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Abstract 
 

In this paper, we investigate the oscillation properties of a certain class of second order 

impulsive delay differential equations. Some sufficient conditions for oscillation of 

every bounded solution are obtained. Examples are provided to illustrate the main 

result. 
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1.1 INTRODUCTION 
A number of processes in natural evolution experience an instantaneous change of state at certain moments of time. This 

has been the main reason for the development of the theory of impulsive ordinary differential equations which has become a 

new branch of the theory of ordinary differential equations.  The first paper on oscillation of impulsive delay differential 

equations was published in 1989 by Gopalsamy and Zhang [1]. Recently the oscillatory behavior of impulsive delay 

differential equations has attracted the attention of many researchers. For some contributions in this area, the reader is 

referred to [2-10],.  Relatively, it is known that stochastic functional differential equations with state-dependent delay, which 

are relevant in mathematical models of real phenomena, are important area of practical application of differential equations 

with impulses[9], [11]. 

In this paper, we are concerned with the problem of oscillation of bounded solutions of a class of second order impulsive 

delay differential equations. 

In ordinary differential equations, the solutions are continuously differentiable, sometimes at least once, whereas the 

impulsive differential equations generally possess non-continuous solutions. Since the continuity properties of the solutions 

play an important role in the analysis of the behavior, the techniques used to handle the solutions of impulsive differential 

equations are fundamentally different including the definitions of some of the basic terms. In this work, we examine some of 

these changes. 

Let an evolution process evolve in a period of time in an open set  and let the function  be a 

continuous mapping fulfilling local Lipchitzian condition in . 

Definition 1.1 

Impulsive differential equations with fixed moments of impulsive effect are of the form 

k k k k

y'( t ) f ( t , y( t )), t T \S

y( t ) f ( t , y( t )), t S ,

  

   

     (1.1) 

where
n( t, y ) R R   and the real numerical sequence   is increasing and has no finite accumulation point. 

In the case of unfixed moments of impulsive effects, the impulsive points may be time and state dependent(that is, 

k kt : t ( t, y( t )) ). When the function kt depends on the state of the system (1.1) it is said to have impulses at variable times. 

This is reflected in the fact that different solutions will tend to undergo impulses at different times. However, if the functions 

kt are all constants the system is said to have impulses at fixed times in which case all solutions undergo impulses actions at  
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the same time and the question of existence of solution of the system (1.1) is non-trivial when impulses occur at variable 

times. Even the precise notion of what a solution is must be carefully stated. It is fairly clear that solutions should be 

piecewise continuous and in fact piecewise continuously differentiable (or piecewise absolutely differentiable when 

considering generalized types of solutions). A solution will undergo simple jump discontinuity when it intersects impulse 

hyper-surfaces. Even after focusing on a particular class of relations t( s, y( s )) 0  given by impulse hyper-surfaces, 

impulsive differential equations still exhibit some unusual behaviour (Berezansky, [12]).  

In this work, we shall concentrate only on impulsive differential equations with fixed moments. Be that as it may, to 

obtain or discuss the solution of an impulsive differential equation, we must take into cognizance certain peculiarities of the 

model. We assume that for t T\S , the solution x of equation (1.1) is determined by the ordinary differential equation 

    k kx' t f t , y t . For t S , a change by jump of the solution x occurs so that    k ky t y t   and 

          k k k k k kt y t y t y t f t , y ty      . After the jump at the moment kt t , the solution x of the system (1.1) coincides 

with the solution y of the initial value problem (Bainov and Simeonov, [7]): 

    

   
k k 1

k k k

x' t f t , x t , t  t t

t x t , t t .x S





  

  






     (1.2) 

This simply means that, after the jump at kt t , a new function y(t) takes over control from  x(t). The controlling impulsive 

differential equation is given by  

k k k

0 0 0 0 0

y'( t ) f ( t , y( t )), t T \S

y( t ) f ( t , y( t )), t S ,

y( t ) y , t T \S ,( t , y ) 

  

   

   

     (1.3) 

 

Definition 1.2 

The corresponding second order impulsive differential equation is of the form  

     (1.4) 

where , ,  ,  ,  and  represent the left and 

right limits of at , respectively.  For the sake of definiteness, we shall suppose that the functions  and  

are continuous from the left at the points  such that , . 

For the description of the continuous change of such processes, ordinary differential equations are used, while the 

moments and the magnitude of the change by jumps are given by the jump conditions.  Now, in the case of unfixed moments 

of impulse effects, the impulse points may be time and state dependent, that is .  When the function  depends 

on the state of the system (1.1), then it is said to have impulses at variable times.  This is reflected in the fact that different 

solutions will tend to undergo impulses at different times. 

In this paper, we shall restrict ourselves to the investigation of conditions for bounded oscillatory solutions of impulsive 

differential equations for which the impulse effects take place at fixed moments of time .  Our equation under 

consideration is of the form  

        

      

0

k k k k k 0 k

r t y t p t y g t , t t , t S

Δ r t y t p y g t , t t , t S

      


      

     (1.5) 

where . Without further mention throughout this paper, we will assume that every solution  of equation (1.5) 

that is under consideration here, is continuous from the left and is nontrivial. That is,  is defined on some half-line 

 and  for all .  Such a solution is called a regular solution of equation (1.5).   

We say that a real valued function  defined on an interval  fulfills some property finally if there exists 

 such that  has this property on the interval . 
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y ( t ) f ( t , y, y ), t t

y (t ) f ( y, y ), t t ,

  


   

dy
y

dt


2

2

d y
y

dt
 ( t, y( t )) Ω

( i )
ky ( t )  ( i ) ( i )

k ky ( t ) y ( t )  i 0,1 k ky( t ), y( t ) 

y( t ) kt t y( t ) y ( t )

kt k ky ( t ) y ( t )  k ky( t ) y( t ) 

k kt t ( t, y( t )) kt

k{ t }

kt , t 0 y( t )
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Definition 1.3 

The solution of the impulsive differential equation (1.5) is said to be
 

i) finally positive (finally negative)  if there exist such that is defined and is strictly positive(negative)  for

[13];
 

ii) non-oscillatory, if it is either finally positive or finally negative; and 

iii) oscillatory, if it is neither finally positive nor finally negative [14], [15]. 

 

Remark 1.1: All functional inequalities considered in thispaper are assumed to hold finally, that is, they are satisfied for all  

large enough.  

 

2.1 STATEMENT OF THE PROBLEM 
At this point, we recall that the problem under consideration is the second order linear impulsive differential equation 

with delay of the form 

    (2.1) 

where .   

We introduce the following conditions:   

C2.1: is a non-decreasing function in for and
 

C2.2: and for 

; 

C2.3: and  

At the initial point  the following initial conditions are imposed on the solution of equation (2.1):  
 

for , ,  where  ;   Our aim is to 

establish some sufficient conditions for every bounded solution of equation (2.1) to be oscillatory. Here, we demonstrate how 

well-known mathematical techniques and methods, after suitable modification, is extended in proving an oscillation theorem 

for impulsive delay differential equations. 

 

3.1MAIN RESULTS 

By proper impulse imposition, the following theorem extends Theorem 4.3.1 of the monograph by Laddeet al [16]. The 

salient techniques for the proof are obtained from studies by Bainov and Simeonov [14]. 

Theorem 3.1:   Assume that 

i) conditions C2.1—C2.3 hold 

ii)  for ; 

iii)  is a non-decreasing function in  and   

iv)   (3.1) 

Then every bounded solution  of equation (2.1) is oscillatory. 

 

Proof:   Assume by contradiction that  is a bounded finally positive solution of equation (2.1).  That is, there exist 

constants and  such that for . 

Hence, ,  for  and , where  is sufficiently large.  This means that 

 is a non-decreasing function for . 
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0

k k k k k 0 k

r t y t p t y g t , t t , t S

Δ r t y t p y g t , t t , t S

      


      

            k k k k k kΔ r t y t r t y t r t y t    

0g( t ) C([t , ),R ), g( t )  R , g( t ) t  t R
t
lim g( t ) ;




 1
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Here, we observe that there exist two possibilities: 

a) If and , then  and  for .  Integrating this and taking 

into account condition (iii) results in the fact that is an unbounded function which contradicts our earlier 

assumption. 

b) If for , then  for .  That is  is a non-increasing function for .   

Integrating equation (2.1) from  to we have 

     (3.3) 

Again, integrating equation (3.3) in  from  to  we obtain 

    
 

t

g t

r( t ) y t t g t r( s ) y (s)ds      (3.4) 

We now change the order of integration in equation (3.4), rearrange and obtain 

 

 

 

 

or  

.  (3.5) 

Dividing inequality (3.5) by and using the monotonicity of , we get 

 

which is a contradiction to equation (3.1).  This, therefore, completes the proof. 

 

Corollary 3.1: Let  be continuous,  and for , then bounded solutions of the equation 

 

are oscillatory. 

 

Corollary 3.2: Let  be piece-wise continuous,  and  

 

for large  the bounded solutions of  
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are oscillatory. 

 

Example 3.1: The equation 

 

satisfies the conditions of Theorem 3.1.  Therefore, all bounded solutions are oscillatory.  In particular,  is one 

such solution. 

 

Example 3.2: The equation 

  

where  does not satisfy the conditions of Theorem 3.1 as expected. This equation has a bounded non-oscillatory 

solution. is one such solution. 

Remark 3.1: If we do not require that , but  is non-decreasing and condition (3.1) is satisfied, then the 

conclusion of Theorem 3.1 remains valid. 
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