − l12l21)
,      

and k1  =  μ
1

+  γ
1

+ l12  , k2  = μ
2

+ γ
2

+ l21 . 

 

In the absence of treatment, the basic reproduction number becomes 

R0  =  
𝑅11+ R22+   √(𝑅11+ R22)2+4(𝑅21𝑅12−𝑅11𝑅22)

2
    (4) 

where  

𝑅11 =   
β

1
s1

∗𝑘2 

k1k2 − l12l21

,   𝑅22 =   
β

1
s1

∗σ1l21

k1k2 − l12l21

,      

 𝑅22
𝑐 =   

β
2

s2
∗𝑘1

k1k2 − l12l21

,    𝑅21
𝑐 =   

β
2

s2
∗l12

k1k2 − l12l21

,      

andk1  =  μ
1

+  γ
1

+ l12  , k2  = μ
2

+ γ
2

+ l21 . 

By elementary algebraic manipulations we have that  

R0
c   ≤  R0.        (5) 

This shows that introduction of treatment of infected individuals (control measure) has some influence in reducing the 

number of secondary infections across the two socio-economic classes in the community.  
 

3.2 The type reproduction number 

The type reproduction number T0
𝑐i for the control model represents the average number of secondary infections produced by 

an infected individual in a susceptible patch i over his/her lifetime in the  resence of treatment [12]. To determine the proper 

control effort needed to eradicate the spread of the infection while targeting control at one particular socio-economic class  
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(patch), and having no control over reducing the spread of  the disease in other socio-economic class (patches), it is  

necessary that we consider the type reproduction number [23,24]. The type reproduction number 𝑇1
𝑐 for SEC 1 of the 

treatment model (2) is given by 

𝑇1
𝑐 = 𝑅11

𝑐 +
𝑅12

𝑐 𝑅21
𝑐

1−𝑅22
𝑐 ,       (6) 

provided that 𝑅22
𝑐  ≠ 0. 

Similarly, the type reproduction number 𝑇2
𝑐for SEC 2 is given by 

𝑇2
𝑐 = 𝑅22

𝑐 +
𝑅11

𝑐 𝑅21
𝑐

1−𝑅11
𝑐 ,       (7) 

provided that 𝑅11
𝑐  ≠ 0. 

In the absence of treatment of infected individuals, the type reproduction number 𝑇1and 𝑇2 

 for SEC 1 and SEC 2 respectively is given by 

𝑇1 = 𝑅11 +
𝑅12𝑅21

1−𝑅22
,                             (8) 

𝑇2   = 𝑅22 +
𝑅12𝑅21

1 − 𝑅11
.                 (9) 

Obviously,  

T1
𝑐 ≤   𝑇1, T2

𝑐 ≤   𝑇2.                  (10) 
 

The inequality (10) shows that the treatment of infected individual has the capacity of reducing the number of secondary 

infections in each of the socio-economic class (sub populations) in the community to a certain level. 
 

4. Numerical simulations 

Here, we carry out numerical simulations to support our analytical results. The parameter values used for our numerical 

simulation are given in Table 3. 

Table 3: Parameter values used for numerical simulations 

Symbols Parameters values 

𝛽1 10.00 

 𝛽2 0.5𝛽1  

𝜇1 0.0000557 

𝜇2 0.0000557 

𝛾1 0.250 

𝛾2 0.750 

𝜎1 0.0333 

𝜎2 1.8𝜎1 

𝛿12 0.10 

𝛿21 0.05  

𝑙12 0.10 

 𝑙21 0.05 

𝜃1 0.35 

𝜃2 0.39 

𝜉1 0.5 𝛾1 

𝜉2 0.5 𝛾2 

 
Figure 1. Plot illustrating the differences in the dynamics of SEC 1 and SEC 2 for both infected and susceptible individual 
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Figure 1 illustrates the possible differences in the dynamics of SEC 1 and SEC 2 for both infected and susceptible individual. 

From the figure we discovered that individuals in the lower SEC 1 have more chances of contacting waterborne disease than 

individuals in higher SEC 2.This results agree with our analytical predictions and other findings in the literature. Therefore, 

our model can be used to study and make predictions for a real life situations where waterborne disease is endemic. 
 

 
Figure 2:  Plot illustrating the effectiveness of treatment rates on infected individuals on SEC 1 and SEC 2. 
 

The impact of treatment in reducing the spread of waterborne disease across the two socio-economic classes is explored here 

by plotting the infected class for various values of treatment rate (see Figure 3). First, we discover from the figure that 

increase in treatment rate decreases the infections across the two socio-economic classes. To compare the impact of treatment 

on the two socio-economic classes, we consider equal treatment rate for the two socio-economic classes. From the figure we 

also discover that introducing equal treatment rate across the two socio-economic classes will result in lower infections 

population on the socio-economic class 2. This shows that the two socio-economic class will require different treatment effort 

to completely eradicate the infections. Particularly, the socio-economic class 1 will require more treatment effort to eradicate 

the disease. 

 

 
Figure 3:  Plot illustrating the impact of treatment on infected individuals on SEC 1 and SEC 2. 
 

In Figure 3 we present a numerical simulation illustrating the impact of treatment on infected individuals by 

comparing the numerical solutions of infected individuals when treatment is considered and when no control in considered.  

The results shows that introducing treatment can reduce the infection population by over 50% across both socio-economic 

classes.  Therefore, introducing treatment is highly recommended for reducing the spread of infection in both socio-economic 

classes.  
 

5. Discussion 

The study is motivated by the need to understand the impact of control measure (treatment of infected individuals) 

in reducing the spread of waterborne disease for a community where individuals belong to two different socio-economic 

classes (low socio-economic class and high socio-economic class). We considered a socio-economic class model for  
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waterborne disease formulated by Collins et al [1] and extended it by introducing control measure (treatment of infected 

individuals). The possible benefits of the control measure were investigated analytically. Our findings revealed that 

introducing treatment have great impact in reducing the spread of waterborne disease for any of the two socio-economic 

classes. Further analysis using numerical simulation revealed that introducing treatment can reduce the infection population 

by over 50% across both socio-economic classes. 

The possible differences in the dynamics of SEC 1 and SEC 2 for both infected and susceptible individual was 

explored numerically. Particularly, we discovered that individuals in the lower SEC 1 have more chances of contacting 

waterborne disease than individuals in higher SEC 2. This results agree with our analytical predictions and other findings in 

the literature [9]. Overall, our model agree with real life expectation for waterborne disease dynamics. Therefore, we can use 

this model to study and make prediction for waterborne disease epidemic for a community that comprises different socio-

economic classes of individuals. 
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