APPLICATION OF RESPONSE SURFACE METHODOLOGY TO PREDICT THE HEAT INPUT OF TIG MILD STEEL WELDS

Uwoghiren F. O^1 and Ehiorobo J. O^2

¹Department of Production Engineering, University of Benin, Benin City, Nigeria. ²Department of Civil Engineering, University of Benin, Benin City, Nigeria.

Abstract

Research studies have shown that there is no known particular method that can be said to be the best optimization model for welding processes. Heat input has a very critical effect on the quality of the weld and is influenced by the welding current. This research study is carried out to predict the Tungsten inert gas welding heat input, using response surface methodology. Mild steel plate was cut into dimension 60mm x 40mm x 10mm with a power hack saw, the samples were grinded and cleaned before the welding process. The TIG welding process was used to join the weld joints. The quadratic model was tested for its suitability for the heat input response which has a significant lack of fit with p value >0.05. The result of anova shows that the model is significant and has adequate strength to predict its target response.the goodness of fit statistics shows that the model has a 98.4% capacity to predict the target response.

1.0 Introduction

Tungsten inert gas welding (TIG) is one of the most important material joining processes widely used in the industry[1]. Response Surface Methodology has been developed to study the effects of input variable (i.e. current, voltage, travel speed) on output responses (i.e. reinforcement height, weld bead width, metal deposition rate).

Gas tungsten arc welding produce the high quality welds most consistently[2]. Over the years welding has improved by incorporating better suited welding methods such as Metal Inert Gas Welding, Tungsten Inert Gas Welding (TIG), and Electron and Laser Beam Welding. A new approach using experimental design matrix of experimental designs technique has been developed[3]. The artificial neural network method was used for predicting the weld bead geometric descriptors while genetic algorithm was used for optimization of process parameters.

Optimization of gas tungsten arc welding process by response surface methodology was reported in which effects of process parameters on tensile strength and hardness are evaluated[4]. The mechanical properties of AA 5456 Aluminum alloy welds has been improved on through pulsed Tungsten Inert Gas (TIG) welding process[5]. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties.

2.0 Materials and Methods

2.1 Materials

100 pieces of mild steel coupons measuring 60mm x 40mm x 10mm were used for the experiments. The experiment was performed 20 times, using 5 specimens for each run. The tungsten inert gas welding equipment was used to weld the plates after the edges have been bevelled and machined.

Corresponding Author: Uwoghiren F.O., Email: frank.uwoghiren@yahoo.com, Tel: +2348052561414, +2348032217426 (EJO)

Application of Response Surface...

J. of NAMP

Plate 1: Welding torch

Plate 2: Welding in progress

A thermocouple is a sensor used for measuring temperature, it consists of a pair of dissimilar wires joined at one end .The type K- thermocouple is a nickel-chromium and nickel-alumel thermocouple is suitable for inert atmospheres at temperatures up to 1260°c,the K-type thermocouple is shown in plate 3.

Plate 3: K-Type Thermocouple

A digital thermometer is a mercury free thermometer containing thermal sensor in them, it used to take quick and highly accurate temperature readings from the weld samples. They are easy to read with LCD display on them. The digital thermometer is shown in plate 4.

Plate 4: Digital thermometer

 Table 1: Process parameters and their levels

Parameters	Unit	Symbol	Coded value	Coded value
			Low(-1)	High(+1)
Current	Amp	А	100	180
welding speed,	M/min	F	0.10	0.6
Voltage	Volt	V	16	22

3.5 Method of Data Collection

The central composite design matrix was developed, using the design expert software, producing 20 experimental runs. The input parameters and output parameters make up the experimental matrix and the responses recorded from the weld samples were used as the data. Figure 1 below shows the central composite design matrix.

File Edit View Display Options Design Tools Help											
	6	?	Ç :								
Notes for HAZ		Std	Run	Туре	Factor 1 A:Current (Amp)	Factor 2 B:Voltage V	Factor 3 C:Welding Spe m/min	Response 1 Arc Length (mm)	Response 2 Liquidus Temp (degree C)	Response 3 Heat Input KJ/mm	Response 4 HAZ (mm)
Graph Columns		15	1	Center	0.000	0.000	0.000	2	1187	0.3224	12.62
S Evaluation		16	2	Center	0.000	0.000	0.000	3	1208	0.3321	12.41
- 🖬 Analysis		17	3	Center	0.000	0.000	0.000	3	1208	0.3422	12.73
Arc Length (Analyz		18	- 4	Center	0.000	0.000	0.000	3	1214	0.3215	12.56
- 🗼 Liquidus Temp (Ana		19	5	Center	0.000	0.000	0.000	3	1236	0.3266	11.24
- 🚺 Heat Input (Analyze		20	6	Center	0.000	0.000	0.000	3	1220	0.2857	11.27
L HAZ		9	7	Axial	-1.682	0.000	0.000	2	1257	0.476	5.33
M Optimization		10	8	Axial	1.682	0.000	0.000	4	1523	0.559	5.39
Numerical		11	9	Axial	0.000	-1.682	0.000	4	1326	0.3786	7.52
Graphical Ŷ Point Prediction		12	10	Axial	0.000	1.682	0.000	3	1265	0.7873	4.92
		13	11	Axial	0.000	0.000	-1.682	2	1285	0.6724	14.66
		14	12	Axial	0.000	0.000	1.682	2	1280	0.5993	14.28
		1	13	Fact	-1.000	-1.000	-1.000	2	1367	0.5967	10.25
		2	14	Fact	1.000	-1.000	-1.000	4	1548	0.5894	8.63
		3	15	Fact	-1.000	1.000	-1.000	2	1118	0.5699	11.12
		4	16	Fact	1.000	1.000	-1.000	4	1302	0.8577	11.78
		5	17	Fact	-1.000	-1.000	1.000	4	1236	0.3313	8.14
		6	18	Fact	1.000	-1.000	1.000	4	1361	0.2939	9.82
		7	19	Fact	-1.000	1.000	1.000	2	1420	0.6786	5.08
		8	20	Fact	1.000	1.000	1.000	2	1548	0.878	7.86
		-									

Figure 1: Central Composite Design Matrix (CCD) Method of data analysis

When there is a curvature in the response surface the first-order model is insufficient. A second-order model is useful in approximating a portion of the true response surface with parabolic curvature. The second-order model includes all the terms in the first-order model, plus all quadratic terms like $\beta_{11} \mathcal{X}_{1i}$ and all cross product terms like $\beta_{13} \mathcal{X}_{1i}$. It is usually expressed as

$$y = \beta_0 + \sum_{j=1}^{q} \beta_{jj} x_j^2 + \sum_{kj} \sum_{kj} \beta_{ij} x_i x_i + \varepsilon$$

Where $x = (x_{1i}, x_{2i}, \dots, x_{iq}), \ \beta = (\beta_1, \beta_2, \dots, \beta_q)$

Result and discussion

To validate the suitability of the quadratic model in analyzing the experimental data, the sequential model sum of squares was calculated for the heat input is presented in Figure 2

Notes for HAZ	y ^λ Transform	Fit Summary	f(x) Model	ANOV	A	ostics Mode	#Graphs
- III Summary							
- Graph Columns	Response 3	ŀ	leat Input	Transform:	None		
- 🕙 Evaluation	*** WARNING: T	he Cubic Mode	I is Aliased! *	**			
💼 Analysis	_						
- J Arc Length (Analyz	Sequential Mod	lel Sum of Sau	aree ITyne II				
- 📗 Liquidus Temp (Ana	Sequentian Mod	ier sum of squ	ares (Type I)				
- 📳 Heat Input (Analyz		Sumor		wear	r.	p-value	
HAZ (Analyzed)	Source	Squares	df	Square	Value	Prob > F	
🚵 Optimization	Mean vs Total	5.20	1	5.20			
- 🖄 Numerical	Linear vs Mean	0.30	3	0.10	3.76	0.0323	
- 🎦 Graphical	2FI vs Linear	0.097	3	0.032	1.27	0.3260	
Point Prediction	Quadratic vs 2FI	0.32	3	<u>0.11</u>	96.64	<u>< 0.0001</u>	Suggested
	Cubic vs Quadra	9.071E-003	4	2.268E-003	7.05	0.0188	Aliased
	Residual	1.931E-003	6	3.219E-004			
	Total	5.93	20	0.30			

Figure 2: Sequential model sum of square for heat input

To test how well the quadratic model can explain the underlying variation associated with the experimental data, the lack of fit test was estimated for heat input. Results of the computed lack of fit is presented in Figure 3

Notes for HAZ	v ^A Transform	Fit Summary	f(x) Model		Diagnos	tics Model	Graphs
📰 Design (Actual)				P			
- III Summary							
- Graph Columns							
🕙 Evaluation							
🗐 Analysis	Lack of Fit Test	s					
Arc Length (Analyz		Sum of		Mean	F	p-value	
Heat Input (Ana	Source	Squares	df	Square	Value	Prob > F	
HAZ (Analyzed)	Linear	0.42	11	0.039	104.42	< 0.0001	
- Detimization	2FI	0.33	8	0.041	110.92	< 0.0001	
- 🔀 Numerical	Quadratic	9.154E-003	<u>5</u>	1.831E-003	4.95	0.0519	Suggested
💹 Graphical	Cubic	8.242E-005	1	8.242E-005	0.22	0.6567	Aliased
¥ Point Prediction	Pure Error	1.849E-003	5	3.698E-004			
	Lack of Fit Test	s*: Want the se	lected model to h	ave insignificant la	ck-of-fit.		

Figures 3: Lack of fit test for heat input

The model statistics computed for heat input based on the different model sources is presented in Figure 4

Model Summary S	tatistics					
	Std.		Adjusted	Predicted		
Source	Dev.	R-Squared	R-Squared	R-Squared	PRESS	
Linear	0.16	0.4135	0.3035	0.1304	0.63	
2FI	0.16	0.5463	0.3369	-0.1865	0.86	
Quadratic	0.033	0.9849	0.9713	0.8998	0.073	Suggested
Cubic	0.018	0.9973	0.9916	0.9714	0.021	Aliased
"Model Summary Sta	tistics": Foc	us on the model	maximizing the "/	Adjusted R-Squa	red"	
and the "Predicted R-	-Squared".					

Figure 4 : Model summary statistics for heat input

In assessing the strength of the quadratic model towards minimizing the heat input one way analysis of variance (ANOVA) table was generated for minimizing the heat input and result obtained is presented in Figure 5

Notes for HAZ		λ			1		0		—		1
🔢 Design (Actual)	2	Transform	Fit	Summary	T(X)	Model	÷	ANOVA	Diagnostics	Model Graph	ns.
- 🛅 Summary											
- Graph Columns		Use your mous	e to rigi	it click on in	ndivid	ual cells for d	efiniti	ons.			
		Response		3		Heat Input					
🔟 Analysis	-	ANOVA fo	or Resp	onse Sur	face	Quadratic M	odel				
- 🕌 Arc Length (Analyz	-	Analysis of va	riance	table (Pa	rtial s	um of squa	res .	Type IIII			
Liquidus Temp (Ana	-		inanoo	Sur	m of	ann or oquu		Mean	F	n value	
- 📳 Heat Input (Analyz	-	Course		Cau				Causes	Mahua	Drob > E	
HAZ (Analyzed)	-	Source		Squa	ares		ui o	square	Value	PIOD	
🚺 Optimization	-	Model			0.72		9	0.080	72.34	< 0.0001	significant
🕅 Numerical	<u> </u>	A-Current		0	0.025		1	0.025	22.55	0.0008	
- Maraphical	<u> </u>	B-Voltage			0.25		1	0.25	230.30	< 0.0001	
Point Prediction		C-Welding Spe	ed	0	0.023		1	0.023	20.49	0.0011	
		AB		0	0.035		1	0.035	32.14	0.0002	
		AC		1.755E	-003		1	1.755E-003	1.60	0.2352	
		BC		0	0.059		1	0.059	54.07	< 0.0001	
		A ²		0	.071		1	0.071	64.70	< 0.0001	
		B ²			0.13		1	0.13	114.31	< 0.0001	
		C ²			0.18		1	0.18	164.67	< 0.0001	
	-	Residual		c	011		10	1.100E-003			
	-	Lack	of Fit	9 154F	-003		5	1 831E-003	4 95	0.0519	not significant
	-	Dur	Error	4 9405	.002		5	2 6095 004	4.55	0.0013	not significant
	-	Pure	LITOF	1.049E	-005			3.030E-004			
	-	Cor Total			0.73		19				

Figure 5: ANOVA table for validating the model significance towards minimizing the heat input

Notes for HAZ	J	/ ^λ Transform	Fit	t Summary	f(x)	Model	₽	ANOVA	Diagnostics	Model Graphs	
Summary											
🔄 Graph Columns		Std. Dev.		C	.033		R-9	Squared	0.9849		
🕙 Evaluation		Mean			0.51		Ad	j R-Squared	0.9713		
- Analysis		C.V. %			6.50		Pre	ed R-Squared	0.8998		
Arc Length (Analyz		PRESS		C	.073		Ad	eq Precision	24.638		
Liquidus Temp (Ana [] Heat Input (Analyz	_		_								
HAZ (Analyzed)	_	The "Pred R-So	quared"	of 0.8998 i	s in rea	asonable ag	reemer	it with the "A	dj R-Squared" of	0.9713.	

Figure 6: GOF statistics for validating model significance towards minimizing heat input

From the result of Figure 6, it was observed that the "Predicted R-Squared" value of 0.8998 is in reasonable agreement with the "Adj R-Squared" value of 0.9713. Adequate precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The computaed ratio of 24.6380bserved in Figure 6 indicates an adequate signal. This model can be used to navigate the design space and adequately minimize the heat input

The optimal equation which shows the individual effects and combine interactions of the selected input variables (current (Amp), voltage (V) and welding speed (m/min)) against the mesured response(heat input) is presented below.

Heatinput = $0.32+0.034A+0.14B-0.041C+0.066A*B0.015A*C+0.086B*C+0.07A^2+0.093B^2+0.11C^2$...Equation 2

The diagnostics case statistics which shows the observed values of each response variable(heat input) against their predicted values is presented in Figure 7. The diagnostic case statistics actually give insight into the model strength and the adequacy of the optimal second order polynomial equation.

File Edit View Display Options Design Tools Help												
Notes for HAZ		x 1		Law				1				
- III Design (Actual)	2	Transform	Fit Summary	f(x) Model	ANOVA	Diagno	istics Model G	aphs				
III Summary												
- 🔄 Graph Columns		Response	3	Heat Input	Transform:	None						
- Analysis		Diagno	stics Case Sta	tistics								
- Arc Length (Analyz)	-	1 -					Internally	Externally	Influence on			
- Liquidus Temp (Ana		Standard	Actual	Predicted			Studentized	Studentized	Fitted Value	Cook's	Run	
- U Heat Input (Analyz		Order	Value	Value	Residual	Leverage	Residual	Residual	DEFIT S	Distance	Order	
HAZ (Analyzed)		1	0.60	0.60	-4 130F-004	0.670	-0.022	-0.021	-0.029	0.000	13	
Continuation			0.59	0.58	0.010	0.670	0.545	0.525	0.748	0.060	14	
- Mumerical		1 .	0.57	0.56	5.810E-003	0.670	0.305	0.291	0.414	0.019	15	
X1 Point Prediction			0.00	0.84	0.0102-000	0.070	0.000	3.500		0.010	10	
	-		0.00	0.01	0.046	0.670	2.401	3.500	- 4.90	- 1.17	10	
	l-		0.33	0.37	-0.042	0.670	-2.100	-2.075	4.09	0.971	17	
Diagnostics Tool	l-		0.29	0.30	-1.754E-003	0.670	-0.092	-0.087	-0.124	0.002	18	
	l-		0.68	88.0	-6.336E-003	0.670	-0.332	-0.317	-0.452	0.022	19	
Diagnostics Influence	I	8	0.88	0.87	4.469E-003	0.670	0.234	0.223	0.318	0.011	20	
	I-	. 9	0.48	0.45	0.027	0.607	1.314	1.371	1.704	0.267	7	
Ext. Student e	I-	10	0.56	0.59	-0.033	0.607	-1.590	-1.745	* -2.17	0.391	8	
Leverage	I—	11	0.38	0.36	0.022	0.607	1.052	1.058	1.316	0.171	9	
DFFITS	L_	12	0.79	0.81	-0.028	0.607	-1.328	-1.388	-1.726	0.273	10	
DFBETAS	<u> </u>	13	0.67	0.71	-0.035	0.607	-1.667	-1.861	* -2.31	0.430	11	
Cook's D	<u> </u>	14	0.60	0.57	0.029	0.607	1.391	1.469	1.827	0.299	12	
Report		15	0.32	0.32	8.140E-004	0.166	0.027	0.025	0.011	0.000	1	
		16	0.33	0.32	0.011	0.166	0.347	0.331	0.148	0.002	2	
		17	0.34	0.32	0.021	0.166	0.681	0.661	0.295	0.009	3	
		18	0.32	0.32	-8.597E-005	0.166	-0.003	-0.003	-0.001	0.000	4	
Clear Points		19	0.33	0.32	5.014E-003	0.166	0.166	0.157	0.070	0.001	5	
		20	0.29	0.32	-0.036	0.166	-1.185	-1.212	-0.542	0.028	6	

Figure 7: Diagnostics case statistics report of observed and predicted heat input

To study the effects of combine input variables on the response variable(heat input), the 3D surface plot presented in Figure 8 was developed.

Figure 8: Effect of current and voltage on the heat input

Conclusion

The quality and integrity of welded joints is highly influenced by the optimal combination of the welding input parameters. This study developed a model using Response Surface Methodology to predict weld heat input from input parameter such as current, voltage and welding speed. The results from the study shows that the voltage has a very strong influence on the heat input that is an increase in voltage will result in a corresponding increase in the heat input.

References

- [1] Kundan K, Somnath C, Avadhesh Y, 2012, *Surface response methodology for predicting the output responses of tig welding process.*, Asian Journal of Engineering Research ISSN--2319–2100, Asian J Eng Res/Vol. I/Issue I/
- [2] Pawan Kumar, Kishor Purushottamrao Kolhe, Sashikant Janardan Morey, "Process Parameters Optimization of an Aluminium Alloy with Pulsed Gas Tungsten Arc Welding (GTAW) Using Gas Mixtures", (2011), 2, 215-2257.
- [3] Nagesh D.S, Datta G.L., Genetic Algorithm for Optimization of Welding Variables for Height to Width Ratio and Application of ANN for Prediction of Bead Geometry for TIG

- [4] Kiaee, N. and Aghaie-Khafri, M. (2014) "Optimization of gas tungsten arc welding process by response surface methodology", Materials and Design 54, 2014, pp. 25–31.
- [5] Kumar,A. and Sundar rajan S. (2009): "Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments" Materials and Design 30 (2009) 1288–1297